Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease

Page: [3420 - 3444] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.

Keywords: Cardiovascular disease, miRNA, lncRNA, circRNA, platelets, circRNA.

[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
de Gonzalo-Calvo, D.; Vea, A.; Bär, C.; Fiedler, J.; Couch, L.S.; Brotons, C.; Llorente-Cortes, V.; Thum, T. Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: A novel tool for personalized medicine? Eur. Heart J., 2019, 40(20), 1643-1650.
[http://dx.doi.org/10.1093/eurheartj/ehy234] [PMID: 29688487]
[3]
Lu, D.; Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol., 2019, 16(11), 661-674.
[http://dx.doi.org/10.1038/s41569-019-0218-x] [PMID: 31186539]
[4]
Papapanagiotou, A.; Daskalakis, G.; Siasos, G.; Gargalionis, A.; Papavassiliou, A.G. The role of platelets in cardiovascular disease: Molecular mechanisms. Curr. Pharm. Des., 2016, 22(29), 4493-4505.
[http://dx.doi.org/10.2174/1381612822666160607064118] [PMID: 27281334]
[5]
Nassa, G.; Giurato, G.; Cimmino, G.; Rizzo, F.; Ravo, M.; Salvati, A.; Nyman, T.A.; Zhu, Y.; Vesterlund, M.; Lehtiö, J.; Golino, P.; Weisz, A.; Tarallo, R. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci. Rep., 2018, 8(1), 498.
[http://dx.doi.org/10.1038/s41598-017-18985-5] [PMID: 29323256]
[6]
Osman, A.; Hitzler, W.E.; Ameur, A.; Provost, P. Differential expression analysis by RNA-Seq reveals perturbations in the platelet mRNA transcriptome triggered by pathogen reduction systems. PLoS One, 2015, 10(7), e0133070.
[http://dx.doi.org/10.1371/journal.pone.0133070] [PMID: 26172280]
[7]
Rowley, J.W.; Oler, A.J.; Tolley, N.D.; Hunter, B.N.; Low, E.N.; Nix, D.A.; Yost, C.C.; Zimmerman, G.A.; Weyrich, A.S. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood, 2011, 118(14), e101-e111.
[http://dx.doi.org/10.1182/blood-2011-03-339705] [PMID: 21596849]
[8]
Provost, P. The clinical significance of platelet microparticle-associated microRNAs. Clin. Chem. Lab. Med., 2017, 55(5), 657-666. [CCLM].
[http://dx.doi.org/10.1515/cclm-2016-0895] [PMID: 28099120]
[9]
Rowley, J.; Weyrich, A.; Bray, P. The platelet transcriptome in health and disease. Platelet, 2019, 139-153.
[http://dx.doi.org/10.1016/B978-0-12-813456-6.00007-2]
[10]
Clancy, L.; Freedman, J.E. The role of circulating platelet transcripts. J. Thromb. Haemost., 2015, 13(S1)(Suppl. 1), S33-S39.
[http://dx.doi.org/10.1111/jth.12922] [PMID: 26149043]
[11]
Xia, L.; Zeng, Z.; Tang, W.H. The role of platelet microparticle associated microRNAs in cellular crosstalk. Front. Cardiovasc. Med., 2018, 5, 29.
[http://dx.doi.org/10.3389/fcvm.2018.00029] [PMID: 29670887]
[12]
Ghafouri-Fard, S.; Esmaeili, M.; Taheri, M. Expression of non-coding RNAs in hematological malignancies. Eur. J. Pharmacol., 2020, 875, 172976.
[http://dx.doi.org/10.1016/j.ejphar.2020.172976] [PMID: 32112777]
[13]
Cao, Q.; Wu, J.; Wang, X.; Song, C. Noncoding RNAs in vascular aging. Oxid. Med. Cell. Longev., 2020, 2020, 7914957.
