Application of Multi-component Reaction in the Synthesis of Heterocyclic [3.3.3] Propellane Derivatives

Page: [287 - 298] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Propellanes and derivatives have attractive properties due to their unique structure. Therefore, [3.3.3] propellanes, containing tricyclic structures with one of the carbon-carbon bonds common in three rings, were used in natural products, pharmaceutical compounds, and heterocyclic compounds, which were biologically important. The various multi-component reactions were applied in the synthesis of propellanes, which are highlighted throughout this review.

Keywords: Multi-component reactions, Oxa[3.3.3]propellane, Thioxo[3.3.3]propellanes, Oxathiaza[3.3.3]propellanes, Oxaza [3.3.3]- propellanes.

Graphical Abstract

[1]
Hasaninejad, A.; Zare, A.; Shekouhy, M. Highly efficient synthesis of triazolo [1,2-a] indazole-triones and novel spiro triazolo [1,2-a] indazole-tetraones under solvent-free conditions. Tetrahedron, 2011, 67(2), 390-400.
[http://dx.doi.org/10.1016/j.tet.2010.11.029]
[2]
Maleki, B.; Kahoo, G.E.; Tayebee, R. One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid. Org. Prep. Proced. Int., 2015, 47(6), 461-471.
[http://dx.doi.org/10.1080/00304948.2015.1088757]
[3]
Dabiri, M.; Tisseh, Z.N.; Bahramnejad, M.; Bazgir, A. Sonochemical multi-component synthesis of spirooxindoles. Ultrason. Sonochem., 2011, 18(5), 1153-1159.
[http://dx.doi.org/10.1016/j.ultsonch.2010.12.004] [PMID: 21216172]
[4]
Zhu, J.; Bienaymé, H. Multicomponent reactions; John Wiley & Sons, Verlag GmbH & Co.: KGaA, Weinheim, 2006.
[http://dx.doi.org/10.1002/3527605118]
[5]
Chebanov, V.A.; Muravyova, E.A.; Desenko, S.M.; Musatov, V.I.; Knyazeva, I.V.; Shishkina, S.V.; Shishkin, O.V.; Kappe, C.O. Microwave-assisted three-component synthesis of 7-aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-pyrimidine-6-carboxamides and their selective reduction. J. Comb. Chem., 2006, 8(3), 427-434.
[http://dx.doi.org/10.1021/cc060021a] [PMID: 16677013]
[6]
Jamison, J.M.; Krabill, K.; Hatwalkar, A.; Jamison, E.; Tsai, C.C. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biol. Int. Rep., 1990, 14(12), 1075-1084.
[http://dx.doi.org/10.1016/0309-1651(90)90015-Q] [PMID: 1964628]
[7]
Sarma, R.J.; Baruah, J.B. One step synthesis of dibenzoxanthenes. Dyes Pigm, 2005, 64(1), 91-92.
[http://dx.doi.org/10.1016/j.dyepig.2004.03.010]
[8]
Laursen, J.B.; Nielsen, J. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chem. Rev., 2004, 104(3), 1663-1686.
[http://dx.doi.org/10.1021/cr020473j] [PMID: 15008629]
[9]
Muller, M.; Sorrell, T.C. Inhibition of the human platelet cyclooxygenase response by the naturally occurring phenazine derivative, 1-hydroxyphenazine. Prostaglandins, 1995, 50(5-6), 301-311.
[http://dx.doi.org/10.1016/0090-6980(95)00133-6]
[10]
Kraus, G.A.; Kim, I. A direct synthesis of O-methyl claussequinone. J. Org. Chem., 2003, 68(11), 4517-4518.
[http://dx.doi.org/10.1021/jo030026j] [PMID: 12762759]
[11]
Vicker, N.; Burgess, L.; Chuckowree, I.S.; Dodd, R.; Folkes, A.J.; Hardick, D.J.; Hancox, T.C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S.P.; Charlton, P.A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A.J.; Denny, W.A. Novel angular benzophenazines: Dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J. Med. Chem., 2002, 45(3), 721-739.
