Hydrogels for Modified-release Drug Delivery Systems

Page: [609 - 618] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Hydrogels for the modified-release drug delivery systems are a continuously growing area of interest for the pharmaceutical industry. According to the global market, the profit resulting from the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances in and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic delivery. The search was conducted, in January 2021, in an extensive database to identify studies published from January 2010 to December 2020. We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations. It was concluded that the hydrogels are useful to decrease the number of doses and side effects, promote adhesion of patient, and enhance the bioavailability of the drugs, thus improving the safety and efficacy of the treatment.

Keywords: Hydrogels, modified-release, drug delivery, safety, bioavailability, HMDDS.

[1]
Global Opportunity Analysis and Industry Forecast 2020–2027, 2020. Available from: https://www.alliedmarketresearch.com/hydrogel-market
[2]
Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules 2019; 24(3): E603.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[3]
Su CY, Ho HO, Chen YC, et al. Complex hydrogels composed of chitosan with ring-opened polyvinyl pyrrolidone as a gastroretentive drug dosage form to enhance the bioavailability of bisphosphonates. Sci Rep 2018; 8(1): 8092.
[http://dx.doi.org/10.1038/s41598-018-26432-2] [PMID: 29802291]
[4]
Zhu Y, Wang L, Li Y, et al. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8(19): 5415-26.
[http://dx.doi.org/10.1039/D0BM01004A] [PMID: 32996920]
[5]
Radwan RR, Mohamed HA, Ali HE, Mahmoud GA. Radiation preparation of L-arginine/acrylic acid hydrogel matrix patch for transdermal delivery of propranolol HCl in hypertensive rats. Drug Deliv Transl Res 2018; 8(3): 525-35.
[http://dx.doi.org/10.1007/s13346-017-0468-2] [PMID: 29313295]
[6]
Grolman JM, Singh M, Mooney DJ, Eriksson E, Nuutila K. Antibiotic-containing agarose hydrogel for wound and burn care. J Burn Care Res 2019; 40(6): 900-6.
[http://dx.doi.org/10.1093/jbcr/irz113] [PMID: 31250003]
[7]
Zhang SS, Xu XX, Xiang WW, et al. Using 17β-estradiol heparin-poloxamer thermosensitive hydrogel to enhance the endometrial regeneration and functional recovery of intrauterine adhesions in a rat model. FASEB J 2020; 34(1): 446-57.
[http://dx.doi.org/10.1096/fj.201901603RR] [PMID: 31914682]
[8]
Lopes CM, Lobo JMS, Costa P. Modified release of drug delivery systems: hydrophilic polymers. Revista Brasileira de Ciências Farmacêuticas 2005; 41(2): 143-54.
[http://dx.doi.org/10.1590/S1516-93322005000200003]
[9]
Lourenço AL, Lira LM, Carvalho DP, Melo PA, Cláudio-da-Silva TS. Carvalho DPd, Melo PdA, Cláudio-da-Silva TS. Gestão das inovações incrementais, o caso omeprazola. Quim Nova 2010; 33(4): 1000-4.
[http://dx.doi.org/10.1590/S0100-40422010000400044]
[10]
Cohen FJ. Macro trends in pharmaceutical innovation. Nat Rev Drug Discov 2005; 4(1): 78-84.
[http://dx.doi.org/10.1038/nrd1610] [PMID: 15688075]
[11]
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016; 1(12): 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[12]
Wichterle O, Lim D. Hydrophilic gels for biological use. Nature 1960; 185(4706): 117-8.
[http://dx.doi.org/10.1038/185117a0]
[13]
Jiang Y, Wang Y, Li Q, Yu C, Chu W. Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem 2020; 27(16): 2631-57.
[http://dx.doi.org/10.2174/0929867326666191122144916] [PMID: 31755377]
[14]
Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[15]
Batista RA, Espitia PJP, Vergne DMC, et al. Development and evaluation of superabsorbent hydrogels based on natural polymers. Polymers (Basel) 2020; 12(10): E2173.
[http://dx.doi.org/10.3390/polym12102173] [PMID: 32977618]
[16]
Yoshida CMP, Pacheco MS, de Moraes MA, et al. Effect of chitosan and aloe vera extract concentrations on the physicochemical properties of chitosan biofilms. Polymers (Basel) 2021; 13(8): 1187.