[http://dx.doi.org/10.1155/2020/7914957] [PMID: 31998442]
[14]
Peters, M.M.C.; Sampaio-Pinto, V.; da Costa Martins, P.A. Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(3), 118515.
[http://dx.doi.org/10.1016/j.bbamcr.2019.07.010] [PMID: 31362011]
[15]
Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[16]
Carneiro FD, Almeida KCd, Fernandes-Santos C. Role of miRNAs on the pathophysiology of cardiovascular diseases. Arq. Bras. Cardiol., 2018, 111, 738-746.
[17]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9(402), 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[18]
Djuranovic, S.; Nahvi, A.; Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 2012, 336(6078), 237-240.
[http://dx.doi.org/10.1126/science.1215691] [PMID: 22499947]
[19]
Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol., 2014, 51(4), 759-774.
[http://dx.doi.org/10.1177/0300985813502820] [PMID: 24045890]
[20]
García-López, J.; Brieño-Enríquez, M.A.; Del Mazo, J. MicroRNA biogenesis and variability. Biomol. Concepts, 2013, 4(4), 367-380.
[http://dx.doi.org/10.1515/bmc-2013-0015] [PMID: 25436586]
[21]
Hembrom, A.A.; Srivastava, S.; Garg, I.; Kumar, B. MicroRNAs in venous thrombo-embolism. Clin. Chim. Acta, 2020, 504, 66-72.
[http://dx.doi.org/10.1016/j.cca.2020.01.034] [PMID: 32017924]
[22]
Bhatlekar, S.; Manne, B.K.; Basak, I.; Edelstein, L.C.; Tugolukova, E.; Stoller, M.L.; Cody, M.J.; Morley, S.C.; Nagalla, S.; Weyrich, A.S.; Rowley, J.W.; O’Connell, R.M.; Rondina, M.T.; Campbell, R.A.; Bray, P.F. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood, 2020, 136(15), 1760-1772.
[http://dx.doi.org/10.1182/blood.2020005230] [PMID: 32844999]
[23]
Ruan, X.; Li, P.; Chen, Y.; Shi, Y.; Pirooznia, M.; Seifuddin, F.; Suemizu, H.; Ohnishi, Y.; Yoneda, N.; Nishiwaki, M.; Shepherdson, J.; Suresh, A.; Singh, K.; Ma, Y.; Jiang, C.F.; Cao, H. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat. Commun., 2020, 11(1), 45.
[http://dx.doi.org/10.1038/s41467-019-13688-z] [PMID: 31896749]
[24]
Lin, L.; Li, Q.; Hao, W.; Zhang, Y.; Zhao, L.; Han, W. Upregulation of LncRNA malat1 induced proliferation and migration of airway smooth muscle cells via miR-150-eIF4E/Akt signaling. Front. Physiol., 2019, 10, 1337.
[http://dx.doi.org/10.3389/fphys.2019.01337] [PMID: 31695627]
[25]
Dahariya, S.; Paddibhatla, I.; Kumar, S.; Raghuwanshi, S.; Pallepati, A.; Gutti, R.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol., 2019, 112, 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011] [PMID: 31079005]
[26]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 925-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[27]
Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their integrated networks. J. Integr. Bioinform., 2019, 16(3), 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[28]
Shen, E.; Zhu, X.; Hua, S.; Chen, H.; Ye, C.; Zhou, L.; Liu, Q.; Zhu, Q.H.; Fan, L.; Chen, X. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics, 2018, 19(1), 745.
[http://dx.doi.org/10.1186/s12864-018-5117-8] [PMID: 30314449]
[29]
Ma, X.; Zhang, X.; Traore, S.M.; Xin, Z.; Ning, L.; Li, K.; Zhao, K.; Li, Z.; He, G.; Yin, D. Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC Plant Biol., 2020, 20(1), 192.
[http://dx.doi.org/10.1186/s12870-020-02405-4] [PMID: 32375650]
[30]
Yao, P.; Li, Y-L.; Chen, Y.; Shen, W.; Wu, K-Y.; Xu, W.H. Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. Gene, 2020, 737, 144411.