[http://dx.doi.org/10.1021/jm010329a] [PMID: 11806724]
[12]
Kotha, S.; Todeti, S.; Aswar, V.R. Design and synthesis of C3-symmetric molecules bearing propellane moieties via cyclotrimerization and a ring-closing metathesis sequence. Beilstein J. Org. Chem., 2018, 14(1), 2537-2544.
[http://dx.doi.org/10.3762/bjoc.14.230] [PMID: 30410614]
[13]
Weber, R.W.; Cook, J.M. General method for the synthesis of [n. 3.3] propellanes, n≥ 3. Can. J. Chem., 1978, 56(2), 189-192.
[http://dx.doi.org/10.1139/v78-030]
[14]
Fieser, L.F.; Dunn, J.T. The addition of dienes to naphthacenediquinone. J. Am. Chem. Soc., 1936, 58(6), 1054-1055.
[http://dx.doi.org/10.1021/ja01297a503]
[15]
Ainoliisa, J.P.; Ari, M.P.K. Synthesis of propellane-containing natural products. Tetrahedron, 2005, 61(37), 8769-8807.
[http://dx.doi.org/10.1016/j.tet.2005.06.013]
[16]
Wiberg, K.B. Small ring propellanes. Chem. Rev., 1989, 89(5), 975-983.
[http://dx.doi.org/10.1021/cr00095a001]
[17]
Altman, J.; Babad, E.; Itzchaki, J.; Ginsburg, D. Propellanes-I: Tricyclic compounds conjoined in a carbon-carbon single bond. Tetrahedron, 1966, 22, 279-304.
[http://dx.doi.org/10.1016/S0040-4020(01)82189-X]
[18]
Diels, O.; Friedrichsen, W. Synthesen in der hydroaromatischen Reihe. XXII. Über die Anthracen-C4O3‐Addukte, ihre Eignung zu Dien‐Synthesen und ein neues Prinzip zur Synthese von Phtalsäuren und Dihydro‐phtalsäuren. Justus Liebigs Ann. Chem., 1934, 513(1), 145-155.
[http://dx.doi.org/10.1002/jlac.19345130109]
[19]
Nerdel, F.; Janowsky, K.; Frank, D. Synthese des tricyclo-[4.4. 3.0]-tridecan. Tetrahedron Lett., 1965, 6(34), 2979-2981.
[http://dx.doi.org/10.1016/S0040-4039(01)89244-3]
[20]
Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. VIII. Mitteilung: Dien‐Synthesen des Anthracens. Anthracen‐Formel. Justus Liebigs Ann. Chem., 1931, 486(1), 191-202.
[http://dx.doi.org/10.1002/jlac.19314860110]
[21]
Fieser, L.F.; Dunn, J.T. A further reaction product from 3-Chloro-1, 2-naphthoquinone and dimethylbutadiene. J. Am. Chem. Soc., 1937, 59(6), 1021-1024.
[http://dx.doi.org/10.1021/ja01285a018]
[22]
Alder, K.; Backendorf, K.H. Über partiell hydrierte Phthal‐und Benzoesäuren. Der Aufbau von 9.10‐Dicarbonsäuren des partiell und total hydrierten Naphthalins. Zur Kenntnis der Dien‐Synthese (VII. Mitteil.). Ber. Deuts. Chem. Ges. (A and B Series), 1938, 71(10), 2199-2209.
[http://dx.doi.org/10.1002/cber.19380711029]
[23]
Brigl, P.; Herrmann, R. Über die Oktalin‐und Dekalin‐ dicarbonsäure‐(9.10)(vorläufige Mitteil.). Ber. Deuts. Chem. Ges., (A and B Series), 1938, 71(11), 2280-2282.
[http://dx.doi.org/10.1002/cber.19380711112]
[24]
Walser, A.; Djerassi, C. Alkaloid‐Studien LII. Die Alkaloide aus Vallesia dichotoma Ruizet Pav. Helv. Chim. Acta, 1965, 48(2), 391-404.
[http://dx.doi.org/10.1002/hlca.19650480220]
[25]
Patzke, G.R.; Krumeich, F.; Nesper, R. Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed., 2002, 41(14), 2446-2461.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2446:AID-ANIE2446>3.0.CO;2-K] [PMID: 12203509]
[26]
Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T. Novel photoisomerization of 1-acylindoles to 3-acylindolenines. General entry to the total synthesis of Strychnos and Aspidosperma alkaloids. J. Am. Chem. Soc., 1981, 103(23), 6990-6992.
