From a Cycle to a Period: The Potential Role of BDNF as Plasticity and Phase-Specific Biomarker in Cocaine Use Disorder

Page: [2024 - 2028] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Cocaine Use Disorder (CUD) is one of the diseases with the greatest social and health impact, due to the high cost of rehabilitation management and the high risk of dangerous behavior and relapse. This pathology frequently leads to unsuccessful attempts to interrupt the consumption, resulting in relapses and a vicious cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/ anticipation (craving). The alternation of these phases in addiction was well illustrated by Koob and colleagues in the so-called “addictive cycle”, which nowadays represents a landmark in the addiction field. Recently, there has been a surge of interest in the worldwide literature for biomarkers that might explain the different stages of addiction, and one of the most studied biomarkers is, without a doubt, Brain-derived Neurotrophic Factor (BDNF). In this perspective article, we discuss the potential role of BDNF as biomarker of the CUD phases described in the “Addictive Cycle”, speculating about the close relationship between BDNF fluctuations and the clinical course of CUD. We also discuss BDNF’s potential role as “staging” biomarker, predicting the progression of the disease. Finding valuable biomarkers of CUD severity and disease stage could shift clinicians' focus away from behavioral symptomatic treatment and toward a novel brain-based approach, allowing for the development of more effective and targeted therapeutic strategies, thus determining major benefits for CUD patients.

Keywords: BDNF, biomarker, addiction, staging, craving, relapse, cocaine use disorder, neurotrophic factor.

[1]
APA. Diagnostic and Statistical Manual; American Psychiatric Association: Arlington, USA, 2013.
[2]
Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol., 2008, 59(1), 29-53.
[http://dx.doi.org/10.1146/annurev.psych.59.103006.093548] [PMID: 18154498]
[3]
Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773.
[http://dx.doi.org/10.1016/S2215-0366(16)00104-8] [PMID: 27475769]
[4]
Hirsch, G.E.; Jaskulski, M.; Hamerski, H.M.; Porto, F.G.; da Silva, B.; Aita, C.A.M.; Kroker, K.; de Bem Silveira, G.; Silveira, P.C.L.; Santos, G.T.; Klafke, J.Z.; Viecili, P.R.N. Evaluation of oxidative stress and brain-derived neurotrophic factor levels related to crack-use detoxification. Neurosci. Lett., 2018, 670, 62-68.
[http://dx.doi.org/10.1016/j.neulet.2018.01.044] [PMID: 29374540]
[5]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress re-sponses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[6]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Ma-iolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12(1), 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[7]
Lin, C-C.; Huang, T-L. Brain-derived neurotrophic factor and mental disorders. Biomed. J., 2020, 43(2), 134-142.
[http://dx.doi.org/10.1016/j.bj.2020.01.001] [PMID: 32386841]
[8]
Angelucci, F.; Ricci, V.; Pomponi, M.; Conte, G.; Mathé, A.A.; Attilio Tonali, P.; Bria, P. Chronic hero-in and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. J. Psychopharmacol., 2007, 21(8), 820-825.
[http://dx.doi.org/10.1177/0269881107078491] [PMID: 17715210]
[9]
Pianca, T.G.; Rosa, R.L.; Ceresér, K.M.M.; de Aguiar, B.W.; de Abrahão, R.C.; Lazzari, P.M.; Kapczinski, F.; Pechansky, F.; Rohde, L.A.; Szobot, C.M. Differences in biomarkers of crack-cocaine adolescent users before/after abstinence. Drug Alcohol Depend., 2017, 177, 207-213.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.03.043] [PMID: 28618284]
[10]
Corominas-Roso, M.; Roncero, C.; Eiroa-Orosa, F.J.; Gonzalvo, B.; Grau-Lopez, L.; Ribases, M.; Rodriguez-Cintas, L.; Sánchez-Mora, C.; Ramos-Quiroga, J-A.; Casas, M. Brain-derived neurotrophic factor serum levels in cocaine-dependent patients during early abstinence. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuro-psychopharmacol., 2013, 23(9), 1078-1084.
