Association of Circulating Levels of Hypoxia-Inducible Factor-1α and miR-210 with Photosensitivity in Systemic Lupus Erythematosus Patients

Page: [185 - 192] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: miR-210, a key hypoxamiR, regulates hypoxia and inflammation-linked hypoxia. Systemic lupus erythematosus (SLE), a chronic autoimmune disease, is responsible for many pathological disorders, including photosensitivity.

Objective: This study aimed to find the correlation between circulating miR-210/HIF-1α levels and photosensitivity in SLE patients and other SLE-associated pathological complications in a single-center case-control study.

Methods: The study population comprised 104 SLE Egyptian patients with photosensitivity, 32 SLE patients without photosensitivity, and 32 healthy subjects. SLE activity was assessed for all patients using the SLE Disease Activity Index (SLEDAI). Clinical complications/manifestations and hematological/serological analyses were recorded. HIF-α concentration was investigated by ELISA, and miR-210 expression was analyzed by qRT-PCR.

Results: The results revealed that circulating miR-210 was significantly increased in the SLE/photosensitivity group versus the SLE and control groups. The additional occurrence of malar rash, oral ulcers, renal disorders, or hypertension resulted in a higher expression of miR-210. SLEDAI activity status showed no effect on miR-210. Erythrocyte sedimentation rate, white blood cells, hemoglobin, platelets, patient age, and disease duration were positively correlated with circulatory miR-210. HIF-α concentration was significantly induced in the SLE/photosensitivity group versus the SLE and control groups. In SLE/photosensitivity, the presence of renal disorders and hypertension resulted in the highest HIF-α concentrations. A strong positive correlation was recorded between HIF-α concentration and circulatory miR-210 in SLE/photosensitivity patients (r = 0.886).

Conclusion: The dysregulation of circulating miR-210/HIF-1α levels in SLE/ photosensitivity patients is controlled by the presence of additional pathological complications, and results suggest that the hypoxia pathway might interact positively with the pathogenesis and disease progression of SLE.

Keywords: Photosensitivity, systemic lupus erythematosus, hypoxamiR, circulating miR-210, HIF-α, patients.

