Design, Synthesis, Molecular Docking, and Biological Studies of New Heterocyclic Compounds Derived from β-Diketones as Novel EGFR and Pim-1 Inhibitors Endowed with Antitumor Activity

Page: [2558 - 2576] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer is a disease illustrated by a shift in the controlled mechanisms that control both cell proliferation and differentiation. It is regarded as a prime health problem worldwide and a leading cause of human death rate exceeded only by cardiovascular diseases. Many reported works are concerned with discovering new antitumor compounds, encouraging us to synthesize new anticancer agents.

Objective: In this work, we aimed to synthesize target molecules from 1,3-dicarbonyl compounds through heterocyclization reactions.

Methods: The reaction of either 4-methylaniline (1a) or 1-naphthylamine (1b) with diethyl malonate (2) gave the anilide derivatives 3a and 3b, respectively. The latter underwent a series of heterocyclization reactions to give the pyridine, pyran, and thiazole derivatives confirmed by the required spectral data.

Results: The in-vitro antitumor evaluation of the newly synthesized products against three cancer cell lines, MCF-7, NCI-H460, SF-268, and WI 38, which were used as the normal cell lines, was conducted, and the data revealed that compounds 11a, 18b, 18c, and 20d showed high antitumor activity and 20d individualized with potential antitumor activity towards cell lines with lowest cytotoxicity effect. Both EGFR and PIM-1 enzymes inhibition were investigated for the compound 20d, and it was found that the inhibition effect of compound 20d was promising for each enzyme, showing IC50 = 45.67 ng and 553.3 ng for EGFR and PIM-1, respectively.

Conclusion: Molecular docking results of compound 20d showed strong binding interactions with both the enzymes, where good binding modes were obtained in the case of EGFR, which was closely similar to the binding mode of standard Erlotinib.While 20d showed complete superimposition binding interactions with VRV-cocrystallized ligand of PIM-1 that may expound the in-vitro antitumor activity.

Keywords: Pyridine, pyran, quinoline, anti-tumor, molecular docking, cell cycle apoptosis.

Graphical Abstract

[1]
Stolić I.; Mišković K.; Piantanida, I.; Lončar, M.B.; Glavaš-Obrovac, L.; Bajić M. Synthesis, DNA/RNA affinity and antitumour activity of new aromatic diamidines linked by 3,4-ethylenedioxythiophene. Eur. J. Med. Chem., 2011, 46(2), 743-755.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.010] [PMID: 21227551]
[2]
Brault, L.; Migianu, E.; Néguesque, A.; Battaglia, E.; Bagrel, D.; Kirsch, G. New thiophene analogues of kenpaullone: synthesis and biolog-ical evaluation in breast cancer cells. Eur. J. Med. Chem., 2005, 40(8), 757-763.
[http://dx.doi.org/10.1016/j.ejmech.2005.02.010] [PMID: 16122578]
[3]
Ward, K.K.; Shah, N.R.; Saenz, C.C.; McHale, M.T.; Alvarez, E.A.; Plaxe, S.C. Cardiovascular disease is the leading cause of death among endometrial cancer patients. Gynecol. Oncol., 2012, 126(2), 176-179.
[http://dx.doi.org/10.1016/j.ygyno.2012.04.013] [PMID: 22507532]
[4]
Nguyen-Nielsen, M.; Møller, H.; Tjønneland, A.; Borre, M. Causes of death in men with prostate cancer: Results from the Danish prostate cancer registry (DAPROCAdata). Cancer Epidemiol., 2019, 59, 249-257.
[http://dx.doi.org/10.1016/j.canep.2019.02.017] [PMID: 30861444]
[5]
Rajagopal, R.; Seshadri, S. Light-stabilisedazo dyes containing a built-in ultraviolet absorber residue. Dyes Pigm, 1988, 9(3), 233-241.
[http://dx.doi.org/10.1016/0143-7208(88)85013-7]
[6]
Singh, R.; Jain, A.; Panwar, S.; Gupta, D.; Khare, S.K. Antimicrobial activity of some natural dyes. Dyes & Pigm, 2005, 66(2), 99-102.
