A Comprehensive Review of Minerals, Trace Elements, and Heavy Metals in Saffron

Page: [1327 - 1335] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical conditions such as physicochemical properties of the soil, weather, and other environmental conditions like saffron cultivation and its genotype.

Keywords: Saffron, minerals, trace elements, heavy metals, geographical origin, minor components.

Graphical Abstract

[1]
Aiello, D.; Siciliano, C.; Mazzotti, F.; Di Donna, L.; Athanassopoulos, C.M.; Napoli, A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem., 2020, 307, 125527.
[http://dx.doi.org/10.1016/j.foodchem.2019.125527] [PMID: 31648179]
[2]
Moras, B.; Loffredo, L.; Rey, S. Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food Chem., 2018, 257, 325-332.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.025] [PMID: 29622218]
[3]
Wakefield, J. Chemical profiling of saffron for authentication of origin. Food Control, 2019, 106, 106699.
[http://dx.doi.org/10.1016/j.foodcont.2019.06.025]
[4]
Farag, M.A.; Hegazi, N.; Dokhalahy, E.; Khattab, A.R. Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chem., 2020, 331, 127358.
[http://dx.doi.org/10.1016/j.foodchem.2020.127358] [PMID: 32593795]
[5]
Shahi, T.; Assadpour, E.; Jafari, S.M. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci. Technol., 2016, 58, 69-78.
[http://dx.doi.org/10.1016/j.tifs.2016.10.010]
[6]
D’Archivio, A.A.; Giannitto, A.; Maggi, M.A.; Ruggieri, F. Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem., 2016, 212, 110-116.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.149] [PMID: 27374513]
[7]
Hosseini, S.I.; Farrokhi, N.; Shokri, K.; Khani, M.R.; Shokri, B. Cold low pressure O2 plasma treatment of Crocus sativus: An efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food Chem., 2018, 257, 310-315.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.031] [PMID: 29622216]
[8]
Moshiri, M.; Vahabzadeh, M.; Hosseinzadeh, H. Clinical applications of saffron (Crocus sativus) and its constituents: A review. Drug Res. (Stuttg.), 2015, 65(6), 287-295.
[PMID: 24848002]
[9]
Melnyk, J.P.; Wang, S.; Marcone, M.F. Chemical and biological properties of the world’s most expensive spice. Saffron. Food Res. Int., 2010, 43(8), 1981-1989.
[http://dx.doi.org/10.1016/j.foodres.2010.07.033]
[10]
Karasali, H.; Pavlidis, G. Microwave-assisted acid extraction of the major metal elements in herbal extracts followed by flame atomic absorption spectrometric (FAAS) determination. Toxicol. Environ. Chem., 2016, 98(10), 1173-1182.
[http://dx.doi.org/10.1080/02772248.2015.1091892]
[11]
D’Archivio, A.A.; Giannitto, A.; Incani, A.; Nisi, S. Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin. Food Chem., 2014, 157, 485-489.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.068] [PMID: 24679808]
[12]
Karahan, F. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biol. Trace Elem. Res., 2019, 1-14.
[PMID: 31758293]
[13]
Ozturk, M.; Altay, V.; Karahan, F. Studies on trace elements in Glycyrrhiza taxa distributed in Hatay-Turkey., Int J Plant Environ, 2017, 3(2), 01-07..
[http://dx.doi.org/10.18811/ijpen.v3i02.10431]
[14]
Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Compr. Rev. Food Sci. Food Saf., 2016, 15(1), 219-233.
[http://dx.doi.org/10.1111/1541-4337.12182] [PMID: 33371579]
[15]
Koller, M.; Saleh, H.M. Introductory chapter: Introducing heavy metals., Heavy Metals. 2018, 1.
[16]
Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ., 2016, 569-570, 476-488.
[http://dx.doi.org/10.1016/j.scitotenv.2016.06.166] [PMID: 27355520]
[17]
Sani, A.M.; Kakhki, A.H.; Moradi, E. Chemical composition and nutritional value of saffron’s pollen (Crocus sativus L.). Nutr. Food Sci., 2013, 43, 490-495.
[18]
Abou-Arab, A.A.; Abou Donia, M.A. Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J. Agric. Food Chem., 2000, 48(6), 2300-2304.
[http://dx.doi.org/10.1021/jf990508p] [PMID: 10888541]
[19]
Chichiriccò, G. Nutrients and heavy metals in flowers and corms of the Saffron Crocus (Crocus sativus L.). Med. Aromat. Plants, 2016, 5(254), 2167-0412.
[20]
Esmaeili, N.; Ebrahimzadeh, H.; Abdi, K.; Mirmasoumi, M.; Lamei, N.; Azizi Shamami, M. Determination of metal content in Crocus sativus L. corms in dormancy and waking stages. Iran. J. Pharm. Res., 2013, 12(1), 31-36.
[PMID: 24250569]
[21]
Heydari, S. Separation/preconcentration and determination of trace levels of cadmium in saffron samples by dispersive liquid–liquid based on solidification of floating organic drop microextraction coupled to UV-Vis spectrophotometry. Canadian Chem. Trans. J., 2014, 2(1), 2291-6466.
[22]
Matloob, M.H. Using stripping voltammetry to determine heavy metals in cooking spices used in iraq. Pol. J. Environ. Stud., 2016, 25(5), 2057-2070.