[http://dx.doi.org/10.1016/j.euroneuro.2012.08.016] [PMID: 23021567]
[11]
D’Sa, C.; Fox, H.C.; Hong, A.K.; Dileone, R.J.; Sinha, R. Increased serum brain-derived neurotrophic factor is predictive of cocaine relapse outcomes: a prospective study. Biol. Psychiatry, 2011, 70(8), 706-711.
[http://dx.doi.org/10.1016/j.biopsych.2011.05.013] [PMID: 21741029]
[12]
Graham, D.L.; Edwards, S.; Bachtell, R.K.; DiLeone, R.J.; Rios, M.; Self, D.W. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat. Neurosci., 2007, 10(8), 1029-1037.
[http://dx.doi.org/10.1038/nn1929] [PMID: 17618281]
[13]
Li, X.; Wolf, M.E. Multiple faces of BDNF in cocaine addiction. Behav. Brain Res., 2015, 279, 240-254.
[http://dx.doi.org/10.1016/j.bbr.2014.11.018] [PMID: 25449839]
[14]
Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res, 2015, 1628(Pt A), 60-67.
[http://dx.doi.org/10.1016/j.brainres.2015.03.025] [PMID: 25801118]
[15]
Ornell, F.; Hansen, F.; Schuch, F.B.; Pezzini Rebelatto, F.; Tavares, A.L.; Scherer, J.N.; Valerio, A.G.; Pechansky, F.; Paim Kessler, F.H.; von Diemen, L. Brain-derived neurotrophic factor in substance use disor-ders: A systematic review and meta-analysis. Drug Alcohol Depend., 2018, 193, 91-103.
[http://dx.doi.org/10.1016/j.drugalcdep.2018.08.036] [PMID: 30347311]
[16]
Kapczinski, F.; Vieta, E.; Andreazza, A.C.; Frey, B.N.; Gomes, F.A.; Tramontina, J.; Kauer-Sant’anna, M.; Grassi-Oliveira, R.; Post, R.M. Allostatic load in bipolar disorder: Implications for pathophysiology and treatment. Neurosci. Biobehav. Rev., 2008, 32(4), 675-692.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.005] [PMID: 18199480]
[17]
McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav., 2003, 43(1), 2-15.
[http://dx.doi.org/10.1016/S0018-506X(02)00024-7] [PMID: 12614627]
[18]
von Diemen, L.; Kapczinski, F.; Sordi, A.O.; de Magalhães Narvaez, J.C.; Guimarães, L.S.P.; Kess-ler, F.H.P.; Pfaffenseller, B.; de Aguiar, B.W.; de Moura Gubert, C.; Pechansky, F. Increase in brain-derived neurotrophic factor expression in early crack cocaine withdrawal. Int. J. Neuropsychopharmacol., 2014, 17(1), 33-40.
[http://dx.doi.org/10.1017/S146114571300103X] [PMID: 24067327]
[19]
Smith, M.A.; Makino, S.; Kvetnansky, R.; Post, R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci., 1995, 15(3 Pt 1), 1768-1777.
[http://dx.doi.org/10.1523/JNEUROSCI.15-03-01768.1995] [PMID: 7891134]
[20]
Fumagalli, F.; Di Pasquale, L.; Caffino, L.; Racagni, G.; Riva, M.A. Repeated exposure to cocaine differently modulates BDNF mRNA and protein levels in rat striatum and prefrontal cortex. Eur. J. Neurosci., 2007, 26(10), 2756-2763.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05918.x] [PMID: 18001273]
[21]
Sadri-Vakili, G.; Kumaresan, V.; Schmidt, H.D.; Famous, K.R.; Chawla, P.; Vassoler, F.M.; Over-land, R.P.; Xia, E.; Bass, C.E.; Terwilliger, E.F.; Pierce, R.C.; Cha, J-H.J. Cocaine-induced chromatin remodel-ing increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of co-caine. J. Neurosci., 2010, 30(35), 11735-11744.
[http://dx.doi.org/10.1523/JNEUROSCI.2328-10.2010] [PMID: 20810894]
[22]
Lu, L.; Dempsey, J.; Liu, S.Y.; Bossert, J.M.; Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci., 2004, 24(7), 1604-1611.