[http://dx.doi.org/10.1016/j.dyepig.2004.09.005]
[7]
Dev, V.R.G.; Venugopal, J.; Sudha, S.; Deepika, G.; Ramakrishna, S. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics. Carbohydr. Polym., 2009, 75(4), 646-650.
[http://dx.doi.org/10.1016/j.carbpol.2008.09.003]
[8]
Dong, Y.; Wang, J.; Liu, P. Dyeing and finishing of cotton fabric in a single bath with reactive dyes and citric acid. Color. Technol., 2001, 117(5), 262-265.
[http://dx.doi.org/10.1111/j.1478-4408.2001.tb00072.x]
[9]
Lukyanov, S.M.; Bliznets, I.V.; Shorshnev, S.V.; Aleksandrov, G.G.; Stepanov, A.E.; Vasil, A.A. Microwave-assisted synthesis and trans-formatios of sterically hindered 3-(5-tetrazolyl)pyridines. Tetrahedron, 2006, 62(8), 1849-1863.
[http://dx.doi.org/10.1016/j.tet.2005.11.039]
[10]
Gholkar, A.A.; Cheung, K.; Williams, K.J.; Lo, Y.C.; Hamideh, S.A.; Nnebe, C.; Khuu, C.; Bensinger, S.J.; Torres, J.Z. Fatostatin inhibits cancer cell proliferation by affecting mitotic microtubule spindle assembly and cell division. J. Biol. Chem., 2016, 291(33), 17001-17008.
[http://dx.doi.org/10.1074/jbc.C116.737346] [PMID: 27378817]
[11]
Bracht, J.W.P.; Karachaliou, N.; Berenguer, J.; Fernandez-Bruno, M.; Filipska, M.; Pedraz-Valdunciel, C.; Codony-Servat, C.; Codony-Servat, J.; Rosell, R. PIM-1 inhibition with AZD1208 to prevent osimertinib-induced resistance in EGFR-mutation positive non-small cell lung cancer. J. Cancer Metastasis Treat., 1019(5), 2-10.
[http://dx.doi.org/10.20517/2394-4722.2018.111]
[12]
Sordella, R.; Bell, D.W.; Haber, D.A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004, 305(5687), 1163-1167.
[http://dx.doi.org/10.1126/science.1101637] [PMID: 15284455]
[13]
Lazzara, M.J.; Lane, K.; Chan, R.; Jasper, P.J.; Yaffe, M.B.; Sorger, P.K.; Jacks, T.; Neel, B.G.; Lauffenburger, D.A. Impaired SHP2-mediated extracellular signal-regulated kinase activation contributes to gefitinib sensitivity of lung cancer cells with epidermal growth fac-tor receptor-activating mutations. Cancer Res., 2010, 70(9), 3843-3850.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3421] [PMID: 20406974]
[14]
Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; Porta, R.; Cobo, M.; Garrido, P.; Longo, F.; Moran, T.; Insa, A.; De Marinis, F.; Corre, R.; Bover, I.; Illiano, A.; Dansin, E.; de Castro, J.; Milella, M.; Reguart, N.; Altavilla, G.; Jimenez, U.; Provencio, M.; Moreno, M.A.; Terrasa, J.; Muñoz-Langa, J.; Valdivia, J.; Isla, D.; Domine, M.; Molinier, O.; Mazieres, J.; Baize, N.; Garcia-Campelo, R.; Robinet, G.; Rodriguez-Abreu, D.; Lopez-Vivanco, G.; Gebbia, V.; Ferrera-Delgado, L.; Bombaron, P.; Bernabe, R.; Bearz, A.; Artal, A.; Cortesi, E.; Rolfo, C.; Sanchez-Ronco, M.; Drozdowskyj, A.; Queralt, C.; de Aguirre, I.; Ramirez, J.L.; Sanchez, J.J.; Molina, M.A.; Taron, M.; Paz-Ares, L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol., 2012, 13(3), 239-246.
