Mechanical Properties of the Skin: What do we Know?

Article ID: e070122200109 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

The human skin is a multi‐layered material consisting of three layers: the epidermis, dermis, and subcutis. The epidermis is the dominant structure that affects the properties of the skin, such as tensile strength and stiffness. The skin regulates body temperature, provides insulation, and protects inner organs. Skin structure has a substantial influence on skin biomechanics. For instance, anisotropy is a result of the alignment of elastin and collagen fibers in the dermis that compels the skin to exhibit greater tension in one direction, making it appear stiffer. The mechanical properties (such as stiffness, extensibility, and strength) of this organ are important from the clinical, cosmetic, and biomechanical standpoints. A fundamental understanding of skin mechanics is important for the development of useful products for cosmetology. As an illustration, changes in the mechanical properties of the skin can shed light on the efficacy of cosmeceutical formulations. In this review, we will highlight skin structure and then discuss the biomechanics of this important organ.

Keywords: Skin, mechanics, anisotropy, skin anatomy, indentation, stress-strain curve.

Graphical Abstract

[1]
Monteiro Rodrigues, L.; Fluhr, J.W. EEMCO guidance for the in vivo assessment of biomechanical properties of the human skin and its annexes: Revisiting instrumentation and test modes. Skin Pharmacol. Physiol., 2020, 33(1), 44-60.
[http://dx.doi.org/10.1159/000504063] [PMID: 31747675]
[2]
Carvalho, C.P.; Costa-Júnior, J.F.S.; Rangel, C.D.S.; Pereira, W.C.A. Measurement of shear wave speed and normalized elastic modulus of human skin with and without dermal striae using shear wave elastography. Ultrasound Med. Biol., 2021, 47(3), 454-470.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.11.014] [PMID: 33349514]
[3]
Graham, H.K.; McConnell, J.C.; Limbert, G.; Sherratt, M.J. How stiff is skin? Exp. Dermatol., 2019, 28(Suppl. 1), 4-9.
[http://dx.doi.org/10.1111/exd.13826] [PMID: 30698873]
[4]
Langton, A.K.; Graham, H.K.; McConnell, J.C.; Sherratt, M.J.; Griffiths, C.E.M.; Watson, R.E.B. Organization of the dermal matrix impacts the biomechanical properties of skin. Br. J. Dermatol., 2017, 177(3), 818-827.
[http://dx.doi.org/10.1111/bjd.15353] [PMID: 28132410]
[5]
Kalra, A.; Lowe, A. Mechanical behaviour of skin: A review. J. Mar. Sci. Eng., 2016, 2016(4)
[6]
Joodaki, H.; Panzer, M.B. Skin mechanical properties and modeling: A review. Proc. Inst. Mech. Eng. H, 2018, 232(4), 323-343.
[http://dx.doi.org/10.1177/0954411918759801] [PMID: 29506427]
[7]
Choe, C.; Schleusener, J.; Lademann, J.; Darvin, M.E. Age related depth profiles of human stratum corneum barrier-related molecular pa-rameters by confocal raman microscopy in vivo. Mech. Ageing Dev., 2018, 172, 6-12.
[http://dx.doi.org/10.1016/j.mad.2017.08.011] [PMID: 28844969]
[8]
Chen, Y.; Park, Y.H. A helmholtz resonator on elastic foundation for measurement of the elastic coefficient of human skin. J. Mech. Behav. Biomed. Mater., 2020, 101, 103417.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103417] [PMID: 31494447]
[9]
Prescott, S.L.; Larcombe, D.L.; Logan, A.C.; West, C.; Burks, W.; Caraballo, L.; Levin, M.; Etten, E.V.; Horwitz, P.; Kozyrskyj, A.; Camp-bell, D.E. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J., 2017, 10(1), 29.
[http://dx.doi.org/10.1186/s40413-017-0160-5] [PMID: 28855974]
[10]
Nguyen, A.V.; Soulika, A.M. The dynamics of the skin’s immune system. Int. J. Mol. Sci., 2019, 20(8), E1811.