[http://dx.doi.org/10.1523/JNEUROSCI.5124-03.2004] [PMID: 14973246]
[23]
Graham, D.L.; Krishnan, V.; Larson, E.B.; Graham, A.; Edwards, S.; Bachtell, R.K.; Simmons, D.; Gent, L.M.; Berton, O.; Bolanos, C.A.; DiLeone, R.J.; Parada, L.F.; Nestler, E.J.; Self, D.W. Tropo-myosin-related kinase B in the mesolimbic dopamine system: Region-specific effects on cocaine reward. Biol. Psychiatry, 2009, 65(8), 696-701.
[http://dx.doi.org/10.1016/j.biopsych.2008.09.032] [PMID: 18990365]
[24]
Cunha-Oliveira, T.; Rego, A.C.; Oliveira, C.R. Cellular and molecular mechanisms involved in the neurotoxicity of opi-oid and psychostimulant drugs. Brain Res. Brain Res. Rev., 2008, 58(1), 192-208.
[http://dx.doi.org/10.1016/j.brainresrev.2008.03.002] [PMID: 18440072]
[25]
Birkenhäger, T.K.; Geldermans, S.; Van den Broek, W.W.; van Beveren, N.; Fekkes, D. Serum brain-derived neurotrophic factor level in relation to illness severity and episode duration in patients with major depression. J. Psychiatr. Res., 2012, 46(3), 285-289.
[http://dx.doi.org/10.1016/j.jpsychires.2011.12.006] [PMID: 22244515]
[26]
Takebayashi, N.; Maeshima, H.; Baba, H.; Nakano, Y.; Satomura, E.; Kita, Y.; Namekawa, Y.; Nomoto, H.; Suzuki, T.; Arai, H. Duration of last depressive episode may influence serum BDNF levels in remitted patients with major depression. Depress. Anxiety, 2012, 29(9), 775-779.
[http://dx.doi.org/10.1002/da.21933] [PMID: 22447660]
[27]
Schmidt, H.D.; McGinty, J.F.; West, A.E.; Sadri-Vakili, G. Epigenetics and psychostimulant addiction. Cold Spring Harb. Perspect. Med., 2013, 3(3), a012047.
[http://dx.doi.org/10.1101/cshperspect.a012047] [PMID: 23359110]
[28]
Im, H-I.; Hollander, J.A.; Bali, P.; Kenny, P.J. MeCP2 controls BDNF expression and cocaine intake through homeostat-ic interactions with microRNA-212. Nat. Neurosci., 2010, 13(9), 1120-1127.
[http://dx.doi.org/10.1038/nn.2615] [PMID: 20711185]
[29]
Guan, J-S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J-H.; Joseph, N.; Gao, J.; Nieland, T.J.F.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J.E.; DePinho, R.A.; Jaenisch, R.; Tsai, L-H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459(7243), 55-60.
[http://dx.doi.org/10.1038/nature07925] [PMID: 19424149]
[30]
Zhao, G.; Zhang, C.; Chen, J.; Su, Y.; Zhou, R.; Wang, F.; Xia, W.; Huang, J.; Wang, Z.; Hu, Y.; Cao, L.; Guo, X.; Yuan, C.; Wang, Y.; Yi, Z.; Lu, W.; Wu, Y.; Wu, Z.; Hong, W.; Peng, D.; Fang, Y. Ratio of mBDNF to proBDNF for Differential Diagnosis of Major Depressive Disorder and Bipolar Depression. Mol. Neurobiol., 2017, 54(7), 5573-5582.
[http://dx.doi.org/10.1007/s12035-016-0098-6] [PMID: 27613282]
[31]
Bachis, A.; Campbell, L.A.; Jenkins, K.; Wenzel, E.; Mocchetti, I. Morphine withdrawal increases brain-derived neurotrophic factor precursor. Neurotox. Res., 2017, 32(3), 509-517.
[http://dx.doi.org/10.1007/s12640-017-9788-8] [PMID: 28776309]
[32]
Castrén, E.; Monteggia, L.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol. Psychiatry, 2021, 90(2), 128-136.