[http://dx.doi.org/10.1016/S1470-2045(11)70393-X] [PMID: 22285168]
[15]
Chaib, I.; Karachaliou, N.; Pilotto, S.; Codony Servat, J.; Cai, X.; Li, X.; Drozdowskyj, A.; Servat, C.C.; Yang, J.; Hu, C.; Cardona, A.F.; Vivanco, G.L.; Vergnenegre, A.; Sanchez, J.M.; Provencio, M.; de Marinis, F.; Passaro, A.; Carcereny, E.; Reguart, N.; Campelo, C.G.; Teixido, C.; Sperduti, I.; Rodriguez, S.; Lazzari, C.; Verlicchi, A.; de Aguirre, I.; Queralt, C.; Wei, J.; Estrada, R.; Puig de la Bellacasa, R.; Ramirez, J.L.; Jacobson, K.; Ditzel, H.J.; Santarpia, M.; Viteri, S.; Molina, M.A.; Zhou, C.; Cao, P.; Ma, P.C.; Bivona, T.G.; Rosell, R. Co-activation of STAT3 and YES-associated protein 1 (YAP1) pathway in EGFR-mutant NSCLC. J. Natl. Cancer Inst., 2017, 109(9), 1-12.
[http://dx.doi.org/10.1093/jnci/djx014] [PMID: 28376152]
[16]
Codony-Servat, C.; Codony-Servat, J.; Karachaliou, N.; Molina, M.A.; Chaib, I.; Ramirez, J.L.; de Los Llanos Gil, M.; Solca, F.; Bivona, T.G.; Rosell, R. Activation of signal transducer and activator of transcription 3 (STAT3) signaling in EGFR mutant non-small-cell lung cancer (NSCLC). Oncotarget, 2017, 8(29), 47305-47316.
[http://dx.doi.org/10.18632/oncotarget.17625] [PMID: 28521301]
[17]
Karachaliou, N.; Chaib, I.; Cardona, A.F.; Berenguer, J.; Bracht, J.W.P.; Yang, J.; Cai, X.; Wang, Z.; Hu, C.; Drozdowskyj, A.; Servat, C.C.; Servat, J.C.; Ito, M.; Attili, I.; Aldeguer, E.; Capitan, A.G.; Rodriguez, J.; Rojas, L.; Viteri, S.; Molina-Vila, M.A.; Ou, S.I.; Okada, M.; Mok, T.S.; Bivona, T.G.; Ono, M.; Cui, J.; Ramón, Y. Cajal, S.; Frias, A.; Cao, P.; Rosell, R. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell lung cancer associated with poor prognosis. EBioMedicine, 2018, 29, 112-127.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.001] [PMID: 29433983]
[18]
Tursynbay, Y.; Zhang, J.; Li, Z.; Tokay, T.; Zhumadilov, Z.; Wu, D.; Xie, Y. Pim-1 kinase as cancer drug target: An update. Biomed. Rep., 2016, 4(2), 140-146.
[http://dx.doi.org/10.3892/br.2015.561] [PMID: 26893828]
[19]
Weirauch, U.; Beckmann, N.; Thomas, M.; Grünweller, A.; Huber, K.; Bracher, F.; Hartmann, R.K.; Aigner, A. Functional role and thera-peutic potential of the pim-1 kinase in colon carcinoma. Neoplasia, 2013, 15(7), 783-794.
[http://dx.doi.org/10.1593/neo.13172] [PMID: 23814490]
[20]
Zhao, W.; Qiu, R.; Li, P.; Yang, J. PIM1: a promising target in patients with triple-negative breast cancer. Med. Oncol., 2017, 34(8), 142.
[http://dx.doi.org/10.1007/s12032-017-0998-y] [PMID: 28721678]
[21]
Jin, B.; Wang, Y.; Wu, C.L.; Liu, K.Y.; Chen, H.; Mao, Z.B. PIM-1 modulates cellular senescence and links IL-6 signaling to heterochro-matin formation. Aging Cell, 2014, 13(5), 879-889.
[http://dx.doi.org/10.1111/acel.12249] [PMID: 25040935]
[22]
Liu, J.; Qu, X.; Shao, L.; Hu, Y.; Yu, X.; Lan, P.; Guo, Q.; Han, Q.; Zhang, J.; Zhang, C. Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol. Ther., 2018, 19(3), 160-168.
