Recent Advances in the Chemistry and Biological Activity of Sulfonamide Derivatives

Page: [695 - 707] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

This review describes different synthetic methods for the preparation of sulfonamides. Generally, sulfonamides are synthesized from sulfonyl chloride derivative and amino derivative. A series of sulfonamide derivatives 7a-c, 8a,b, 9, 10, 11a,b, and 12 were synthesized in alkaline media by reacting different amino compounds with a p-toluene sulfonyl chloride. Different amino derivatives 13, 15, 17, 19, and 21 reacted with p-tolyl sulphonyl chloride to afford sulfonylamides 14, 16, 18, 20, and 22. Different reactions of sulfonamide derivatives have been summarized. Generally, the sulfonamide function group does not participate in any reactions, but other functional groups in the compound are involved in various reactions. Sulfonamides exhibit different biological activities, e.g., antibacterial activity, anticancer activity, urease inhibitory activity, radical scavenging activity, carbonic anhydrase inhibitory activity, non-competitive lactoperoxidase inhibitory activity, antifungal activity, and anti-mycobacterial activity.

Keywords: Sulfonamide derivatives, biological activity, bacteriostatic agent, anticancer activity, carbonic anhydrase inhibitor, antifungal activity.

Graphical Abstract

[1]
Yousif, M.N.M. Recent advances in chemistry and biological activity of 2,6-diphenyl piperidines. Mini Rev. Org. Chem., 2022, 19(1), 125-135.
[http://dx.doi.org/10.2174/1570193X18666210224153249]
[2]
Yousif, M.N.M.; El-Gazzar, A.B.A.; El-Enany, M.M. synthesis and biological evaluation of pyrido(2,3-d)pyrimidines. Mini Rev. Org. Chem., 2021, 18(1), 43-54.
[http://dx.doi.org/10.2174/1570193X17999200511010402]
[3]
Yousif, M.N.M.; El-Gazzar, A.B.A.; Fayed, A.A.; El-Manawaty, M.A.; Yousif, N.M. synthesis and cytotoxic evaluation of novel chromenes, and chromene(2,3-d)pyrimidines. J. Appl. Pharm. Sci., 2020, 10(12), 35-43.
[4]
Yousif, M.N.M.; Soliman, H.A.; Said, M.M.; Hassan, N.A.; Abdel-Megeid, F.M.E. Synthesis and biological activity of triacetonamine. Russ. J. Gen. Chem., 2020, 90(3), 460-469.
[http://dx.doi.org/10.1134/S1070363220030202]
[5]
Yousif, M.N.M.; Soliman, H.A.; Said, M.M.; Hassan, N.A.; Abdel- Megeid, F.M.E. Erratum to: Synthesis and biological activity of triacetonamine (Russian Journal of General Chemistry, (2020), 90, 3, (460-469), 10.1134/S1070363220030202). Russ. J. Gen. Chem., 2020, 90(4), 767.
[6]
Fayed, A.A.; Bahashwan, S.A.; Yousif, M.N.M.; Yousif, N.M.; Gad, F.A. Synthesis and Anti-inflammatory activity of some new pyrimidinothienocinnoline derivatives. Russ. J. Gen. Chem., 2019, 89(9), 1887-1895.
[http://dx.doi.org/10.1134/S1070363219090251]
[7]
Yousif, M.N.M.; Nassar, I.F.; Yousif, N.M.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new substituted piperidone compounds and their derived pyrimidine, thiazole and triazole glycoside derivatives. Russ. J. Gen. Chem., 2019, 89(8), 1673-1682.
[http://dx.doi.org/10.1134/S1070363219080218]
[8]
Fayed, A.A.; Yousif, M.N.M.; Abdelgawad, T.T.; Amr, A.E.; Yousif, N.M.; Gad, F.A. Synthesis and antimicrobial activity of novel polycyclic thienopyridazine derivatives. Chem. Heterocycl. Compd., 2019, 55(8), 773-778.
[http://dx.doi.org/10.1007/s10593-019-02534-1]
[9]
Nemr, M.T.M.; Yousif, M.N.M.; Barciszewski, J. Interaction of small molecules with polynucleotide repeats and frameshift site RNA. Arch. Pharm. (Weinheim), 2019, 352(8), e1900062.
[http://dx.doi.org/10.1002/ardp.201900062] [PMID: 31169327]
[10]
Yousif, M.N.M.; Fayed, A.A.; Yousif, N.M. Synthesis and reactions of N-Hydroxy-triacetonamine derivatives. Egypt. J. Chem., 2019, 62(8), 1759-1766.
[11]
Fayed, A.A.; Bahashwan, S.A.; Yousif, M.N.M.; El Shafey, H.M.; Amr, A.E.; Yousif, N.M.; Shadid, K.A. Synthesis and antiproliferative activity of some newly synthesized pyrazolopyridine derivatives. Russ. J. Gen. Chem., 2019, 89(6), 1209-1217.
[http://dx.doi.org/10.1134/S1070363219060173]
[12]
Yousif, M.N.M.; Hussein, H.A.R.; Yousif, N.M.; El-Manawaty, M.A.; El-Sayed, W.A. Synthesis and cytotoxic activity of novel 2-phenylindole linked imidazolothiazole, thiazolo-s-triazine and imidazolyl-sugar systems. J. Appl. Pharm. Sci., 2019, 9(1), 6-14.
[http://dx.doi.org/10.7324/JAPS.2019.90102]
[13]
Yousif, M.N.M.; Fayed, A.A.; Yousif, N.M. Reactions of triacetonamine part ii, synthesis of novel pyrazolo(4,3-c)pyridine derivatives, and 2-(piperidin-4-ylidene)hydrazinecarbothioamide derivatives derived from 2,2,6,6-tetramethyl-piperidin-4-one for in vitro anticancer evaluation. Pharma Chem., 2018, 10(8), 105-109.