[http://dx.doi.org/10.1016/j.biopsych.2021.05.008] [PMID: 34053675]
[33]
Valiuliene, G.; Valiulis, V.; Dapsys, K.; Vitkeviciene, A.; Gerulskis, G.; Navakauskiene, R.; Ger-manavicius, A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur. J. Neurosci., 2021, 53(11), 3791-3802.
[http://dx.doi.org/10.1111/ejn.15232] [PMID: 33861484]
[34]
Eskandari, Z.; Dadashi, M.; Mostafavi, H.; Armani Kia, A.; Pirzeh, R. Comparing the efficacy of anodal, ca-thodal, and sham transcranial direct current stimulation on brain-derived neurotrophic factor and psychological symptoms in opioid-addicted patients. Basic Clin. Neurosci., 2019, 10(6), 641-650.
[http://dx.doi.org/10.32598/BCN.10.6.1710.1] [PMID: 32477481]
[35]
Martinotti, G.; Lupi, M.; Montemitro, C.; Miuli, A.; Di Natale, C.; Spano, M.C.; Mancini, V.; Lorus-so, M.; Stigliano, G.; Tambelli, A.; Di Carlo, F.; Di Caprio, L.; Fraticelli, S.; Chillemi, E.; Pettorruso, M.; Sepede, G.; di Giannantonio, M. Transcranial direct current stimulation reduces craving in substance use disorders: A double-blind, placebo-controlled study. J. ECT, 2019, 35(3), 207-211.
[http://dx.doi.org/10.1097/YCT.0000000000000580] [PMID: 30844881]
[36]
Pettorruso, M.; Martinotti, G.; Santacroce, R.; Montemitro, C.; Fanella, F.; di Giannantonio, M. rTMS reduces psychopathological burden and cocaine consumption in treatment-seeking subjects with cocaine use disorder: An open label, fea-sibility study. Front. Psychiatry, 2019, 10, 621.
[http://dx.doi.org/10.3389/fpsyt.2019.00621] [PMID: 31543838]
[37]
Wu, C.; Lu, J.; Lu, S.; Huang, M.; Xu, Y. Increased ratio of mature BDNF to precursor-BDNF in patients with major de-pressive disorder with severe anhedonia. J. Psychiatr. Res., 2020, 126, 92-97.
[http://dx.doi.org/10.1016/j.jpsychires.2020.05.010] [PMID: 32428748]
[38]
Martinotti, G.; Chiappini, S.; Pettorruso, M.; Mosca, A.; Miuli, A.; Di Carlo, F.; D’Andrea, G.; Collevecchio, R.; Di Muzio, I.; Sensi, S.L.; Di Giannantonio, M. Therapeutic potentials of ketamine and esketa-mine in obsessive-compulsive disorder (OCD), substance use disorders (SUD) and eating disorders (ED): A review of the current litera-ture. Brain Sci., 2021, 11(7), 856.
[http://dx.doi.org/10.3390/brainsci11070856] [PMID: 34199023]
[39]
Zhou, C.; Zhong, J.; Zou, B.; Fang, L.; Chen, J.; Deng, X.; Zhang, L.; Zhao, X.; Qu, Z.; Lei, Y.; Lei, T. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One, 2017, 12(2), e0172270.
[http://dx.doi.org/10.1371/journal.pone.0172270] [PMID: 28241064]
[40]
Wolkowitz, O.M.; Wolf, J.; Shelly, W.; Rosser, R.; Burke, H.M.; Lerner, G.K.; Reus, V.I.; Nelson, J.C.; Epel, E.S.; Mellon, S.H. Serum BDNF levels before treatment predict SSRI response in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(7), 1623-1630.
[http://dx.doi.org/10.1016/j.pnpbp.2011.06.013] [PMID: 21749907]
[41]
Kar, S.K. Predictors of response to repetitive transcranial magnetic stimulation in depression: A review of recent updates. Clin. Psychopharmacol. Neurosci., 2019, 17(1), 25-33.
[http://dx.doi.org/10.9758/cpn.2019.17.1.25] [PMID: 30690937]