[http://dx.doi.org/10.3390/ijms20081811] [PMID: 31013709]
[11]
Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in skin regeneration using tissue engi-neering. Int. J. Mol. Sci., 2017, 18(4), 789.
[http://dx.doi.org/10.3390/ijms18040789] [PMID: 28387714]
[12]
Kim, J.Y.; Dao, H. Physiology, integument; StatPearls Publishing: Treasure Island, FL, 2021. https://www.ncbi.nlm.nih.gov/books/NBK554386/
[13]
Osseiran, S.; Cruz, J.D.; Jeong, S.; Wang, H.; Fthenakis, C.; Evans, C.L. Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent raman scattering imaging. Biomed. Opt. Express, 2018, 9(12), 6425-6443.
[http://dx.doi.org/10.1364/BOE.9.006425] [PMID: 31065440]
[14]
Maiti, R.; Duan, M.; Danby, S.G.; Lewis, R.; Matcher, S.J.; Carré, M.J. Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography. J. Mech. Behav. Biomed. Mater., 2020, 102, 103501.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103501] [PMID: 31877514]
[15]
Wu, Y.; Wangari-Olivero, J.; Zhen, Y. ARTICLE: compromised skin barrier and sensitive skin in diverse populations. J. Drugs Dermatol., 2021, 20(4), s17-s22.
[http://dx.doi.org/10.36849/JDD.589c] [PMID: 33852256]
[16]
Aida Maranduca, M.; Liliana Hurjui, L.; Constantin Branisteanu, D.; Nicolae Serban, D.; Elena Branisteanu, D.; Dima, N.; Lacramioara Serban, I. Skin - a vast organ with immunological function. (Review). Exp. Ther. Med., 2020, 20(1), 18-23.
[http://dx.doi.org/10.3892/etm.2020.8619] [PMID: 32508987]
[17]
Yousef, H.; Allhaj, M.; Sharma, S. Anatomy, skin (integument), epidermis; StatPearls Publishing: Treasure Island, FL, 2020. https://www.ncbi.nlm.nih.gov/books/NBK470464/
[18]
Mojumdar, E.H.; Madsen, L.B.; Hansson, H.; Taavoniku, I.; Kristensen, K.; Persson, C.; Morén, A.K.; Mokso, R.; Schmidtchen, A.; Ruzgas, T.; Engblom, J. Probing skin barrier recovery on molecular level following acute wounds: An in vivo/ex vivo study on pigs. Biomedicines, 2021, 9(4), 360.
[http://dx.doi.org/10.3390/biomedicines9040360] [PMID: 33807251]
[19]
Lambert, M.W.; Maddukuri, S.; Karanfilian, K.M.; Elias, M.L.; Lambert, W.C. The physiology of melanin deposition in health and disease. Clin. Dermatol., 2019, 37(5), 402-417.
[http://dx.doi.org/10.1016/j.clindermatol.2019.07.013] [PMID: 31896398]
[20]
Maranduca, M.A.; Branisteanu, D.; Serban, D.N.; Branisteanu, D.C.; Stoleriu, G.; Manolache, N.; Serban, I.L. Synthesis and physiological implications of melanic pigments. Oncol. Lett., 2019, 17(5), 4183-4187.
[http://dx.doi.org/10.3892/ol.2019.10071] [PMID: 30944614]
[21]
Murphy, G. Histology of the skin. In: Lever’s histopathology of the skin; Elder, R.E.D.; Jaworsky, B.J.C. Jr., Eds.; Wolters Kluwer: Netherlands,, 2014, pp. 5-45.
[22]
Deckers, J.; Hammad, H.; Hoste, E. Langerhans cells: sensing the environment in health and disease. Front. Immunol., 2018, 9, 93.
[http://dx.doi.org/10.3389/fimmu.2018.00093] [PMID: 29449841]
[23]
Jenkins, B.A.E.A.L.; Lumpkin, E.A. Developing a sense of touch. Development, 2017, 144(22), 4078-4090.
[http://dx.doi.org/10.1242/dev.120402] [PMID: 29138290]
[24]
Brown, T.K.K. Histology, Dermis; StatPearls Publishing: Treasure Island, FL, 2020.