[http://dx.doi.org/10.1021/ja00413a049]
[27]
Yoshida, K.; Sakuma, Y.; Ban, Y. Synthetic studies on oxygenated aspidosperma alkaloids: Facile syntheses of 1-acetylaspidoalbidine and deoxyaspidodispermine. Heterocycles, 1987, 25, 47-50.
[http://dx.doi.org/10.3987/S-1987-01-0047]
[28]
Ban, Y.; Ohnuma, T.; Seki, K.; Oishi, T. The total synthesis of the alkaloid (±)-1-acetylaspidoalbidine. Tetrahedron Lett., 1975, 16(10), 727-730.
[http://dx.doi.org/10.1016/S0040-4039(00)71968-X]
[29]
Ibuka, T.; Tanaka, K.; Inubushi, Y. otal synthesis of the alkaloid,(±)-hasubanonine. Chem. Pharm. Bull. (Tokyo), 1974, 22(4), 782-798.
[http://dx.doi.org/10.1248/cpb.22.782]
[30]
Lee, H-Y.; Kim, D-I.; Kim, S. Tandem radical cyclization reaction of N-aziridinyl imines to [3.3.3] propellanes: Formal total syntheses of dl-modhephene. Chem. Commun. , 1996, 13, 1539-1540.
[http://dx.doi.org/10.1039/cc9960001539]
[31]
Zu, L.; Boal, B.W.; Garg, N.K. Total synthesis of (±)-aspidophylline A. J. Am. Chem. Soc., 2011, 133(23), 8877-8879.
[http://dx.doi.org/10.1021/ja203227q] [PMID: 21553860]
[32]
Okabe, K.; Yamada, K.; Yamamura, S.; Takad, S. Ginkgolides. J. Chem. Soc. C: Org., 1967, 2201-2206.
[http://dx.doi.org/10.1039/j39670002201]
[33]
Glotova, T.E.; Dvorko, M.Y.; Ushakov, I.A.; Chipanina, N.N.; Kazheva, O.N.; Chekhlov, A.N.; Trofimov, B.A. Chemo-, regio-and stereospecific addition of amino acids to acylacetylenes: A facile synthesis of new N-acylvinyl derivatives of amino acids. Tetrahedron, 2009, 65(47), 9814-9818.
[http://dx.doi.org/10.1016/j.tet.2009.09.069]
[34]
Ziyaei-Halimehjani, A.; Saidi, M.R. Synthesis of aza-Henry products and enamines in water by Michael addition of amines or thiols to activated unsaturated compounds. Tetrahedron Lett., 2008, 49(7), 1244-1248.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.042]
[35]
Li, X.; Wang, J.Y.; Yu, W.; Wu, L.M. PtCl2-catalyzed reactions of o-alkynylanilines with ethyl propiolate and dimethyl acetylenedicarboxylate. Tetrahedron, 2009, 65(6), 1140-1146.
[http://dx.doi.org/10.1016/j.tet.2008.11.095]
[36]
Yavari, I.; Bayat, M.J.; Sirouspour, M.; Souri, S. One-pot synthesis of highly functionalized 1, 2-dihydropyridines from primary alkylamines, alkyl isocyanides, and acetylenic esters. Tetrahedron, 2010, 66(40), 7995-7999.
[http://dx.doi.org/10.1016/j.tet.2010.08.016]
[37]
Cao, H.; Jiang, H.F.; Qi, C.R.; Yao, W.J.; Chen, H.J. Brønsted acid-promoted domino reactions: A novel one-pot three-component synthesis of 3, 4, 5-trisubstituted-3, 6-dihydro-2H-1, 3-oxazines. Tetrahedron Lett., 2009, 50(11), 1209-1214.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.002]
[38]
Altman, J.; Babad, E.; Pucknat, J.; Reshef, N.; Ginsburg, D. Propellanes-III: Synthesis of carbocyclic and heterocyclic compounds. Tetrahedron, 1968, 24(2), 975-998.
