Natural Bridged Bicyclic Peptide Macrobiomolecules from Celosia argentea and Amanita phalloides

Page: [1772 - 1788] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential, and stereo- chemical properties. This division of biologically active congeners with multiple circular rings has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for the establishment of drugs because of their close resemblance and biocompatibility with proteins, and these bio-actives are debated as feasible, realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms, including βs-leucyl-tryptophano-histidine bridged and tryptophanocysteine bridged peptide macrobicycles. The unique structural features, structure-activity relationship, synthetic routes, bioproperties, and therapeutic potential of the natural BPMs are also discussed.

Keywords: Bridged peptides, plant seeds, mushrooms, bicycles, peptide synthesis, tubulin polymerization inhibition.

Graphical Abstract

[1]
Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00318] [PMID: 28737935]
[2]
Phyo, Y.Z.; Ribeiro, J.; Fernandes, C.; Kijjoa, A.; Pinto, M.M.M. Marine natural peptides: Determination of absolute configuration using liquid chromatography methods and evaluation of bioactivities. Molecules, 2018, 23(2), 306.
[http://dx.doi.org/10.3390/molecules23020306] [PMID: 29385101]
[3]
Dahiya, R.; Dahiya, S.; Fuloria, N.K.; Kumar, S.; Mourya, R.; Chennupati, S.V.; Jankie, S.; Gautam, H.; Singh, S.; Karan, S.K.; Maharaj, S.; Fuloria, S.; Shrivastava, J.; Agarwal, A.; Singh, S.; Kishor, A.; Jadon, G.; Sharma, A. Natural bioactive thiazole-based peptides from mari-ne resources: Structural and pharmacological aspects. Mar. Drugs, 2020, 18(6), 329.
[http://dx.doi.org/10.3390/md18060329] [PMID: 32599909]
[4]
Pathak, D.; Dahiya, R. Cyclic peptides as novel antineoplastic agents: A review. J. Sci. Pharm., 2003, 4, 125-131.
[5]
Ghanbari, R. Review on the bioactive peptides from marine sources: Indication for health effects. Int. J. Pept. Res. Ther., 2019, 25, 1187-1199.
[http://dx.doi.org/10.1007/s10989-018-9766-x]
[6]
Rhodes, C.A.; Pei, D. Bicyclic peptides as next-generation therapeutics. Chemistry, 2017, 23(52), 12690-12703.
[http://dx.doi.org/10.1002/chem.201702117] [PMID: 28590540]
[7]
Dahiya, R.; Kumar, A.; Yadav, R. Synthesis and biological activity of peptide derivatives of iodoquinazolinones/nitroimidazoles. Molecules, 2008, 13(4), 958-976.
[http://dx.doi.org/10.3390/molecules13040958] [PMID: 18463598]
[8]
Singh, A.P.; Ramadan, W.M.; Dahiya, R.; Sarpal, A.S.; Pathak, K. Product development studies of amino acid conjugate of Aceclofenac. Curr. Drug Deliv., 2009, 6(2), 208-216.
[http://dx.doi.org/10.2174/156720109787846261] [PMID: 19450228]
[9]
Poojary, B.; Belagali, S.L.; Kumar, K.H.; Holla, B.S. Synthetic and antibacterial studies on some new furanopeptides. Farmaco, 2003, 58(8), 569-572.
[http://dx.doi.org/10.1016/S0014-827X(03)00092-2] [PMID: 12875887]
[10]
Himaja, M. Rajiv; Ramana, M.V.; Poojary, B.; Satyanarayana, D.; Subrahmanyam, E.V.; Bhat, K.I. Synthesis and biological activity of a novel series of 4-[2′-(6′-nitro)benzimidazolyl]benzoyl amino acids and peptides. Boll. Chim. Farm., 2003, 142(10), 450-453.
[PMID: 14971314]
[11]
Dahiya, R.; Mourya, R. Synthetic studies on novel nitroquinazolinone analogs with antimicrobial potential. Bull. Pharm. Res., 2013, 3(2), 51-57.
[12]
Dahiya, R.; Pathak, D.; Bhatt, S. Synthesis and biological evaluation of a novel series of 2-(2′-isopropyl-5′-methylphenoxy) acetyl amino acids and dipeptides. Bull. Chem. Soc. Ethiop., 2006, 20(2), 235-245.