[http://dx.doi.org/10.1080/15384047.2017.1414756] [PMID: 29370558]
[23]
Sulzbach, M.; Kunjapur, A.M. The pathway less traveled: Engineering biosynthesis of nonstandard functional groups. Trends Biotechnol., 2020, 38(5), 532-545.
[http://dx.doi.org/10.1016/j.tibtech.2019.12.014] [PMID: 31954529]
[24]
Miyazaki, R.; Akiyama, Y.; Mori, H. Fine interaction profiling of VemP and mechanisms responsible for its translocation-coupled arrest-cancelation. eLife, 2020, 9, 129317.
[http://dx.doi.org/10.7554/eLife.62623] [PMID: 33320090]
[25]
El-Naggar, M.M.; Haneen, D.S.A.; Mehany, A.B.M.; Khalil, M.T. New synthetic chitosan hybrids bearing some heterocyclic moieties with potential activity as anticancer and apoptosis inducers. Int. J. Biol. Macromol., 2020, 150, 1323-1330.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.142] [PMID: 31743719]
[26]
Yaqoob, M.; Gul, S.; Zubair, N.F.; Iqbal, J.; Iqbal, M.A. AdnanIqbala, M. Theoretical calculation of selenium N-heterocyclic carbene compounds through DFT studies: Synthesis, characterization and biological potential. J. Mol. Struct., 2020, 1204, 127462.
[http://dx.doi.org/10.1016/j.molstruc.2019.127462]
[27]
Nithyabalaji, R.; Krishnana, H.; Subha, J.; Sribalan, R. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides. J. Mol. Struct., 2020, 1204, 127563.
[http://dx.doi.org/10.1016/j.molstruc.2019.127563]
[28]
Yar, S.; Köprülü, T.K.; Tekin, S.; Yar, S. Synthesis, characterisation and cytotoxic properties of N-heterocyclic carbenesilver(I) com-plexes. Inorg. Chim. Acta, 2018, 479, 17-23.
[http://dx.doi.org/10.1016/j.ica.2018.04.035]
[29]
Gerry, C.J.; Schreiber, S.L. Recent achievements and current trajectories of diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2020, 56, 1-9.
[http://dx.doi.org/10.1016/j.cbpa.2019.08.008] [PMID: 31622927]
[30]
Jeffries, D.E.; Lindsley, C.W. A one-pot, multi-component reaction cascade for the rapid synthesis of diversely functionalized heteroaryl methyl substrates. Tetrahedron Lett., 2017, 58, 112-116.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.120]
[31]
Mohareb, R.M.; Abdo, N.Y.M.; El-Sharkawy, K.A. New approaches for the uses of cyclohexan-1,4-dione for the synthesis of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-b]pyridine derivatives used as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Anticancer. Agents Med. Chem., 2018, 18(12), 1736-1749.
[http://dx.doi.org/10.2174/1871520618666180604091358] [PMID: 29866019]
[32]
Megally Abdo, N.Y.; Milad Mohareb, R.; Halim, P.A. Uses of cyclohexane-1,3-dione for the synthesis of 1,2,4-triazine derivatives as anti-proliferative agents and tyrosine kinases inhibitors. Bioorg. Chem., 2020, 97, 103667.
[http://dx.doi.org/10.1016/j.bioorg.2020.103667] [PMID: 32087416]
[33]
Abdo, N.Y.M.; Mohareb, R.M.; Al-Darkazali, W.N. Heterocyclization of 2-arylidenecyclohexan-1,3-dione: Synthesis of thiophene, thia-zole, and isoxazole derivatives with potential antitumor activities. Anticancer. Agents Med. Chem., 2020, 20(3), 335-345.
[http://dx.doi.org/10.2174/1871520619666190730103425] [PMID: 31362693]
[34]
Mohareb, R.M.; Abdo, N.Y.; Gamaan, M.S. Uses of cyclohexan-1,3-dione for the synthesis of tetrahydrochromeno[3,4-c]chromen deriv-atives with anti-tumor activities. J. Heterocycl. Chem., 2020, 57, 2512-2527.