[http://dx.doi.org/10.1016/0040-4020(68)88047-0]
[39]
Ellestad, G.A.; Kunstmann, M.P.; Whaley, H.A.; Patterson, E.L. The structure of frenolicin. J. Am. Chem. Soc., 1968, 90(5), 1325-1332.
[http://dx.doi.org/10.1021/ja01007a039] [PMID: 5636537]
[40]
Qian-Cutrone, J.; Gao, Q.; Huang, S.; Klohr, S.E.; Veitch, J.A.; Shu, Y.Z. Arthrinone, a novel fungal metabolite from Arthrinium sp. FA 1744. J. Nat. Prod., 1994, 57(12), 1656-1660.
[http://dx.doi.org/10.1021/np50114a006]
[41]
Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G.D.; Clardy, J. Crystal and molecular structure of dynemicin A: A novel 1, 5-diyn-3-ene antitumor antibiotic. J. Am. Chem. Soc., 1990, 112(9), 3715-3716.
[http://dx.doi.org/10.1021/ja00165a097]
[42]
Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G.D.; Clardy, J. Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. J. Antibiot. (Tokyo), 1989, 42(9), 1449-1452.
[http://dx.doi.org/10.7164/antibiotics.42.1449] [PMID: 2793600]
[43]
Dugan, J.J.; de Mayo, P.; Nisbet, M.; Robinson, J.R.; Anchel, M.; Terpenoids, XIV. The constitution and biogenesis of marasmic acid. J. Am. Chem. Soc., 1966, 88(12), 2838-2844.
[http://dx.doi.org/10.1021/ja00964a039] [PMID: 5941267]
[44]
Kavanagh, F.; Hervey, A.; Robbins, W.J. Antibiotic substances from basidiomycetes: IV. Marasmius conigenus. Proc. Natl. Acad. Sci. USA, 1949, 35(7), 343-349.
[http://dx.doi.org/10.1073/pnas.35.7.343] [PMID: 16588902]
[45]
Yu, B-W.; Chen, J-Y.; Wang, Y-P.; Cheng, K-F.; Li, X-Y.; Qin, G-W. Alkaloids from Menispermum dauricum. Phytochemistry, 2002, 61(4), 439-442.
[http://dx.doi.org/10.1016/S0031-9422(02)00162-0] [PMID: 12377240]
[46]
Carroll, A.R.; Arumugan, T.; Redburn, J.; Ngo, A.; Guymer, G.P.; Forster, P.I.; Quinn, R.J. Hasubanan alkaloids with δ-opioid binding affinity from the aerial parts of Stephania japonica. J. Nat. Prod., 2010, 73(5), 988-991.
[http://dx.doi.org/10.1021/np100009j] [PMID: 20426456]
[47]
Wang, J.; Liu, H.; Wen, R.; Li, J.; Zhu, S. Chemoselective synthesis of novel heterocyclic [3.3. 3] propellane derivatives via a one‐pot three‐component reaction. Chin. J. Chem., 2017, 35(9), 1463-1468.
[http://dx.doi.org/10.1002/cjoc.201700103]
[48]
Mehta, G.; Subrahmanyam, D. Photochemical oxa-di-π-methane rearrangement approach to [3.3. 3] propellanes. Total synthesis of sesquiterpene hydrocarbon (±)-modhephene. J. Chem. Soc. Perkin Trans. I, 1991, (2), 395-401.
[http://dx.doi.org/10.1039/P19910000395]
[49]
Yavari, I.; Khajeh-Khezri, A.; Halvagar, M.R. A synthesis of thioxo [3.3. 3] propellanes from acenaphthoquinone-malononitrile adduct, primary amines and CS2 in water. Arab. J. Chem., 2018, 11(2), 188-195.
[http://dx.doi.org/10.1016/j.arabjc.2017.01.010]
[50]
Yavari, I.; Khajeh-Khezri, A. Recent advances in the synthesis of hetero-and carbocyclic compounds and complexes based on acenaphthylene-1, 2-dione. Synthesis, 2018, 50(20), 3947-3973.
[http://dx.doi.org/10.1055/s-0037-1610209]
[51]
Rezvanian, A.; Alizadeh, A.; Zhu, L-G. hemo-and regioselective 4CR synthesis of oxathiaaza [3.3.3] propellanes via sequential C-S, C-N and C-O bond formation in a single pot. Synlett, 2012, 23(17), 2526-2530.