[25]
Ter Horst, B.; Chouhan, G.; Moiemen, N.S.; Grover, L.M. Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev., 2018, 123, 18-32.
[http://dx.doi.org/10.1016/j.addr.2017.06.012] [PMID: 28668483]
[26]
Roig-Rosello, E.; Rousselle, P. The human epidermal basement membrane: a shaped and cell instructive platform that aging slowly alters. Biomolecules, 2020, 10(12), E1607.
[http://dx.doi.org/10.3390/biom10121607] [PMID: 33260936]
[27]
Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal., 2016, 10(2), 103-120.
[http://dx.doi.org/10.1007/s12079-016-0330-1] [PMID: 27170326]
[28]
Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature, 2019, 6(3), 211-259.
[http://dx.doi.org/10.1080/23328940.2019.1632145] [PMID: 31608304]
[29]
Wong, B.J.; Hollowed, C.G. Current concepts of active vasodilation in human skin. Temperature, 2016, 4(1), 41-59.
[http://dx.doi.org/10.1080/23328940.2016.1200203] [PMID: 28349094]
[30]
Alba, B.K.; Castellani, J.W.; Charkoudian, N. Cold-induced cutaneous vasoconstriction in humans: function, dysfunction and the distinctly counterproductive. Exp. Physiol., 2019, 104(8), 1202-1214.
[http://dx.doi.org/10.1113/EP087718] [PMID: 31045297]
[31]
Chen, Y-L.; Kuan, W-H.; Liu, C-L. Comparative study of the composition of sweat from eccrine and apocrine sweat glands during exercise and in heat. Int. J. Environ. Res. Public Health, 2020, 17(10), 3377.
[http://dx.doi.org/10.3390/ijerph17103377] [PMID: 32408694]
[32]
Abreu, C.M.; Pirraco, R.P.; Reis, R.L.; Cerqueira, M.T.; Marques, A.P. Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment. Stem Cell Res. Ther., 2021, 12(1), 62.
[http://dx.doi.org/10.1186/s13287-020-02104-9] [PMID: 33451331]
[33]
Blair, M.J.; Jones, J.D.; Woessner, A.E.; Quinn, K.P. Skin structure-function relationships and the wound healing response to intrinsic ag-ing. Adv. Wound Care (New Rochelle), 2020, 9(3), 127-143.
[http://dx.doi.org/10.1089/wound.2019.1021] [PMID: 31993254]
[34]
Quigley, A.S.; Bancelin, S.; Deska-Gauthier, D.; Légaré, F.; Veres, S.P.; Kreplak, L. Combining tensile testing and structural analysis at the single collagen fibril level. Sci. Data, 2018, 5(1), 180229.
[http://dx.doi.org/10.1038/sdata.2018.229] [PMID: 30351303]
[35]
Griffin, M.F.; Leung, B.C.; Premakumar, Y.; Szarko, M.; Butler, P.E. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. J. Otolaryngol. Head Neck Surg., 2017, 46(1), 33.
[http://dx.doi.org/10.1186/s40463-017-0210-6] [PMID: 28420435]
[36]
Head, M. The influence of viscoelastic crustal rheologies on volcanic ground deformation: insights from models of pressure and volume change. J. Geophys. Res. Solid Earth, 2019, 124(8), 8127-8146.
[http://dx.doi.org/10.1029/2019JB017832]
[37]
Grear, M.E.; Motley, M.R.; Crofts, S.B.; Witt, A.E.; Summers, A.P.; Ditsche, P. Mechanical properties of harbor seal skin and blubber - a test of anisotropy. Zoology (Jena), 2018, 126, 137-144.
[http://dx.doi.org/10.1016/j.zool.2017.11.002] [PMID: 29157880]
[38]
Ghorbel-Feki, H. Acousto-mechanical behaviour of ex-vivo skin: nonlinear and viscoelastic properties. C. R. Mec., 2019, 347(3), 218-227.