[http://dx.doi.org/10.3390/polym13081187] [PMID: 33917123]
[17]
Chatterjee S, Hui PC, Siu WS, et al. Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2021; 168: 163-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.035] [PMID: 33309656]
[18]
Yan M, Chen T, Zhang S, Lu T, Sun X. A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery. J Biomater Sci Polym Ed 2021; 32(6): 763-78.
[http://dx.doi.org/10.1080/09205063.2020.1866350] [PMID: 33345720]
[19]
Chatterjee S, Hui PC, Kan CW, Wang W. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019; 9(1): 11658.
[http://dx.doi.org/10.1038/s41598-019-48254-6] [PMID: 31406233]
[20]
Jose S, Ansa CR, Cinu TA, et al. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting. Int J Pharm 2013; 441(1-2): 516-26.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.049] [PMID: 23147411]
[21]
Deng A, Yang Y, Du S, et al. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater Sci Eng C 2021; 119: 111555.
[http://dx.doi.org/10.1016/j.msec.2020.111555] [PMID: 33321619]
[22]
Holback H, Yeo Y, Park K. 1 - Hydrogel swelling behavior and its biomedical applications. In: Rimmer S, Ed. Biomedical Hydrogels. Woodhead Publishing; 2011; pp. 3-24.
[http://dx.doi.org/10.1533/9780857091383.1.3]
[23]
Cassano R, Curcio F, Mandracchia D, Trapani A, Trombino S. Gelatin and glycerine-based bioadhesive vaginal hydrogel. Curr Drug Deliv 2020; 17(4): 303-11.
[http://dx.doi.org/10.2174/1567201817666200129130031] [PMID: 31995006]
[24]
Qi X-J, Liu X-Y, Tang L-M-Y, Li P-F, Qiu F, Yang A-H. Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharm Dev Technol 2020; 25(3): 316-25.
[http://dx.doi.org/10.1080/10837450.2019.1686524] [PMID: 31661648]
[25]
Severino P, Da Silva CF, Dalla Costa TC, et al. In vivo absorption of didanosine formulated in pellets composed of chitosan microspheres. In Vivo 2014; 28(6): 1045-50.
[PMID: 25398797]
[26]
Zhang S, Ermann J, Succi MD, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med 2015; 7(300): 300ra128.
[http://dx.doi.org/10.1126/scitranslmed.aaa5657] [PMID: 26268315]
[27]
Patlolla VGR, Peter Holbrook W, Gizurarson S, Kristmundsdottir T. Doxycycline and monocaprin in situ hydrogel: Effect on stability, mucoadhesion and texture analysis and in vitro release. Gels 2019; 5(4): E47.
[http://dx.doi.org/10.3390/gels5040047] [PMID: 31835322]
[28]
Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 2000; 65(1-2): 63-71.
[http://dx.doi.org/10.1016/S0168-3659(99)00233-3] [PMID: 10699271]
[29]
Deepthi S, Jose J. Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis. Int Ophthalmol 2019; 39(6): 1355-66.
[http://dx.doi.org/10.1007/s10792-018-0955-6] [PMID: 29922978]
[30]
Bao Z, Yu A, Shi H, et al. Glycol chitosan/oxidized hyaluronic acid hydrogel film for topical ocular delivery of dexamethasone and levofloxacin. Int J Biol Macromol 2021; 167: 659-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.214] [PMID: 33278439]
[31]
Wen Y, Jia H, Mo Z, et al. Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability. Mater Sci Eng C 2021; 119: 111445.
[http://dx.doi.org/10.1016/j.msec.2020.111445] [PMID: 33321585]
[32]
Yang Y, Chen S, Liu Y, et al. Long-term treatment of polysaccharides-based hydrogel microparticles as oral insulin delivery in streptozotocin-induced type 2 diabetic mice. Biomed Pharmacother 2021; 133: 110941.
[http://dx.doi.org/10.1016/j.biopha.2020.110941] [PMID: 33232923]
[33]
Durai RD, Nallakkannu J, Rajaraman K, Bodethala Narayanan VH. Dual drug loaded bilayer hydrogel coated with citric acid for the treatment of dry mouth syndrome. Assay Drug Dev Technol 2021; 19(2): 139-52.
[http://dx.doi.org/10.1089/adt.2020.1021] [PMID: 33646014]
[34]
El-Masry SM, Helmy SA. Hydrogel-based matrices for controlled drug delivery of etamsylate: Prediction of in-vivo plasma profiles. Saudi Pharm J 2020; 28(12): 1704-18.