[http://dx.doi.org/10.1002/jhet.3966]
[35]
Nayak, S.; Gaonkar, S.L.; Musad, E.A. AL-Dawsar, A.M. 1,3,4-oxadiazole-containing hybrids as potential anticancer agents: Recent de-velopments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc., 2021, 25(8), 101284.
[http://dx.doi.org/10.1016/j.jscs.2021.101284]
[36]
Sim, S.; Lee, S.; Ko, S.; Phuong Bui, B.; Linh Nguyen, P.; Cho, J.; Lee, K.; Kang, J.S.; Jung, J.K.; Lee, H. Design, synthesis, and biological evaluation of potent 1,2,3,4-tetrahydroisoquinoline derivatives as anticancer agents targeting NFB signaling pathway. Bioorg. Med. Chem., 2021, 46, 116371.
[http://dx.doi.org/10.1016/j.bmc.2021.116371] [PMID: 34500188]
[37]
Dannhardt, G.; Kiefer, W.; Krämer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. The pyrrole moiety as a template for COX-1/COX-2 inhibi-tors. Eur. J. Med. Chem., 2000, 35(5), 499-510.
[http://dx.doi.org/10.1016/S0223-5234(00)00150-1] [PMID: 10889329]
[38]
Grunewald, G.L.; Seim, M.R.; Bhat, S.R.; Wilson, M.E.; Criscione, K.R. Synthesis of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines and com-parison with their isosteric 1,2,3,4-tetrahydroisoquinolines as inhibitors of phenylethanolamine N-methyltransferase. Bioorg. Med. Chem., 2008, 16(1), 542-559.
[http://dx.doi.org/10.1016/j.bmc.2007.08.066] [PMID: 18024134]
[39]
Hargreaves, C.A.; Sandford, G.; Slater, R.; Yufit, D.S.; Howard, J.A.K.; Vong, A. Pentafluoropyridine usually reacts with amines first at the 4-position then at the 2-position. Tetrahedron, 2007, 63, 5204-5211.
[http://dx.doi.org/10.1016/j.tet.2007.03.164]
[40]
Evdokimov, N.M.; Kireev, A.S.; Yakovenko, A.A.; Antipin, M.Y.; Magedov, I.V.; Kornienko, A. Convenient one-step synthesis of a medicinally relevant benzopyranopyridine system. Tetrahedron Lett., 2006, 47(52), 9309-9312.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.110] [PMID: 23243322]
[41]
Benmansour, H.; Chambers, R.D.; Sandford, G.; Batsanov, A.S.; Howard, J.A.K. Polyhalogeno heterocyclic compounds. J. Fluor. Chem., 2007, 128, 718-722.
[http://dx.doi.org/10.1016/j.jfluchem.2007.02.012]
[42]
Dehlinger, V.; Cordier, F.; Dell, C.P.; Dreyfus, N.; Jenkins, N.; Sanderson, A.J.; Smith, C.W. A convenient microwave-assisted arylstan-nane generation-Stille coupling protocol. Tetrahedron Lett., 2006, 47(50), 8973-8976.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.015]
[43]
Sharma, S.D.; Hazarika, P.; Konwar, D. A simple green and one-pot four-component synthesis of 1,4-dihydropyridines and their aromati-zation. Catal. Commun., 2008, 9, 709-714.
[http://dx.doi.org/10.1016/j.catcom.2007.08.008]
[44]
Lukyanov, S.M.; Bliznets, I.V.; Shorshnev, S.V.; Aleksandrov, G.G.; Stepanov, A.E.; Vasil, A.A. Microwave-assisted synthesis and trans-formations of sterically hindered 3-(5-tetrazolyl)pyridines. Tetrahedron, 2006, 62(8), 1849-1863.
[http://dx.doi.org/10.1016/j.tet.2005.11.039]
[45]
Gaston, P.; Florencia, F.; Néstor, E.K.; Teodor, P.; Jordi, B.B.; Antoni, L. Synthesis, spectroscopic and electrochemical characterization and molecular structure of polypyridyl ruthenium complexes containing 4,4′-azobis(pyridine). Polyhedron, 2008, 27(13), 2990-2996.