[http://dx.doi.org/10.4314/bcse.v20i2.21166]
[13]
Dahiya, R.; Pathak, D. Synthetic studies on novel benzimidazolopeptides with antimicrobial, cytotoxic and anthelmintic potential. Eur. J. Med. Chem., 2007, 42(6), 772-798.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.015] [PMID: 17239491]
[14]
Balamani, J.; Thangavel, M.; Sekar, M. Synthesis of peptide derivatives of aspirin and their antibiogram. Int. J. Biol. Chem. Sci., 2009, 3(4), 637-645.
[http://dx.doi.org/10.4314/ijbcs.v3i4.47175]
[15]
Himaja, M. Rajiv; Ramana, M.V Synthesis of 6-nitrobenzimidazol-1-acetyl amino acids and peptides as potent anthelmintic agents. Indian J. Heterocycl. Chem., 2002, 12(2), 121-124.
[16]
Fairweather, K.A.; Sayyadi, N.; Roussakis, C.; Jolliffe, K.A. Synthesis of the cyclic heptapeptide axinellin A. Tetrahedron, 2010, 66(4), 935-939.
[http://dx.doi.org/10.1016/j.tet.2009.11.090]
[17]
Dahiya, R. Synthesis, characterization and biological evaluation of a glycine-rich peptide - cherimolacyclopeptide E. J. Chil. Chem. Chem., 2007, 52(3), 1224-1229.
[http://dx.doi.org/10.4067/S0717-97072007000300006]
[18]
Lee, S.Y.; Boger, D.L. Synthesis of the chlorofusin cyclic peptide. Tetrahedron, 2009, 65(16), 3281-3284.
[http://dx.doi.org/10.1016/j.tet.2008.09.029] [PMID: 20047009]
[19]
Dahiya, R.; Kaur, K. Synthetic and biological studies on natural cyclic heptapeptide: segetalin E. Arch. Pharm. Res., 2007, 30(11), 1380-1386.
[http://dx.doi.org/10.1007/BF02977360] [PMID: 18087804]
[20]
Poojary, B.; Kumar, K.H.; Belagali, S.L. Synthesis and biological evaluation of pseudostellarin B. Farmaco, 2001, 56(4), 331-334.
[http://dx.doi.org/10.1016/S0014-827X(01)01031-X] [PMID: 11421263]
[21]
Dahiya, R.; Kaur, K. Synthesis and pharmacological investigation of segetalin C as a novel antifungal and cytotoxic agent. Arzneimittel for schung, 2008, 58(1), 29-34.
[PMID: 18368948]
[22]
Poojary, B.; Belagali, S.L. Synthetic studies on cyclic octapeptides: Yunnanin F and Hymenistatin. Eur. J. Med. Chem., 2005, 40(4), 407-412.
[http://dx.doi.org/10.1016/j.ejmech.2004.11.013] [PMID: 15804540]
[23]
Dahiya, R.; Maheshwari, M.; Kumar, A. Toward the synthesis and biological evaluation of hirsutide. Monatsh. Chem., 2009, 140(1), 121-127.
[http://dx.doi.org/10.1007/s00706-008-0052-z]
[24]
Dahiya, R.; Gautam, H. Toward the first total synthesis of gypsin D: A natural cyclopolypeptide from Gypsophila arabica. Am. J. Sci. Res., 2010, 11, 150-158.
[25]
Belagali, S.L.; Himaja, M.; Kumar, L.H.; Thomas, R.; Prakasini, S.R.; Poojary, B. (Nitro) hymenamide A, unusual biologically active cyclic peptide. Boll. Chim. Farm., 1999, 138(4), 160-164.
[PMID: 10422327]
[26]
Zhou, R.; Sun, Y.; Li, H.; Long, W.; Liao, X.; Feng, P.; Xu, S. Synthesis and biological evaluation of reniochalistatins A-E and a reniocha-listatin E analogue. ChemMedChem, 2018, 13(20), 2202-2207.
[http://dx.doi.org/10.1002/cmdc.201800529] [PMID: 30102451]
[27]
Jiang, S.; Zhao, L.; Wu, J.; Bao, Y.; Wang, Z.; Jin, Y. Photo-induced synthesis, structure and in vitro bioactivity of a natural cyclic peptide Yunnanin A analog. RSC Advances, 2020, 10, 210-214.