[http://dx.doi.org/10.1016/j.jsps.2020.10.016] [PMID: 33424262]
[35]
Gonçalves J, Bicker J, Gouveia F, et al. Nose-to-brain delivery of levetiracetam after intranasal administration to mice. Int J Pharm 2019; 564: 329-39.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.047] [PMID: 31015006]
[36]
Gholizadeh H, Messerotti E, Pozzoli M, et al. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech 2019; 20(7): 299.
[http://dx.doi.org/10.1208/s12249-019-1517-6] [PMID: 31482286]
[37]
Zhang S, Liu C, Yang D, et al. Mechanism insight on drug skin delivery from polyurethane hydrogels: Roles of molecular mobility and intermolecular interaction. Eur J Pharm Sci 2021; 161: 105783.
[http://dx.doi.org/10.1016/j.ejps.2021.105783] [PMID: 33667662]
[38]
Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int J Pharm 2020; 587: 119626.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119626] [PMID: 32659404]
[39]
Johnson KA, Muzzin N, Toufanian S, et al. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 2020; 112: 101-11.
[http://dx.doi.org/10.1016/j.actbio.2020.06.006] [PMID: 32522716]
[40]
Fernandes AR, Sanchez-Lopez E, Santini A, et al. Mono- and dicationic DABCO/Quinuclidine composed nanomaterials for the loading of steroidal drug: 32 factorial design and physicochemical characterization. Nanomaterials (Basel) 2021; 11(10): 2758.
[http://dx.doi.org/10.3390/nano11102758] [PMID: 34685199]
[41]
Fernandes AR, Sanchez-Lopez E, Santos TD, Garcia ML, Silva AM, Souto EB. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials (Basel) 2021; 14(24): 7541.
[http://dx.doi.org/10.3390/ma14247541] [PMID: 34947136]
[42]
Fernandes AR, Santos TD, Granja PL, et al. DABCO-customized nanoemulsions: Characterization, cell viability and genotoxicity in retinal pigmented epithelium and microglia cells. Pharmaceutics 2021; 13(10): 1652.
[http://dx.doi.org/10.3390/pharmaceutics13101652] [PMID: 34683945]
[43]
Gonzalez-Mira E, Nikolić S, Calpena AC, Egea MA, Souto EB, García ML. Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J Pharm Sci 2012; 101(2): 707-25.
[http://dx.doi.org/10.1002/jps.22784] [PMID: 22012873]
[44]
Noreen S, Ghumman SA, Batool F, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 2020; 152: 1056-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.193] [PMID: 31751751]
[45]
Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 2017; 155: 208-17.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.073] [PMID: 27702506]
[46]
Cocarta A-I, Hobzova R, Sirc J, et al. Hydrogel implants for transscleral drug delivery for retinoblastoma treatment. Mater Sci Eng C 2019; 103: 109799.
[http://dx.doi.org/10.1016/j.msec.2019.109799] [PMID: 31349439]
[47]
Kim DI, Lee H, Kwon SH, Sung YJ, Song WK, Park S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv Healthc Mater 2020; 9(13): e2000118.
[http://dx.doi.org/10.1002/adhm.202000118] [PMID: 32431072]
[48]
Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther 2012; 134(3): 366-79.
[http://dx.doi.org/10.1016/j.pharmthera.2012.03.003] [PMID: 22465159]
[49]
Gholizadeh H, Cheng S, Pozzoli M, et al. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Deliv 2019; 16(4): 453-66.
[http://dx.doi.org/10.1080/17425247.2019.1597051] [PMID: 30884987]
[50]
Pardeshi CV, Souto EB. Chapter 6 - Surface modification of nanocarriers as a strategy to enhance the direct nose-to-brain drug delivery. In: Pardeshi CV, Souto EB, Eds. Direct Nose-to-Brain Drug Delivery. Academic Press; 2021; pp. 93-114.
[http://dx.doi.org/10.1016/B978-0-12-822522-6.00006-0]
[51]
Barros C, Aranha N, Severino P, et al. Quality by design approach for the development of liposome carrying ghrelin for intranasal administration. Pharmaceutics 2021; 13(5): 686.
[http://dx.doi.org/10.3390/pharmaceutics13050686] [PMID: 34068793]
[52]
Abrego G, Alvarado H, Souto EB, et al. Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. Int J Pharm 2016; 501(1-2): 350-61.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.071] [PMID: 26844786]
[53]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm 2004; 58(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.015] [PMID: 15207541]
[54]
Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IA. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci Rep 2019; 9(1): 9563.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[55]
Adnet T, Groo A-C, Picard C, Davis A, Corvaisier S, Since M, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment 2020 12(3): 251.