[http://dx.doi.org/10.1055/s-0032-1317181]
[52]
Hassan, A.A.; El-Shaieb, K.M.A. El-Aal, Stefan Bräse, A.S.A.; Nieger, M. Synthesis of bis-oxathiaaza [3.3. 3] propellanes via nucleophilic addition of (1, ω-alkanediyl) bis (N¢-organylthioureas) on dicyanomethylene-1, 3-indanedione. ARKIVOC, 2016, (v), 406-415.
[http://dx.doi.org/10.24820/ark.5550190.p009.715]
[53]
Rezvanian, A.; Alizadeh, A. Powerful approach to synthesis of fused oxa-aza [3.3. 3] propellanes via chemoselective sequential MCR in a single pot. Tetrahedron, 2012, 68(49), 10164-10168.
[http://dx.doi.org/10.1016/j.tet.2012.09.101]
[54]
Sokolenko, Y.M.; Yurov, Y.Y.; Vashchenko, B.V.; Hryshchuk, O.V.; Filimonova, Y.; Ostapchuk, E.N.; Artemenko, A.; Zaremba, O.V.; Grygorenko, O.O. Far away from flatland. synthesis and molecular structure of dihetera[3.3.n]propellanes and trihetera[3.3.n]propellanes: Advanced analogues of morpholine/piperazine. J. Org. Chem., 2019, 84(21), 13908-13921.
[http://dx.doi.org/10.1021/acs.joc.9b02067] [PMID: 31509707]
[55]
Sokolenko, Y.M.; Ostapchuk, E.N.; Artemenko, A.; Grygorenko, O.O. An approach to 3-oxa-7-azabicyclo [3.3. 0] octanes–bicyclic morpholine surrogates. Synthesis, 2017, 49(14), 3112-3117.
[http://dx.doi.org/10.1055/s-0036-1588785]
[56]
Wiberg, K.B.; Dailey, W.P.; Walker, F.H.; Waddell, S.T.; Crocker, L.S.; Newton, M. Vibrational spectrum, structure, and energy of [1.1. 1] propellane. J. Am. Chem. Soc., 1985, 107(25), 7247-7257.
[http://dx.doi.org/10.1021/ja00311a003]
[57]
Chakrabarti, P.; Seiler, P.; Dunitz, J.D.; Schluter, A.D.; Szeimies, G. Experimental evidence for the absence of bonding electron density between inverted carbon atoms. J. Am. Chem. Soc., 1981, 103(24), 7378-7380.
[http://dx.doi.org/10.1021/ja00414a077]
[58]
Dilmaç, A.M.; Wezeman, T.; Bär, R.M.; Bräse, S. Occurrence, synthesis and applications of natural and designed [3.3.3]propellanes. Nat. Prod. Rep., 2020, 37(2), 224-245.
[http://dx.doi.org/10.1039/C8NP00086G] [PMID: 31140489]
[59]
Dilmaç, A.M.; Spuling, E.; de Meijere, A.; Bräse, S. Propellanes-from a chemical curiosity to “explosive” materials and natural products. Angew. Chem. Int. Ed. Engl., 2017, 56(21), 5684-5718.
[http://dx.doi.org/10.1002/anie.201603951] [PMID: 27905166]
[60]
Leung, J.C.; Bedermann, A.A.; Njardarson, J.T.; Spiegel, D.A.; Murphy, G.K.; Hama, N.; Twenter, B.M.; Dong, P.; Shirahata, T.; McDonald, I.M.; Inoue, M.; Taniguchi, N.; McMahon, T.C.; Schneider, C.M.; Tao, N.; Stoltz, B.M.; Wood, J.L. Total synthesis of. (±)-Phomoidride D. Angew. Chem. Int. Ed. Engl., 2018, 57(7), 1991-1994.
[http://dx.doi.org/10.1002/anie.201712369] [PMID: 29286556]
[61]
Tobe, Y.; Sato, J.I.; Sorori, T.; Kakiuchi, K.; Odaira, Y. Cyclobutyl-cyclopropylcarbinyl type rearrangement of 1-oxaspirohexane derivatives. A new entry to functionalized norcaranes. Tetrahedron Lett., 1986, 27(25), 2905-2906.