[http://dx.doi.org/10.15244/pjoes/62401]
[23]
Xu, J.; Liu, J. Determination and analysis of eight metal elements in the stigma of Crocus sativus L. Yaowu Fenxi Zazhi, 2010, 30(2), 285-287.
[24]
Zheng, M-y. Determination of Mineral Elements in Crocus Sativus L. by the Method of Microwave Digestion and ICP-OES. International Conference on Biomedical Engineering and Biotechnology, Macau, Macao2012.
[http://dx.doi.org/10.1109/iCBEB.2012.133]
[25]
Bradl, H. Sources and origins of heavy metals.In: Interface science and technology; Elsevier, 2005, pp. 1-27.
[26]
Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Jones, L.; Rysz, J.; Aronow, W.S.; Banach, M. The meaning of hypokalemia in heart failure. Int. J. Cardiol., 2012, 158(1), 12-17.
[http://dx.doi.org/10.1016/j.ijcard.2011.06.121] [PMID: 21775000]
[27]
Muñoz, O.; Zamorano, P.; Garcia, O.; Bastías, J.M. Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem. Toxicol., 2017, 109(Pt 2), 1125-1134.
[http://dx.doi.org/10.1016/j.fct.2017.03.027] [PMID: 28322969]
[28]
Shmagel, A.; Onizuka, N.; Langsetmo, L.; Vo, T.; Foley, R.; Ensrud, K.; Valen, P. Low magnesium intake is associated with increased knee pain in subjects with radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage, 2018, 26(5), 651-658.
[http://dx.doi.org/10.1016/j.joca.2018.02.002] [PMID: 29454594]
[29]
An, L.; Marjani, S.L.; Wang, Z.; Liu, Z.; Liu, R.; Xue, F.; Xu, J.; Nedambale, T.L.; Yang, L.; Tian, X.C.; Su, L.; Du, F. Magnesium is a critical element for competent development of bovine embryos. Theriogenology, 2019, 140, 109-116.
[http://dx.doi.org/10.1016/j.theriogenology.2019.08.015] [PMID: 31473493]
[30]
Pilchova, I. The involvement of Mg2+ in regulation of cellular and mitochondrial functions. Oxid. Med. Cell. Longev., 2017, 2017, 6797460.
[31]
Singh, P.; Prasad, S. Determination of ascorbic acid and its influence on the bioavailability of iron, zinc and calcium in Fijian food samples. Microchem. J., 2018, 139, 119-124.
[http://dx.doi.org/10.1016/j.microc.2018.02.019]
[32]
Tremblay, A.; Gilbert, J.-A. Human obesity: Is insufficient calcium/dairy intake part of the problem? J. Amer. Colle. Nutri., 2011, 30(sup5), 449S-453S..
[33]
Hadiani, M.R.; Dezfooli-Manesh, S.; Shoeibi, S.; Ziarati, P.; Mousavi Khaneghah, A. Trace elements and heavy metals in mineral and bottled drinking waters on the Iranian market. Food Addit. Contam. Part B Surveill., 2015, 8(1), 18-24.
[http://dx.doi.org/10.1080/19393210.2014.947526] [PMID: 25174358]
[34]
Hwang, J. Determination of phosphorus in foods by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). , 2015, 19(2), 161-166..
[35]
He, H. Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats. Food Sci. Hum. Wellness, 2021, 10, 23-31.
[36]
Kaczorowska-Hac, B.; Luszczyk, M.; Antosiewicz, J.; Ziolkowski, W.; Adamkiewicz-Drozynska, E.; Mysliwiec, M.; Milosz, E.; Kaczor, J.J. HFE gene mutations and iron status in 100 healthy polish children. J. Pediatr. Hematol. Oncol., 2017, 39(5), e240-e243.
[http://dx.doi.org/10.1097/MPH.0000000000000826] [PMID: 28406842]
[37]
Peng, B.; Shen, Y.; Gao, Z.; Zhou, M.; Ma, Y.; Zhao, S. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chem., 2015, 176, 288-293.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.084] [PMID: 25624235]
[38]
Xiao, C.; Lei, X.; Wang, Q.; Du, Z.; Jiang, L.; Chen, S.; Zhang, M.; Zhang, H.; Ren, F. Effects of a tripeptide iron on iron-deficiency anemia in rats. Biol. Trace Elem. Res., 2016, 169(2), 211-217.
[http://dx.doi.org/10.1007/s12011-015-0412-6] [PMID: 26109335]
[39]
Hu, Q. An ultra-selective fluorescence method with enhanced sensitivity for the determination of manganese (VII) in food stuffs using carbon quantum dots as nanoprobe. J. Food Compos. Anal., 2020, 88, 103447.
[http://dx.doi.org/10.1016/j.jfca.2020.103447]
[40]
Singh, P.; Prasad, S.; Aalbersberg, W. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem., 2016, 207, 125-131.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.029] [PMID: 27080888]
[41]
Jurowski, K. Krośniak, M.; Fołta, M.; Tatar, B.; Cole, M.; Piekoszewski, W. The analysis of Cu, Mn and Zn content in prescription food for special medical purposes and modified milk products for newborns and infants available in Polish pharmacies from toxicological and nutritional point of view. J. Trace Elem. Med. Biol., 2019, 53, 144-149.
[http://dx.doi.org/10.1016/j.jtemb.2019.03.001] [PMID: 30910198]
[42]
Boruah, B.S.; Daimari, N.K.; Biswas, R. Functionalized silver nanoparticles as an effective medium towards trace determination of arsenic (III) in aqueous solution. Results Phys., 2019, 12, 2061-2065.
[http://dx.doi.org/10.1016/j.rinp.2019.02.044]