[56]
Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 2015; 117: 524-36.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.094] [PMID: 25498667]
[57]
Bozoğlan BK, Duman O, Tunç S. Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int J Biol Macromol 2020; 162: 781-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.087] [PMID: 32553980]
[58]
Panyamao P, Ruksiriwanich W, Sirisa-Ard P, Charumanee S. Injectable thermosensitive chitosan/pullulan-based hydrogels with improved mechanical properties and swelling capacity. Polymers (Basel) 2020; 12(11): E2514.
[http://dx.doi.org/10.3390/polym12112514] [PMID: 33126695]
[59]
Tentor FR, de Oliveira JH, Scariot DB, et al. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol 2017; 102: 1186-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.106] [PMID: 28487197]
[60]
Yang M, He S, Su Z, Yang Z, Liang X, Wu Y. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids. ACS Omega 2020; 5(33): 21015-23.
[http://dx.doi.org/10.1021/acsomega.0c02580] [PMID: 32875238]
[61]
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery--current status and future prospects. Int J Pharm 2014; 471(1-2): 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[62]
Marto J, Ribeiro H, Almeida A. Starch-based nanocapsules as drug carriers for topical drug delivery Smart Nanocontainers. Elsevier 2020; pp. 287-94.
[63]
Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 2014; 40(4): 433-40.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[64]
Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol 2019; 10: 1057.
[http://dx.doi.org/10.3389/fphar.2019.01057] [PMID: 31607914]
[65]
Pagano C, Giovagnoli S, Perioli L, Tiralti MC, Ricci M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur J Pharm Sci 2020; 142: 105125.
[http://dx.doi.org/10.1016/j.ejps.2019.105125] [PMID: 31682975]
[66]
Mamdouh M, Donia A, Essa E, Maghraby GE. Preparation of liquid oral mucoadhesive gastro-retentive system of nimodipine. Curr Drug Deliv 2019; 16(9): 862-71.
[http://dx.doi.org/10.2174/1567201816666191014102531] [PMID: 31633475]
[67]
EMA. EMA/CHMP/EWP/280/96, Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms, Committee for Medicinal Products for Human Use (CHMP), 20th November 2014. 2014.
[68]
Cheng Z, Qing R, Hao S, et al. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat Regen Biomater 2021; 8(2): rbab008.
[http://dx.doi.org/10.1093/rb/rbab008] [PMID: 33738122]
[69]
Barbosa GP, Debone HS, Severino P, Souto EB, da Silva CF. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties. Mater Sci Eng C 2016; 60: 246-54.
[http://dx.doi.org/10.1016/j.msec.2015.11.034] [PMID: 26706528]
[70]
Maeng JH, Bang BW, Lee E, et al. Endoscopic application of EGF-chitosan hydrogel for precipitated healing of GI peptic ulcers and mucosectomy-induced ulcers. J Mater Sci Mater Med 2014; 25(2): 573-82.
[http://dx.doi.org/10.1007/s10856-013-5088-x] [PMID: 24338378]
[71]
Liu J, Pang Y, Zhang S, et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat Commun 2017; 8(1): 124.
[http://dx.doi.org/10.1038/s41467-017-00144-z] [PMID: 28743858]
[72]
Yoon YM, Lewis JS, Carstens MR, et al. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci Rep 2015; 5(1): 13155.
[http://dx.doi.org/10.1038/srep13155] [PMID: 26279095]
[73]
Dias-Ferreira J, Fernandes AR, Soriano JL, Naveros BC, Severino P, da Silva CF. Chapter 13 - Skin rejuvenation: Biopolymers applied to UV sunscreens and sheet masks. In: de Moraes MA, da Silva CF, Vieira RS, Eds. Biopolymer Membranes and Films. Elsevier 2020; pp. 309-30.
[74]
de Oliveira DM, Menezes DB, Andrade LR, et al. Silver nanoparticles obtained from Brazilian pepper extracts with synergistic anti-microbial effect: production, characterization, hydrogel formulation, cell viability, and in vitro efficacy. Pharm Dev Technol 2021; 26(5): 539-48.
[http://dx.doi.org/10.1080/10837450.2021.1898634] [PMID: 33685334]
[75]
Goh M, Hwang Y, Tae G. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing. Carbohydr Polym 2016; 147: 251-60.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.072] [PMID: 27178931]
[76]
Hsu FM, Hu MH, Jiang YS, Lin BY, Hu JJ, Jan JS. Antibacterial polypeptide/heparin composite hydrogels carrying growth factor for wound healing. Mater Sci Eng C 2020; 112: 110923.