[http://dx.doi.org/10.1016/S0040-4039(00)84676-6]
[62]
Zalkow, L.H.; Harris, R.N.; Van Derveer, D. Modhephene: A sesquiterpenoid carbocyclic [3.3. 3] propellane. X-Ray crystal structure of the corresponding diol. J. Chem. Soc. Chem. Commun., 1978, 10, 420-421.
[http://dx.doi.org/10.1039/c39780000420]
[63]
Bohlmann, F.; Zdero, C.; Bohlmann, R.; King, R.M.; Robinson, H. Neue sesquiterpene aus Liabum-arten. Phytochemistry, 1980, 19, 579-582.
[http://dx.doi.org/10.1016/0031-9422(80)87019-1]
[64]
Mehta, G.; Srikrishna, A. Synthesis of polyquinane natural products: An update. Chem. Rev., 1997, 97(3), 671-720.
[http://dx.doi.org/10.1021/cr9403650] [PMID: 11848885]
[65]
Yamago, S.; Nakamura, E. Synthesis of propellanes by “exocyclic” transannular cycloaddition of olefinic methylenecyclopropanes. Tetrahedron, 1989, 45(10), 3081-3088.
[http://dx.doi.org/10.1016/S0040-4020(01)80134-4]
[66]
Brown, K.S., Jr; Budzikiewicz, H.; Djerassi, C. Alkaloid studies XLII. The structures of dichotamine, 1-acetyl-aspidoalbidine and 1-acetyl-17-hydroxyaspidoalbidine: Three new alkaloids from vallesia dichotoma ruiz et pav. Tetrahedron Lett., 1963, 4(25), 1731-1736.
[http://dx.doi.org/10.1016/S0040-4039(01)90904-9]
[67]
Nakanishi, K. The ginkgolides. Pure Appl. Chem., 1967, 14(1), 89-113.
[http://dx.doi.org/10.1351/pac196714010089] [PMID: 6036635]
[68]
Mohammadi Ziarani, G.; Roshankar, S.; Mohajer, F.; Badiei, A. The synthesis and application of functionalized mesoporous silica sba-15 as heterogeneous catalyst in organic synthesis. Curr. Org. Chem., 2021, 25(3), 361-387.
[http://dx.doi.org/10.2174/1385272824999201210194444]
[69]
Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F.; Badiei, A.; Luque, R. Magnetically recoverable catalysts for the preparation of pyridine derivatives: An overview. RSC Advances, 2021, 11(28), 17456-17477.
[http://dx.doi.org/10.1039/D1RA02418C]
[70]
Mohammadi Ziarani, G.; Rad, M.; Mohajer, F.; Sehrawat, H.; Tomar, R. Synthesis of heterocyclic compounds through multicomponent reactions using 6-aminouracil as starting reagent. Curr. Org. Chem., 2021, 25(9), 1070-1095.
[http://dx.doi.org/10.2174/1385272825666210303112858]
[71]
Mohammadi Ziarani, G.; Javadi, F.; Mohajer, F. The molecular diversity scope of oxindole derivatives in organic synthesis. Curr. Org. Chem., 2021, 25(7), 779-818.
[72]
Mohammadi Ziarani, G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Advances, 2018, 8(22), 12069-12103.
[http://dx.doi.org/10.1039/C7RA13321A]
[73]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Advances, 2016, 6(56), 50895-50922.
[http://dx.doi.org/10.1039/C6RA09874F]
[74]
Mohammadi Ziarani, G.; Nasab, N.H.; Lashgari, N. Synthesis of heterocyclic scaffolds through 6-aminouracil-involved multicomponent reactions. RSC Advances, 2016, 6(45), 38827-38848.
[http://dx.doi.org/10.1039/C6RA02834A]
[75]
Mohammadi Ziarani, G.; Lashgari, N.; Azimian, F.; Kruger, H.G.; Gholamzadeh, P. Ninhydrin in synthesis of heterocyclic compounds. ARKIVOC, 2015, (vi), 1-139.
[http://dx.doi.org/10.3998/ark.5550190.p008.905]
[76]
Mohajer, F.; Mohammadi Ziarani, G. An overview of quantitative and qualitative approaches on the synthesis of heterocyclic kojic acid scaffolds through the multi-component reactions. Heterocycles, 2021, 102(2), 211-229.