[http://dx.doi.org/10.1039/C9RA09163G]
[28]
Dahiya, R.; Rampersad, S.; Ramnanansingh, T.G.; Kaur, K.; Kaur, R.; Mourya, R.; Chennupati, S.V.; Fairman, R.; Jalsa, N.K.; Sharma, A.; Fuloria, S.; Fuloria, N.K. Synthesis and bioactivity of a cyclopolypeptide from Caribbean marine sponge. Iran. J. Pharm. Res., 2020, 19(3), 156-170.
[PMID: 33680019]
[29]
Shaheen, F.; Jabeen, A.; Ashraf, S.; Nadeem-Ul-Haque, M.; Shah, Z.A.; Ziaee, M.A.; Dastagir, N.; Ganesan, A. Total synthesis, structural, and biological evaluation of stylissatin A and related analogs. J. Pept. Sci., 2016, 22(9), 607-617.
[http://dx.doi.org/10.1002/psc.2909] [PMID: 27526945]
[30]
Fang, W.Y.; Dahiya, R.; Qin, H.L.; Mourya, R.; Maharaj, S. Natural proline-rich cyclopolypeptides from marine organisms: Chemistry, synthetic methodologies and biological status. Mar. Drugs, 2016, 14(11), 194.
[http://dx.doi.org/10.3390/md14110194] [PMID: 27792168]
[31]
Dahiya, R.; Dahiya, S. Natural bioeffective cyclooligopeptides from plant seeds of Annona genus. Eur. J. Med. Chem., 2021, 214, 113221.
[http://dx.doi.org/10.1016/j.ejmech.2021.113221] [PMID: 33540356]
[32]
Ahangarzadeh, S.; Kanafi, M.M.; Hosseinzadeh, S.; Mokhtarzadeh, A.; Barati, M.; Ranjbari, J.; Tayebi, L. Bicyclic peptides: Types, synt-hesis and applications. Drug Discov. Today, 2019, 24(6), 1311-1319.
[http://dx.doi.org/10.1016/j.drudis.2019.05.008] [PMID: 31102732]
[33]
Sharma, M.; Singhvi, I.; Munawar Ali, Z.; Kumar, M.; Dev, S.K. Synthesis and biological evaluation of natural cyclic peptide. Future J. Pharm. Sci., 2018, 4(2), 220-228.
[http://dx.doi.org/10.1016/j.fjps.2018.07.001]
[34]
Dahiya, R. Total synthesis and biological potential of psammosilenin A. Arch. Pharm. (Weinheim), 2008, 341(8), 502-509.
[http://dx.doi.org/10.1002/ardp.200800006] [PMID: 18618488]
[35]
Prior, A.M.; Hori, T.; Fishman, A.; Sun, D. Recent reports of solid-phase cyclohexapeptide synthesis and applications. Molecules, 2018, 23(6), 1475.
[http://dx.doi.org/10.3390/molecules23061475] [PMID: 29912160]
[36]
Yoshida, Y.; Inagaki, M.; Masuda, Y. Solid-phase synthesis and bioactivity evaluation of cherimolacyclopeptide E. J. Pept. Sci., 2021, 27(6), e3308.
[http://dx.doi.org/10.1002/psc.3308] [PMID: 33586251]
[37]
Dahiya, R.; Kumar, A.; Gupta, R. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolypeptide. Chem. Pharm. Bull. (Tokyo), 2009, 57(2), 214-217.
[http://dx.doi.org/10.1248/cpb.57.214] [PMID: 19182416]
[38]
Dahiya, R.; Singh, S. First total synthesis and biological potential of a heptacyclopeptide of plant origin. Chin. J. Chem., 2016, 34(11), 1158-1164.
[http://dx.doi.org/10.1002/cjoc.201600419]
[39]
Lawer, A.; Tai, J.; Jolliffe, K.A.; Fletcher, S.; Avery, V.M.; Hunter, L. Total synthesis and antiplasmodial activity of pohlianin C and ana-logues. Bioorg. Med. Chem. Lett., 2014, 24(12), 2645-2647.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.071] [PMID: 24813731]
[40]
Dahiya, R.; Dahiya, S.; Shrivastava, J.; Fuloria, N.K.; Gautam, H.; Mourya, R.; Fuloria, S. Natural cyclic polypeptides as vital phytochemi-cal constituents from seeds of selected medicinal plants. Arch. Pharm. (Weinheim), 2021, 354(4), e2000446.