[http://dx.doi.org/10.1016/j.gene.2020.144411] [PMID: 32006596]
[31]
Li, G-J.; Ding, H.; Miao, D. Long-noncoding RNA HOTAIR inhibits immunologic rejection of mouse leukemia cells through activating the Wnt/β-catenin signaling pathway in a mouse model of leukemia. J. Cell. Physiol., 2019, 234(7), 10386-10396.
[http://dx.doi.org/10.1002/jcp.27705] [PMID: 30609034]
[32]
Kumar, L.; Shamsuzzama, .; Haque, R.; Baghel, T.; Nazir, A. Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol. Neurobiol., 2017, 54(9), 7224-7234.
[http://dx.doi.org/10.1007/s12035-016-0213-8] [PMID: 27796758]
[33]
Greene, J.; Baird, A-M.; Brady, L.; Lim, M.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs: Biogenesis, function and role in human diseases. Front. Mol. Biosci., 2017, 4, 38.
[http://dx.doi.org/10.3389/fmolb.2017.00038] [PMID: 28634583]
[34]
Devaux, Y.; Creemers, E.E.; Boon, R.A.; Werfel, S.; Thum, T.; Engelhardt, S.; Dimmeler, S.; Squire, I. Circular RNAs in heart failure. Eur. J. Heart Fail., 2017, 19(6), 701-709.
[http://dx.doi.org/10.1002/ejhf.801] [PMID: 28345158]
[35]
Jamal, M.; Song, T.; Chen, B.; Faisal, M.; Hong, Z.; Xie, T.; Wu, Y.; Pan, S.; Yin, Q.; Shao, L.; Zhang, Q. Recent progress on circular RNA research in acute myeloid leukemia. Front. Oncol., 2019, 9, 1108.
[http://dx.doi.org/10.3389/fonc.2019.01108] [PMID: 31781482]
[36]
Vromman, M.; Vandesompele, J.; Volders, P-J. Closing the circle: Current state and perspectives of circular RNA databases. Brief. Bioinform., 2021, 22(1), 288-297.
[PMID: 31998941]
[37]
Nicolet, B.P.; Engels, S.; Aglialoro, F.; van den Akker, E.; von Lindern, M.; Wolkers, M.C. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res., 2018, 46(16), 8168-8180.
[http://dx.doi.org/10.1093/nar/gky721] [PMID: 30124921]
[38]
Huang, S.; Yang, B.; Chen, B.J.; Bliim, N.; Ueberham, U.; Arendt, T.; Janitz, M. The emerging role of circular RNAs in transcriptome regulation. Genomics, 2017, 109(5-6), 401-407.
[http://dx.doi.org/10.1016/j.ygeno.2017.06.005] [PMID: 28655641]
[39]
Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics, 2020, 10(8), 3503-3517.
[http://dx.doi.org/10.7150/thno.42174] [PMID: 32206104]
[40]
Fan, X.; Weng, X.; Zhao, Y.; Chen, W.; Gan, T.; Xu, D. Circular RNAs in cardiovascular disease: An overview. BioMed Res. Int., 2017, 2017, 5135781.
[http://dx.doi.org/10.1155/2017/5135781] [PMID: 28210621]
[41]
Burnouf, T.; Goubran, H.A.; Chou, M-L.; Devos, D.; Radosevic, M. Platelet microparticles: Detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev., 2014, 28(4), 155-166.
[http://dx.doi.org/10.1016/j.blre.2014.04.002] [PMID: 24826991]
[42]
Pordzik, J.; Pisarz, K.; De Rosa, S.; Jones, A.D.; Eyileten, C.; Indolfi, C.; Malek, L.; Postula, M. The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: A review. Front. Endocrinol. (Lausanne), 2018, 9, 74.