[http://dx.doi.org/10.3987/REV-20-936]
[77]
Mohammadi Ziarani, G.; Mohajer, F.; Mali, S.N. The molecular diversity of 1, 8-diaminonaphthalene in organic chemistry. Comb. Chem. High Throughput Screen., 2020, 24(10), 1702-1713.
[http://dx.doi.org/10.2174/1386207323666201110144014]
[78]
Mohammadi Ziarani, G.; Kheilkordi, Z.; Gholamzadeh, P. Ultrasound-assisted synthesis of heterocyclic compounds. Mol. Divers., 2020, 24(3), 771-820.
[http://dx.doi.org/10.1007/s11030-019-09964-1] [PMID: 31165431]
[79]
Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc., 2020, 17(2), 247-282.
[http://dx.doi.org/10.1007/s13738-019-01774-4]
[80]
Darroudi, M.; Mohammadi Ziarani, M. Chemical behavior of cysteine in organic synthesis. Curr. Org. Synth., 2021, 18(7), 624-638.
[http://dx.doi.org/10.2174/1570179418666210216141343] [PMID: 33593261]
[81]
Mohammadi Ziarani, M.; Mohajer, F.; Kheilkordi, Z. Recent progress towards synthesis of the indolizidine alkaloid 195B. Curr. Org. Synth., 2020, 17(2), 82-90.
[http://dx.doi.org/10.2174/1570179417666200124104010] [PMID: 31976841]
[82]
Mohammadi Ziarani, M.; Mohajer, F.; Jamali, S.M.; Ebrahim, N.A. Quantitative and qualitative bibliometric scope toward the synthesis of rose oxide as a natural product in perfumery. Curr. Org. Synth., 2020, 17(8), 610-624.
[http://dx.doi.org/10.2174/1872208314666200722161044] [PMID: 32703138]
[83]
Sirouspour, M.; Souri, S. Synthesis of new functionalized heterocyclic [4, 3, 3] propellanes via three‐component reaction based on ninhydrin–phenol adducts. J. Heterocycl. Chem., 2016, 53(1), 147-152.
[http://dx.doi.org/10.1002/jhet.2283]
[84]
Yavari, I.; Khajeh-Khezri, A.; Bahemmat, S.; Halvagar, M.R. A synthesis of novel dioxapropellanes from the knoevenagel adducts of acenaphthoquinone and 3-oxo-3-arylpropionitriles in aqueous methanol. Synlett, 2017, 28(14), 1785-1788.
[http://dx.doi.org/10.1055/s-0036-1588822]
[85]
Rezvanian, A.; Salimi, M.; Zadsirjan, V.; Mahmoodi, F.; Heravi, M.M. Chemo‐and diastereoselective synthesis of new oxa [3.3.3] propellane via a domino cascade four‐component reaction based on diketene. J. Heterocycl. Chem., 2020, 57(12), 4192-4199.
[http://dx.doi.org/10.1002/jhet.4126]
[86]
Hassan, A.A.; Mohamed, N.K.; Aly, A.A.; Tawfeek, H.N.; Bräse, S.; Nieger, M. Regioselective and stereoselective synthesis of epithiomethanoiminoindeno[1,2-b]furan-3-carbonitrile: Heterocyclic [3.3.3]propellanes. Mol. Divers., 2020, 25, 99-108.
[http://dx.doi.org/10.1007/s11030-019-10027-8] [PMID: 31919738]
[87]
Yavari, I.; Khajeh-Khezri, A. A synthesis of oxo-thioxo[3.3.3]propellanes from dithiocarbamates and ninhydrin-malononitrile adduct. Mol. Divers., 2017, 21(4), 849-854.
[http://dx.doi.org/10.1007/s11030-017-9761-8] [PMID: 28653127]
[88]
Hassan, A.A.; Mohamed, N.K.; Makhlouf, M.M.; Braese, S.; Nieger, M. Synthesis of Oxa-aza-and Bis-oxathiaaza [3.3. 3] propellanes from Dicyanomethylene-1, 3-indanedione and 2, 5-Dithiobiureas. Synthesis, 2015, 47(19), 3036-3042.