[http://dx.doi.org/10.1016/j.msec.2020.110923] [PMID: 32409073]
[77]
Yeung AWK, Tzvetkov NT, Durazzo A, et al. Natural products in diabetes research: quantitative literature analysis. Nat Prod Res 2021; 35(24): 5813-27.
[http://dx.doi.org/10.1080/14786419.2020.1821019] [PMID: 33025819]
[78]
Zielińska A, Alves H, Marques V, et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina (Kaunas) 2020; 56(7): E336.
[http://dx.doi.org/10.3390/medicina56070336] [PMID: 32635279]
[79]
Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB. Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 2010; 81(1): 263-73.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[80]
Alven S, Nqoro X, Aderibigbe BA. Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel) 2020; 12(10): E2286.
[http://dx.doi.org/10.3390/polym12102286] [PMID: 33036130]
[81]
Gong C, Wu Q, Wang Y, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013; 34(27): 6377-87.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.005] [PMID: 23726229]
[82]
Zakia M, Koo JM, Kim D, et al. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green Chem Lett Rev 2020; 13(1): 34-40.
[http://dx.doi.org/10.1080/17518253.2020.1725149]
[83]
Diniz FR, Maia RCAP, Rannier L, et al. Silver nanoparticles-composing alginate/gelatin hydrogel improves wound healing in vivo. Nanomaterials (Basel) 2020; 10(2): 390.
[http://dx.doi.org/10.3390/nano10020390] [PMID: 32102229]
[84]
Hissae Yassue-Cordeiro P, Zandonai CH, Pereira Genesi B, et al. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics 2019; 11(10): E535.
[http://dx.doi.org/10.3390/pharmaceutics11100535] [PMID: 31615120]
[85]
Bektas N, Şenel B, Yenilmez E, Özatik O, Arslan R. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharm J 2020; 28(1): 87-94.
[http://dx.doi.org/10.1016/j.jsps.2019.11.008] [PMID: 31933527]
[86]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): E1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[87]
Velázquez NS, Turino LN, Luna JA, Mengatto LN. Progesterone loaded thermosensitive hydrogel for vaginal application: Formulation and in vitro comparison with commercial product. Saudi Pharm J 2019; 27(8): 1096-106.
[http://dx.doi.org/10.1016/j.jsps.2019.09.006] [PMID: 31885469]
[88]
Almomen AA, Cho S, Li Z, Huh KM, Matthew Peterson C, Janát-Amsbury MM. A thermosensitive glycol chitin hydrogel for the vaginal delivery of progesterone. J Control Release 2015; 213: e74-5.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.123] [PMID: 27005222]
[89]
Good MM, Montoya TI, Shi H, et al. Thermosensitive hydrogels deliver bioactive protein to the vaginal wall. PLoS One 2017; 12(10): e0186268.
[http://dx.doi.org/10.1371/journal.pone.0186268] [PMID: 29073153]
[90]
Yang T-T, Cheng Y-Z, Qin M, et al. Thermosensitive chitosan hydrogels containing polymeric microspheres for vaginal drug delivery. BioMed Res Int 2017; 2017: 3564060.
[http://dx.doi.org/10.1155/2017/3564060] [PMID: 29209627]
[91]
Wang H, Han X, Wittchen ES, Hartnett ME. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation. Mol Vis 2016; 22: 116-28.
[PMID: 26900328]
[92]
Ci LQ, Huang ZG, Lv FM, et al. Enhanced delivery of imatinib into vaginal mucosa via a new positively charged nanocrystal-loaded in situ hydrogel formulation for treatment of cervical cancer. Pharmaceutics 2019; 11(1): E15.
[http://dx.doi.org/10.3390/pharmaceutics11010015] [PMID: 30621141]
[93]
Malli S, Bories C, Pradines B, Loiseau PM, Ponchel G, Bouchemal K. In situ forming pluronic® F127/chitosan hydrogel limits metronidazole transmucosal absorption. Eur J Pharm Biopharm 2017; 112: 143-7.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.024] [PMID: 27890510]
[94]
Chen H, Cheng R, Zhao X, et al. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater 2019; 11(1): 3.
[http://dx.doi.org/10.1038/s41427-018-0103-9]
[95]
Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioeng Transl Med 2020; 5(2): e10158.
[http://dx.doi.org/10.1002/btm2.10158]