[http://dx.doi.org/10.1016/j.crme.2018.12.005]
[39]
Constantin, M.M.; Bucur, S.; Serban, E.D.; Olteanu, R.; Bratu, O.G.; Constantin, T. Measurement of skin viscoelasticity: A non-invasive approach in allergic contact dermatitis. Exp. Ther. Med., 2020, 20(6), 184.
[http://dx.doi.org/10.3892/etm.2020.9314] [PMID: 33101474]
[40]
Peñuela, L.; Negro, C.; Massa, M.; Repaci, E.; Cozzani, E.; Parodi, A.; Scaglione, S.; Quarto, R.; Raiteri, R. Atomic force microscopy for biomechanical and structural analysis of human dermis: a complementary tool for medical diagnosis and therapy monitoring. Exp. Dermatol., 2018, 27(2), 150-155.
[http://dx.doi.org/10.1111/exd.13468] [PMID: 29152798]
[41]
Álvarez-Asencio, R.; Wallqvist, V.; Kjellin, M.; Rutland, M.W.; Camacho, A.; Nordgren, N.; Luengo, G.S. Nanomechanical properties of human skin and introduction of a novel hair indenter. J. Mech. Behav. Biomed. Mater., 2016, 54, 185-193.
[http://dx.doi.org/10.1016/j.jmbbm.2015.09.014] [PMID: 26469630]
[42]
Kim, M.A.; Kim, E.J.; Lee, H.K. Use of skinfibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscan-ner. Skin Res. Technol., 2018, 24(3), 466-471.
[http://dx.doi.org/10.1111/srt.12455] [PMID: 29405450]
[44]
Abbas, D.B.; Lavin, C.V.; Fahy, E.J.; Griffin, M.; Guardino, N.; King, M.; Chen, K.; Lorenz, P.H.; Gurtner, G.C.; Longaker, M.T.; Momeni, A.; Wan, D.C. Standardizing dimensionless cutometer parameters to determine in vivo elasticity of human skin. Adv. Wound Care; New Ro-chelle, 2021. Epub ahead of print
[http://dx.doi.org/10.1089/wound.2021.0082] [PMID: 34470542]
[45]
Myoung, J. Validation of the elastic angle for quantitative and visible evaluation of skin elasticity in vivo. Skin Res. Technol., 2021, 27(6), 1017-1022.
[http://dx.doi.org/10.1111/srt.13051]
[46]
Kim, M.A.; Jung, Y.C.; Kim, E.J. Evaluation of anisotropic properties of striae distensae with regard to skin surface texture and viscoelas-ticity. Skin Res. Technol., 2020, 26(2), 220-225.
[http://dx.doi.org/10.1111/srt.12783] [PMID: 31556202]
[47]
Laiacona, D.; Cohen, J.M.; Coulon, K.; Lipsky, Z.W.; Maiorana, C.; Boltyanskiy, R.; Dufresne, E.R.; German, G.K. Non-invasive in vivo quantification of human skin tension lines. Acta Biomater., 2019, 88, 141-148.
[http://dx.doi.org/10.1016/j.actbio.2019.02.003] [PMID: 30735808]
[48]
Thieulin, C.; Pailler-Mattei, C.; Abdouni, A.; Djaghloul, M.; Zahouani, H. Mechanical and topographical anisotropy for human skin: Ageing effect. J. Mech. Behav. Biomed. Mater., 2020, 103, 103551.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103551] [PMID: 32090946]
[49]
Kirby, M.; Tang, P.; Liou, H.; Kuriakose, M.; Pitre, J.J.; Pham, T.N.; Ettinger, R.; Wang, R.; O’Donnell, M.; Pelivanov, I. Probing elastic anisotropy of human skin in vivo with light using non-contact acoustic micro-tapping oce and polarization-sensitive; Res. Square, 2021. Epub ahead of print
[http://dx.doi.org/10.21203/rs.3.rs-913561/v1]
[50]
Chartier, C.; Mofid, Y.; Bastard, C.; Miette, V.; Maruani, A.; Machet, L.; Ossant, F. High-Resolution elastography for thin-layer mechanical characterization: Toward skin investigation. Ultrasound Med. Biol., 2017, 43(3), 670-681.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.11.007] [PMID: 28043724]
[51]
Lakhani, P.; Dwivedi, K.K.; Kumar, N. Directional dependent variation in mechanical properties of planar anisotropic porcine skin tissue. J. Mech. Behav. Biomed. Mater., 2020, 104, 103693.