[http://dx.doi.org/10.1002/ardp.202000446] [PMID: 33522644]
[41]
Dahiya, R.; Singh, S.; Varghese Gupta, S.; Sutariya, V.B.; Bhatia, D.; Mourya, R.; Chennupati, S.V.; Sharma, A. First total synthesis and pharmacological potential of a plant based hexacyclopeptide. Iran. J. Pharm. Res., 2019, 18(2), 938-947.
[PMID: 31531075]
[42]
Tang, Y.; Xin, H-l.; Guo, M-l. Review on research of the phytochemistry and pharmacological activities of Celosia argentea. Rev. Bras. Farmacogn., 2016, 26(6), 787-796.
[http://dx.doi.org/10.1016/j.bjp.2016.06.001]
[43]
Morita, H.; Shimbo, K.; Shigemori, H.; Kobayashi, J. Antimitotic activity of moroidin, a bicyclic peptide from the seeds of Celosia argen-tea. Bioorg. Med. Chem. Lett., 2000, 10(5), 469-471.
[http://dx.doi.org/10.1016/S0960-894X(00)00029-9] [PMID: 10743950]
[44]
Leung, T-W.C.; Williams, D.H.; Barna, J.C.J.; Foti, S.; Oelrichs, P.B. Structural studies on the peptide moroidin from laportea moroides. Tetrahedron, 1986, 42(12), 3333-3348.
[http://dx.doi.org/10.1016/S0040-4020(01)87397-X]
[45]
Kobayashi, J.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. Celogentins A-C, new antimitotic bicyclic peptides from the seeds of Celo-sia argentea. J. Org. Chem., 2001, 66(20), 6626-6633.
[http://dx.doi.org/10.1021/jo0103423] [PMID: 11578213]
[46]
Suzuki, H.; Morita, H.; Iwasaki, S.; Kobayashi, J. New antimitotic bicyclic peptides, celogentins D–H, and J, from the seeds of Celosia argentea. Tetrahedron, 2003, 59(28), 5307-5315.
[http://dx.doi.org/10.1016/S0040-4020(03)00762-2]
[47]
Ma, B.; Banerjee, B.; Litvinov, D.N.; He, L.; Castle, S.L. Total synthesis of the antimitotic bicyclic peptide celogentin C. J. Am. Chem. Soc., 2010, 132(3), 1159-1171.
[http://dx.doi.org/10.1021/ja909870g] [PMID: 20038144]
[48]
Li, L.; Hu, W.; Jia, Y. Synthetic studies of cyclic peptides stephanotic acid methyl ester, celogentin C, and moroidin. Tetrahedron, 2014, 70(42), 7753-7762.
[http://dx.doi.org/10.1016/j.tet.2014.05.082]
[49]
Wieland, T.; Faulstich, H.; Fiume, L. Amatoxins, phallotoxins, phallolysin, and antamanide: The biologically active components of poiso-nous Amanita mushrooms. CRC Crit. Rev. Biochem., 1978, 5(3), 185-260.
[http://dx.doi.org/10.3109/10409237809149870] [PMID: 363352]
[50]
Konno, K. Biologically active components of poisonous mushrooms. Food Rev. Int., 1995, 11(1), 83-107.
[http://dx.doi.org/10.1080/87559129509541021]
[51]
Thiede, B.R.; Corwin, J.T. Permeation of fluorophore-conjugated phalloidin into live hair cells of the inner ear is modulated by P2Y recep-tors. J. Assoc. Res. Otolaryngol., 2014, 15(1), 13-30.
[http://dx.doi.org/10.1007/s10162-013-0425-9] [PMID: 24263968]
[52]
Kostansek, E.C.; Lipscomb, W.N.; Yocum, R.R.; Thiessen, W.E. Conformation of the mushroom toxin β-amanitin in the crystalline state. Biochemistry, 1978, 17(18), 3790-3795.
[http://dx.doi.org/10.1021/bi00611a019] [PMID: 698197]
[53]
Wieland, T. The Chemistry of the Amatoxins, Phallotoxins and Virotoxins.Peptides of Poisonous Amanita Mushrooms. Springer Series in Molecular Biology; Springer: Berlin, Heidelberg, 1986.