[http://dx.doi.org/10.1055/s-0034-1380447]
[89]
Alizadeh, A.; Rezvanian, A.; Zhu, L-G. Synthesis of heterocyclic [3.3.3]propellanes via a sequential four-component reaction. J. Org. Chem., 2012, 77(9), 4385-4390.
[http://dx.doi.org/10.1021/jo300457m] [PMID: 22480382]
[90]
Alizadeh, A.; Bayat, F. Highly Convergent One‐Pot Four‐component regioselective synthesis of spiro‐pyranopyrazoles and oxa‐aza‐[3.3.3] propellanes. Helv. Chim. Acta, 2014, 97(5), 694-700.
[http://dx.doi.org/10.1002/hlca.201300260]
[91]
Alizadeh, A.; Bayat, F.; Zhu, L-G. Regioselective multicomponent sequential synthesis of oxa-aza [3.3.3] propellanes. Aust. J. Chem., 2014, 67(6), 949-952.
[http://dx.doi.org/10.1071/CH13654]
[92]
Yavari, I.; Malekafzali, A.; Skoulika, S. Tandem synthesis of trichloromethylated [3.3. 3] propellanes from trichloroacetamidines and a ninhydrin-malononitrile adduct. Tetrahedron Lett., 2014, 55(20), 3154-3156.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.124]
[93]
Zhang, L-J.; Yan, C-G. One-pot domino reactions for synthesis of heterocyclic [3.3. 3] propellanes and spiro [cyclopenta [b] pyridine-4, 2¢-indenes Tetrahedron, 2013, 69(24), 4915-4921.
[http://dx.doi.org/10.1016/j.tet.2013.04.048]
[94]
Beyrati, M.; Hasaninejad, A. One-pot, sequential four-component synthesis of novel heterocyclic [3.3. 3] propellane derivatives at room temperature. RSC Advances, 2018, 8(26), 14171-14176.
[http://dx.doi.org/10.1039/C8RA01648H]
[95]
Alizadeh, A.; Abarghoei, S.B.; Bayat, F.; Halvagar, M.; Zhu, L-G. Application of oxa-aza [3.3. 3] propellanes in the diastereoselective synthesis of indeno [1, 2-b] pyrroles bearing bistriazole unit. Tetrahedron, 2017, 73(39), 5800-5805.
[http://dx.doi.org/10.1016/j.tet.2017.08.029]
[96]
Hassan, A.A.; Mohamed, S.K.; Abdel-Latif, F.F.; Mostafa, S.M.; Abdel-Aziz, M.; Mague, J.; Akkurt, M. A novel method for the synthesis of Furo-imidazo [3.3.3] propellanes from Thiocarbonohydrazides. Synlett, 2016, 27(3), 412-416.
[http://dx.doi.org/10.1055/s-0035-1560828]
[97]
Hassan, A.A.; Aly, A.A.; Mohamed, N.K.; El Shaieb, K.M.; Makhlouf, M.M.; Abdelhafez, E.M.N.; Bräse, S.; Nieger, M.; Dalby, K.N.; Kaoud, T.S. Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: Potential anticancer agents. Bioorg. Chem., 2019, 85, 585-599.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.027] [PMID: 30878891]
[98]
Kheilkordi, Z.; Mohammadi Ziarani, G.; Badiei, A. Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3.3] propellane derivatives. Polyhedron, 2020, 178114343
[http://dx.doi.org/10.1016/j.poly.2019.114343]
[99]
Fu, L.; Lin, W.; Huang, Z.B.; Shi, D.Q. An efficient synthesis of polyfunctionalized indole derivatives via three‐component domino reaction catalyzed by l‐proline. J. Heterocycl. Chem., 2015, 52(4), 1075-1081.
[http://dx.doi.org/10.1002/jhet.2133]
[100]
Naeimi, H.; Lahouti, S. Inorganic–organic hybrid chitosan‐based Schiff base–Ni complex as a novel, highly efficient and recyclable heterogeneous catalyst for synthesis of pyrazolophthalazinediones. Appl. Organomet. Chem., 2017, 31(10)e3732
[http://dx.doi.org/10.1002/aoc.3732]