[http://dx.doi.org/10.1016/j.poly.2008.06.014]
[46]
Menegatti, R.; Silva, G.M.S.; Zapata-Sudo, G.; Raimundo, J.M.; Sudo, R.T.; Barreiro, E.J.; Fraga, C.A.M. Design, synthesis, and pharmaco-logical evaluation of new neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives with in vivo hypnotic and analgesic profile. Bioorg. Med. Chem., 2006, 14(3), 632-640.
[http://dx.doi.org/10.1016/j.bmc.2005.08.042] [PMID: 16198114]
[47]
Cekavicus, B.; Vigante, B.; Liepinsh, E.; Vilskersts, R.; Sobolev, A.; Belyakov, S.; Plotniece, A.; Mekss, K.; Duburs, G. Benzo[ b]thiophen-3(2 H)-one 1,1-dioxide a versatile reagent in the synthesis of spiroheterocycles. Tetrahedron, 2008, 64, 9947-9952.
[http://dx.doi.org/10.1016/j.tet.2008.07.112]
[48]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[49]
Mouineer, A.A.; Zaher, A.F.; El-malah, A.A.; Sobh, E.A. Design, Synthesis, Antitumor activity, cell cycle analysis and ELISA assay for cyclin dependant kinase-2 of a new (4-aryl6-flouro-4H-benzo[4,5]thieno[3,2-b]pyran) derivatives. Mediterr. J. Chem., 2017, 6(5), 165-179.
[http://dx.doi.org/10.13171/mjc65/01709262240-zaher]
[50]
Meeker, T.C.; Nagarajan, L. ar-Rushdi, A.; Croce, C.M. Cloning and characterization of the human PIM-1 gene: A putative oncogene relat-ed to the protein kinases. J. Cell. Biochem., 1987, 35(2), 105-112.
[http://dx.doi.org/10.1002/jcb.240350204] [PMID: 3429489]
[51]
Mohareb, R.M.; Sherif, S.M. Heterocyclic synthesis with isothiocyantes: synthesis of several new polyfunctionally substituted thiophene, 4-thiazoline and thiazolidinone derivatives. Arch. Pharm. (Weinheim), 1991, 324(8), 469-471.
[http://dx.doi.org/10.1002/ardp.2503240801]
[52]
Mohareb, R.M. Abdel-Sayed, N.I.; Sherif, S.M. γ- bromoacetoacetanilides in heterocyclic synthesis: A convenient synthesis of polyfunc-tionally substituted 2,3-dihydrothiazole, pyridin-2-one, 1,2,3-triazine, oxazolo[3,4-b]pyridine and pyrazolo[3,4-b]pyridine derivatives. Phosphorous. Sulfur and Silicon, 1991, 63(1-2), 119-129.
[http://dx.doi.org/10.1080/10426509108029435]
[53]
Garofalo, S.; Rosa, R.; Bianco, R.; Tortora, G. EGFR-targeting agentsin oncology. Expert Opin. Ther. Pat., 2008, 18(8), 889-901.
[http://dx.doi.org/10.1517/13543776.18.8.889]
[54]
Madhusudan, S.; Ganesan, T.S. Tyrosine kinase inhibitors in cancer therapy. Clin. Biochem., 2004, 37(7), 618-635.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.05.006] [PMID: 15234243]
[55]
Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A.A. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687.
[http://dx.doi.org/10.3109/14756366.2014.960863] [PMID: 25472776]
[56]
Pogacic, V.; Bullock, A.N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res., 2007, 67(14), 6916-6924.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0320] [PMID: 17638903]
[57]
Cheney, I.W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.; Hamatake, R.; Hong, Z.; Wu, J.Z. Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorg. Med. Chem. Lett., 2007, 17(6), 1679-1683.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.086] [PMID: 17251021]
[58]
Abdel-Fattah, M.A.; El-Naggar, M.A.M.; Rashied, R.M.H.; Gary, B.D.; Piazza, G.A.; Abadi, A.H. Four-component synthesis of 1,2-dihydropyridine derivatives and their evaluation as anticancer agents. Med. Chem., 2012, 8(3), 392-400.
[http://dx.doi.org/10.2174/1573406411208030392] [PMID: 22530887]