[14]
Yousif, M.N.M.; El-Sayed, W.A.; Abbas, H.S.; Awad, H.M.; Yousif, N.M. Anticancer activity of new substituted pyrimidines, their thioglycosides and thiazolopyrimidine derivatives. J. Appl. Pharm. Sci., 2017, 7(11), 21-32.
[15]
Soliman, H.A.; Yousif, M.N.M.; Said, M.M.; Hassan, N.A.; Ali, M.M.; Awad, H.M.; Abdel-Megeid, F.M.E. Synthesis of novel 1,6-naphthyridines, pyrano[3,2-c]pyridines and pyrido[4,3-d]pyrimidines derived from 2,2,6,6-tetramethylpiperidin-4-one for in vitro anticancer and antioxidant evaluation. Pharma Chem., 2014, 6(3), 394-410.
[16]
El-Gazzar, A.R.; El-Enany, M.M.; Mahmoud, M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorg. Med. Chem., 2008, 16(6), 3261-3273.
[http://dx.doi.org/10.1016/j.bmc.2007.12.012] [PMID: 18158248]
[17]
Abdul Qadir, M.; Ahmed, M.; Iqbal, M. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs. BioMed Res. Int., 2015, 2015, 938486.
[http://dx.doi.org/10.1155/2015/938486] [PMID: 25802872]
[18]
Rehman, H.; Qadir, A.; Ali, Z.; Nazir, S.; Zahra, A.; Shahzady, T.G. Synthesis and characterization of novel sulphonamides derivatives and their antimicrobial, antioxidant and cytotoxicity evaluation. Bull. Chem. Soc. Ethiop., 2017, 31(3), 491-498.
[http://dx.doi.org/10.4314/bcse.v31i3.13]
[19]
Kwon, Y.; Song, J.; Lee, H.; Kim, E.Y.; Lee, K.; Lee, S.K.; Kim, S. Design, synthesis, and biological activity of sulfonamide analogues of antofine and cryptopleurine as potent and orally active antitumor agents. J. Med. Chem., 2015, 58(19), 7749-7762.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00764] [PMID: 26393416]
[20]
Channar, P.A.; Saeed, A.; Albericio, F.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352-1362.
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
[21]
Berrino, E.; Bua, S.; Mori, M.; Botta, M.; Murthy, V.S.; Vijayakumar, V.; Tamboli, Y.; Bartolucci, G.; Mugelli, A.; Cerbai, E.; Supuran, C.T.; Carta, F. Novel sulfamide-containing compounds as selective carbonic anhydrase inhibitors. Molecules, 2017, 22(7), 1049-1066.
[http://dx.doi.org/10.3390/molecules22071049] [PMID: 28672822]
[22]
Köksal, Z.; Kalin, R.; Camadan, Y.; Usanmaz, H.; Almaz, Z. Gülçin, İ.; Gokcen, T.; Gören, A.C.; Ozdemir, H. Secondary sulfonamides as effective lactoperoxidase inhibitors. Molecules, 2017, 22(6), 793-802.
[http://dx.doi.org/10.3390/molecules22060793] [PMID: 28538675]
[23]
Marciniec, K. Pawełczak, B.; Latocha, M.; Skrzypek, L.; Maciążek-Jurczyk, M.; Boryczka, S. Synthesis, anti-breast cancer activity, and molecular doking study of a new group of acetylenic quinolinesulfonamide derivatives. Molecules, 2017, 22(2), 300-319.
[http://dx.doi.org/10.3390/molecules22020300] [PMID: 28212337]
[24]
Chohan, Z.H. Metal-based sulfonamides: Their preparation, characterization and in-vitro antibacterial, antifungal & cytotoxic properties. X-ray structure of 4-[(2-hydroxybenzylidene) amino] benzenesulfonamide. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 120-130.
[http://dx.doi.org/10.1080/14756360701384195] [PMID: 18341263]
[25]
Hussein, E.M.; Al-Rooqi, M.M.; Abd El-Galil, S.M.; Ahmed, S.A. Design, synthesis, and biological evaluation of novel N4 -substituted sulfonamides: Acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem., 2019, 13(1), 91.
[http://dx.doi.org/10.1186/s13065-019-0603-x] [PMID: 31384838]
[26]
Krajčiová, D.; Pecher, D.; Garaj, V.; Mikuš, P. Optimization and comparison of synthetic procedures for a group of triazinyl-substituted benzene-sulfonamide conjugates with amino acides. Molecules, 2017, 22(9), 1533-1542.
[http://dx.doi.org/10.3390/molecules22091533] [PMID: 28902167]
[27]
Krátký, M.; Stolaříková, J.; Vinšová, J. Novel sulfamethoxazole ureas and oxalamide as potential antimycobacterial agents. Molecules, 2017, 22(4), 535-548.
[http://dx.doi.org/10.3390/molecules22040535] [PMID: 28350331]
[28]
Lin, X.; Chai, L.; Liu, B.; Chen, H.; Zheng, L.; Liu, Q.; Lin, C. Synthesis, biological evaluation, and docking studies of novel sulfonamide-based gallate as pro-chondrogenic agent for the treatment of cartilage. Molecules, 2017, 22, 3-19.
[http://dx.doi.org/10.3390/molecules22010003]
[29]
Vullo, D.; Del Prete, S.; Di Fonzo, P.; Carginale, V.; Donald, W.A.; Supuran, C.T.; Capasso, C. Comparison of the sulfonamide inhibition profiles of the β- and α-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules, 2017, 22(3), 421-436.
[http://dx.doi.org/10.3390/molecules22030421] [PMID: 28272358]