[http://dx.doi.org/10.1007/978-3-642-71295-1_7]
[54]
Estes, J.E.; Selden, L.A.; Gershman, L.C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry, 1981, 20(4), 708-712.
[http://dx.doi.org/10.1021/bi00507a006] [PMID: 6452160]
[55]
Rumack, B.H.; Spoerke, D.G. Handbook of mushroom poisoning: Diagnosis and treatment; CRC Press Inc: Boca Raton, FL, USA, 1994.
[56]
Lindell, T.J.; Weinberg, F.; Morris, P.W.; Roeder, R.G.; Rutter, W.J. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science, 1970, 170(3956), 447-449.
[http://dx.doi.org/10.1126/science.170.3956.447] [PMID: 4918258]
[57]
Yao, G.; Joswig, J-O.; Keller, B.G.; Süssmuth, R.D. Total synthesis of the death cap toxin phalloidin: Atropoisomer selectivity explained by molecular-dynamics simulations. Chemistry, 2019, 25(34), 8030-8034.
[http://dx.doi.org/10.1002/chem.201901888] [PMID: 31034701]
[58]
Faulstich, H.; Zobeley, S.; Bentrup, U.; Jockusch, B.M. Biotinylphallotoxins: preparation and use as actin probes. J. Histochem. Cytochem., 1989, 37(7), 1035-1045.
[http://dx.doi.org/10.1177/37.7.2499619] [PMID: 2499619]
[59]
Anderl, J.; Echner, H.; Faulstich, H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology. Beilstein J. Org. Chem., 2012, 8, 2072-2084.
[http://dx.doi.org/10.3762/bjoc.8.233] [PMID: 23209542]
[60]
Anderson, M.O.; Shelat, A.A.; Guy, R.K. A solid-phase approach to the phallotoxins: Total synthesis of [Ala7]-phalloidin. J. Org. Chem., 2005, 70(12), 4578-4584.
[http://dx.doi.org/10.1021/jo0503153] [PMID: 15932292]
[61]
Schuresko, L.A.; Lokey, R.S. A practical solid-phase synthesis of Glu7-phalloidin and entry into fluorescent F-actin-binding reagents. Angew. Chem. Int. Ed., 2007, 46(19), 3547-3549.
[http://dx.doi.org/10.1002/anie.200700017] [PMID: 17385816]
[62]
Matinkhoo, K.; Pryyma, A.; Todorovic, M.; Patrick, B.O.; Perrin, D.M. Synthesis of the death-cap mushroom toxin α-amanitin. J. Am. Chem. Soc., 2018, 140(21), 6513-6517.
[http://dx.doi.org/10.1021/jacs.7b12698] [PMID: 29561592]
[63]
Siegert, M.J.; Knittel, C.H.; Süssmuth, R.D. A convergent total synthesis of the death cap toxin α‐amanitin. Angew. Chem. Int. Ed. Engl., 2020, 59(14), 5500-5504.
[http://dx.doi.org/10.1002/anie.201914620] [PMID: 31846557]
[64]
Lutz, C.; Simon, W.; Werner-Simon, S.; Pahl, A.; Müller, C. Alpha- and beta-amanitin total synthesis. Angew. Chem. Int. Ed., 2020, 59(28), 11390-11393.
[http://dx.doi.org/10.1002/anie.201914935] [PMID: 32091645]
[65]
Zhang, Z.; Zhang, X.; Li, D. Application of amanita toxic peptides in life sciences research. Wei Sheng Yen Chiu, 1999, 28(1), 60-63.
[PMID: 12712754]
[66]
Youssef, D.T.A.; Shaala, L.A.; Mohamed, G.A.; Badr, J.M.; Bamanie, F.H.; Ibrahim, S.R.M. Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar. Drugs, 2014, 12(4), 1911-1923.
[http://dx.doi.org/10.3390/md12041911] [PMID: 24694570]
[67]
Dawson, S.; Malkinson, J.P.; Paumier, D.; Searcey, M. Bisintercalator natural products with potential therapeutic applications: Isolation, structure determination, synthetic and biological studies. Nat. Prod. Rep., 2007, 24(1), 109-126.