[http://dx.doi.org/10.1016/j.jmbbm.2020.103693] [PMID: 32174437]
[52]
Rosado, C.; Antunes, F.; Barbosa, R.; Fernando, R.; Estudante, M.; Silva, H.N.; Rodrigues, L.M. About the in vivo quantitation of skin ani-sotropy. Skin Res. Technol., 2017, 23(3), 429-436.
[http://dx.doi.org/10.1111/srt.12353] [PMID: 27882608]
[53]
Murphy, J.; Goodhall, W.; Patterson, A. Langer’s lines – what are they and do they matter? Br. J. Oral Maxillofac. Surg., 2017, 55(10), e86-e87.
[http://dx.doi.org/10.1016/j.bjoms.2017.08.012]
[54]
Pan, S.; Malhotra, D.; Germann, N. Nonlinear viscoelastic properties of native male human skin and in vitro 3D reconstructed skin models under LAOS stress. J. Mech. Behav. Biomed. Mater., 2019, 96, 310-323.
[http://dx.doi.org/10.1016/j.jmbbm.2019.04.032] [PMID: 31132545]
[55]
Lynch, B.; Bonod-Bidaud, C.; Ducourthial, G.; Affagard, J.S.; Bancelin, S.; Psilodimitrakopoulos, S.; Ruggiero, F.; Allain, J.M.; Schanne-Klein, M.C. How aging impacts skin biomechanics: a multiscale study in mice. Sci. Rep., 2017, 7(1), 13750.
[http://dx.doi.org/10.1038/s41598-017-13150-4] [PMID: 29061975]
[56]
Oftadeh, R.; Connizzo, B.K.; Nia, H.T.; Ortiz, C.; Grodzinsky, A.J. Biological connective tissues exhibit viscoelastic and poroelastic behav-ior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomater., 2018, 70, 249-259.
[http://dx.doi.org/10.1016/j.actbio.2018.01.041] [PMID: 29425716]
[57]
Zhang, X. A surface wave elastography technique for measuring tissue viscoelastic properties. Med. Eng. Phys., 2017, 42, 111-115.
[http://dx.doi.org/10.1016/j.medengphy.2017.01.014] [PMID: 28159449]
[58]
Ansari, F.; McGuiness, C.; Zhang, B.; Dauskardt, R.H. Effect of emulsifiers on drying stress and intercellular cohesion in human stratum corneum. Int. J. Cosmet. Sci., 2020, 42(6), 581-589.
[http://dx.doi.org/10.1111/ics.12643] [PMID: 32567061]
[59]
Berkey, C.; Biniek, K.; Dauskardt, R.H. Screening sunscreens: Protecting the biomechanical barrier function of skin from solar ultraviolet radiation damage. Int. J. Cosmet. Sci., 2017, 39(3), 269-274.
[http://dx.doi.org/10.1111/ics.12370] [PMID: 27685249]
[60]
Tate, M.L.; Wright, A.S. In vitro methods for evaluating skin hydration under diapers and incontinence products. Skin Res. Technol., 2017, 23(4), 486-490.
[http://dx.doi.org/10.1111/srt.12360] [PMID: 28370745 ]
[61]
Spada, F.; Barnes, T.M.; Greive, K.A. Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems. Clin. Cosmet. Investig. Dermatol., 2018, 11, 491-497.
[http://dx.doi.org/10.2147/CCID.S177697] [PMID: 30410378]
[62]
Crowther, J.M. Understanding effects of topical ingredients on electrical measurement of skin hydration. Int. J. Cosmet. Sci., 2016, 38(6), 589-598.
[http://dx.doi.org/10.1111/ics.12324] [PMID: 27028308]
[63]
Jepps, O.G. Modeling the human skin barrier — Towards a better understanding of dermal absorption. Advanced Drug Delivery Reviews; , 2013, 65, pp. (2)152-168.