[1]
Le X, Yu X, Shen N. Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29(5): 450-7.
[http://dx.doi.org/10.1097/BOR.0000000000000420] [PMID: 28570283]
[2]
Banchereau R, Hong S, Cantarel B, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 2016; 165(3): 551-65.
[http://dx.doi.org/10.1016/j.cell.2016.03.008] [PMID: 27040498]
[3]
Pacheco-Lugo L, Sáenz-García J, Navarro Quiroz E, et al. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus 2019; 28(1): 34-43.
[http://dx.doi.org/10.1177/0961203318812679] [PMID: 30453818]
[4]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[5]
Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: Tiny players in a big field. Immunity 2007; 26(2): 133-7.
[http://dx.doi.org/10.1016/j.immuni.2007.02.005] [PMID: 17307699]
[7]
Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 2016; 16(5): 279-94.
[http://dx.doi.org/10.1038/nri.2016.40] [PMID: 27121651]
[8]
Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity 2016; 45(1): 15-30.
[http://dx.doi.org/10.1016/j.immuni.2016.06.020] [PMID: 27438764]
[9]
O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol 2012; 30: 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013] [PMID: 22224773]
[10]
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17(12): 719-32.
[http://dx.doi.org/10.1038/nrg.2016.134] [PMID: 27795564]
[11]
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell 2010; 40(2): 205-15.
[http://dx.doi.org/10.1016/j.molcel.2010.09.027] [PMID: 20965416]
[12]
Camps C, Buffa FM, Colella S, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008; 14(5): 1340-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1755] [PMID: 18316553]
[13]
Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 2008; 7(2): 255-64.
[http://dx.doi.org/10.4161/cbt.7.2.5297] [PMID: 18059191]
[14]
Huang X, Le QT, Giaccia AJ. MiR-210-micromanager of the hypoxia pathway. Trends Mol Med 2010; 16(5): 230-7.
[http://dx.doi.org/10.1016/j.molmed.2010.03.004] [PMID: 20434954]
[15]
Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: The master hypoxamir. Microcirculation 2012; 19(3): 215-23.
[http://dx.doi.org/10.1111/j.1549-8719.2011.00154.x] [PMID: 22171547]
[16]
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011; 364(7): 656-65.
[http://dx.doi.org/10.1056/NEJMra0910283] [PMID: 21323543]
[17]
Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011; 146(5): 772-84.
[http://dx.doi.org/10.1016/j.cell.2011.07.033] [PMID: 21871655]
[18]
Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 2014; 15(4): 393-401.
[http://dx.doi.org/10.1038/ni.2846] [PMID: 24608041]
[19]
Sen CK, Gordillo GM, Khanna S, Roy S. Micromanaging vascular biology: Tiny microRNAs play big band. J Vasc Res 2009; 46(6): 527-40.
[http://dx.doi.org/10.1159/000226221] [PMID: 19571573]
[20]
Ha TY. MicroRnas in human diseases: from autoimmune diseases to skin, psychiatric and neurodegenerative diseases. Immune Netw 2011; 11(5): 227-44.
[http://dx.doi.org/10.4110/in.2011.11.5.227] [PMID: 22194706]
[21]
Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today 2006; 78(2): 140-9.
[http://dx.doi.org/10.1002/bdrc.20070] [PMID: 16847891]
[22]
Liu J, Drescher KM, Chen XM. MicroRNAs and epithelial immunity. Int Rev Immunol 2009; 28(3-4): 139-54.
[http://dx.doi.org/10.1080/08830180902943058] [PMID: 19811319]
[23]
Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG. MicroRNAs and the skin: Tiny players in the body’s largest organ. J Dermatol Sci 2009; 53(3): 169-75.
[http://dx.doi.org/10.1016/j.jdermsci.2008.10.004] [PMID: 19058951]
[24]
Sim JH, Ambler WG, Sollohub IF, et al. Immune cell-stromal circuitry in lupus photosensitivity. J Immunol 2021; 206(2): 302-9.
[http://dx.doi.org/10.4049/jimmunol.2000905] [PMID: 33397744]
[25]
Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25(11): 1271-7.
[http://dx.doi.org/10.1002/art.1780251101] [PMID: 7138600]
[26]
Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. The committee on prognosis studies in SLE. Derivation of the SLEDAI. A disease activity index for lupus patients. Arthritis Rheum 1992; 35(6): 630-40.
[http://dx.doi.org/10.1002/art.1780350606] [PMID: 1599520]
[27]
Chun HY, Chung JW, Kim HA, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 2007; 27(5): 461-6.
[http://dx.doi.org/10.1007/s10875-007-9104-0] [PMID: 17587156]
[28]
Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 2010; 37(10): 2046-52.
[http://dx.doi.org/10.3899/jrheum.100293] [PMID: 20682672]
[29]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[30]
Wu Y-H, Chan Y-F, Hsieh H-L, Hwang T-L. Upregulation of mir‐210‐5p in systemic lupus erythematosus impairs silent clearance of dead cell remnants. FASEB J 2020; 34(S1): 09005.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.09005]
[31]
Nanduri J, Vaddi DR, Khan SA, et al. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 2015; 10(3): e0119762.
[http://dx.doi.org/10.1371/journal.pone.0119762] [PMID: 25751622]
[32]
Huang Q, Chen SS, Li J, et al. miR-210 expression in PBMCs from patients with systemic lupus erythematosus and rheumatoid arthritis. Ir J Med Sci 2018; 187(1): 243-9.
[http://dx.doi.org/10.1007/s11845-017-1634-8] [PMID: 28560518]
[33]
Rigó J, Molvarec A, Nagy B, Biró O, Alasztics B. Expression analysis of circulating exosomal hsa-miR-210 in hypertensive disorders of ‎pregnancy. Pregnancy Hypertens 2016; 6(3): 183.
[http://dx.doi.org/10.1016/j.preghy.2016.08.093]
[34]
Kimura K, Iwano M, Higgins DF, et al. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 2008; 295(4): F1023-9.
[http://dx.doi.org/10.1152/ajprenal.90209.2008] [PMID: 18667485]
[35]
Ma C, Wei J, Zhan F, et al. Urinary hypoxia-inducible factor-1alpha levels are associated with histologic chronicity changes and renal function in patients with lupus nephritis. Yonsei Med J 2012; 53(3): 587-92.
[http://dx.doi.org/10.3349/ymj.2012.53.3.587] [PMID: 22477004]
[36]
Deng W, Ren Y, Feng X, et al. Hypoxia inducible factor-1 alpha promotes mesangial cell proliferation in lupus nephritis. Am J Nephrol 2014; 40(6): 507-15.
[http://dx.doi.org/10.1159/000369564] [PMID: 25531641]
[37]
Yang ZC, Liu Y. Hypoxia-inducible factor-1α and autoimmune lupus, arthritis. Inflammation 2016; 39(3): 1268-73.
[http://dx.doi.org/10.1007/s10753-016-0337-z] [PMID: 27032396]
[38]
Higgins DF, Kimura K, Bernhardt WM, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 2007; 117(12): 3810-20.
[http://dx.doi.org/10.1172/JCI30487] [PMID: 18037992]