[http://dx.doi.org/10.1039/B516347C] [PMID: 17268609]
[68]
Appiah Kubi, G.; Dougherty, P.G.; Pei, D. Designing cell-permeable macrocyclic peptides. Methods Mol. Biol., 2019, 2001, 41-59.
[http://dx.doi.org/10.1007/978-1-4939-9504-2_3] [PMID: 31134566]
[69]
Buckton, L.K.; Rahimi, M.N.; McAlpine, S.R. Cyclic peptides as drugs for intracellular targets: The next frontier in peptide therapeutic development. Chemistry, 2021, 27(5), 1487-1513.
[http://dx.doi.org/10.1002/chem.201905385] [PMID: 32875673]
[70]
Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J. Am. Chem. Soc., 2019, 141(10), 4167-4181.
[http://dx.doi.org/10.1021/jacs.8b13178] [PMID: 30768253]
[71]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[72]
Weinstock, M.T.; Francis, J.N.; Redman, J.S.; Kay, M.S. Protease-resistant peptide design-empowering nature’s fragile warriors against HIV. Biopolymers, 2012, 98(5), 431-442.
[http://dx.doi.org/10.1002/bip.22073] [PMID: 23203688]
[73]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]
[74]
Bech, E.M.; Pedersen, S.L.; Jensen, K.J. Chemical strategies for half-life extension of biopharmaceuticals: Lipidation and its alternatives. ACS Med. Chem. Lett., 2018, 9(7), 577-580.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00226] [PMID: 30034579]
[75]
Perfetti, R. Combining basal insulin analogs with glucagon-like peptide-1 mimetics. Diabetes Technol. Ther., 2011, 13(9), 873-881.
[http://dx.doi.org/10.1089/dia.2010.0250] [PMID: 21711120]
[76]
Yu, M.; Benjamin, M.M.; Srinivasan, S.; Morin, E.E.; Shishatskaya, E.I.; Schwendeman, S.P.; Schwendeman, A. Battle of GLP-1 delivery technologies. Adv. Drug Deliv. Rev., 2018, 130, 113-130.
[http://dx.doi.org/10.1016/j.addr.2018.07.009] [PMID: 30009885]
[77]
Liras, S.; Mcclure, K.F. Permeability of cyclic peptide macrocycles and cyclotides and their potential as therapeutics. ACS Med. Chem. Lett., 2019, 10(7), 1026-1032.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00149] [PMID: 31312403]
[78]
Verma, H.; Khatri, B.; Chakraborti, S.; Chatterjee, J. Increasing the bioactive space of peptide macrocycles by thioamide substitution. Chem. Sci. (Camb.), 2018, 9(9), 2443-2451.
[http://dx.doi.org/10.1039/C7SC04671E] [PMID: 29732120]
[79]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and pro-teins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[80]
Barbarotta, L.; Hurley, K. Romidepsin for the treatment of peripheral T-cell lymphoma. J. Adv. Pract. Oncol., 2015, 6(1), 22-36.
[PMID: 26413372]
[81]
Stickel, S.A.; Gomes, N.P.; Frederick, B.; Raben, D.; Su, T.T. Bouvardin is a radiation modulator with a novel mechanism of action. Radiat. Res., 2015, 184(4), 392-403.
[http://dx.doi.org/10.1667/RR14068.1] [PMID: 26414509]
[82]
Hitotsuyanagi, Y.; Anazawa, Y.; Yamagishi, T.; Samata, K.; Ichihara, T.; Nanaumi, K.; Okado, N.; Nakaike, S.; Mizumura, M.; Takeya, K.; Itokawa, H. Novel water-soluble analogues retaining potent antitumor activity of RA-VII, a cyclic hexapeptide from Rubia plants. Bioorg. Med. Chem. Lett., 1997, 7(24), 3125-3128.
[http://dx.doi.org/10.1016/S0960-894X(97)10157-3]
[83]
Shen, X.; Mustafa, M.; Chen, Y.; Cao, Y.; Gao, J. Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic develo-pment. Med. Chem. Res., 2019, 28(8), 1063-1098.
[http://dx.doi.org/10.1007/s00044-019-02361-1]
[84]
Azmi, A.S.; Wang, Z.; Philip, P.A.; Mohammad, R.M.; Sarkar, F.H. Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin. Emerg. Drugs, 2011, 16(1), 59-70.
[http://dx.doi.org/10.1517/14728214.2010.515210] [PMID: 20812891]