[http://dx.doi.org/10.3389/fendo.2018.00074] [PMID: 29615970]
[43]
Espinosa-Parrilla, Y.; Gonzalez-Billault, C.; Fuentes, E.; Palomo, I.; Alarcón, M. Decoding the role of platelets and related microRNAs in aging and neurodegenerative disorders. Front. Aging Neurosci., 2019, 11, 151.
[http://dx.doi.org/10.3389/fnagi.2019.00151] [PMID: 31312134]
[44]
Fuentes, E.; Palomo, I.; Alarcón, M. Platelet miRNAs and cardiovascular diseases. Life Sci., 2015, 133, 29-44.
[http://dx.doi.org/10.1016/j.lfs.2015.04.016] [PMID: 26003375]
[45]
Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; Ylstra, B.; Ameziane, N.; Dorsman, J.; Smit, E.F.; Verheul, H.M.; Noske, D.P.; Reijneveld, J.C.; Nilsson, R.J.A.; Tannous, B.A.; Wesseling, P.; Wurdinger, T. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 2015, 28(5), 666-676.
[http://dx.doi.org/10.1016/j.ccell.2015.09.018] [PMID: 26525104]
[46]
Shi, R.; Zhou, X.; Ji, W-J.; Zhang, Y-Y.; Ma, Y-Q.; Zhang, J-Q.; Li, Y.M. The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. BioMed Res. Int., 2015, 2015, 981841.
[http://dx.doi.org/10.1155/2015/981841] [PMID: 26221610]
[47]
Chen, Z.; Li, C.; Lin, K.; Zhang, Q.; Chen, Y.; Rao, L. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? Anatol. J. Cardiol., 2018, 19(2), 140-147.
[http://dx.doi.org/10.14744/AnatolJCardiol.2017.8124] [PMID: 29424735]
[48]
Zampetaki, A.; Willeit, P.; Tilling, L.; Drozdov, I.; Prokopi, M.; Renard, J-M.; Mayr, A.; Weger, S.; Schett, G.; Shah, A.; Boulanger, C.M.; Willeit, J.; Chowienczyk, P.J.; Kiechl, S.; Mayr, M. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol., 2012, 60(4), 290-299.
[http://dx.doi.org/10.1016/j.jacc.2012.03.056] [PMID: 22813605]
[49]
Schulte, C.; Molz, S.; Appelbaum, S.; Karakas, M.; Ojeda, F.; Lau, D.M.; Hartmann, T.; Lackner, K.J.; Westermann, D.; Schnabel, R.B.; Blankenberg, S.; Zeller, T. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One, 2015, 10(12), e0145930.
[http://dx.doi.org/10.1371/journal.pone.0145930] [PMID: 26720041]
[50]
Zhang, Z.; Qiao, G.; Sun, Z.; Chen, X.; Liu, J.; Lu, W. Expression of miR-223-3p in a rat model of myocardial infarction and the effects of miR-223-3p on cardiomyocytes. All Life, 2020, 13(1), 407-415.
[http://dx.doi.org/10.1080/26895293.2020.1796827]
[51]
Rangrez, A.Y.; Kumari, M.; Frey, N. An emerging role of microRNA miR-223 in cardiovascular pathophysiology. microRNAs Cardiovasc. Res., 2013, 1, 23-33.
[52]
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J.; Mayr, M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res., 2010, 107(6), 810-817.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[53]
Carino, A.; De Rosa, S.; Sorrentino, S.; Polimeni, A.; Sabatino, J.; Caiazzo, G.; Torella, D.; Spaccarotella, C.; Mongiardo, A.; Strangio, A.; Filippis, C.; Indolfi, C. Modulation of circulating MicroRNAs levels during the switch from clopidogrel to ticagrelor. BioMed Res. Int., 2016, 2016, 3968206.
[http://dx.doi.org/10.1155/2016/3968206] [PMID: 27366745]
[54]
Zapilko, V.; Fish, R.J.; Garcia, A.; Reny, J-L.; Dunoyer-Geindre, S.; Lecompte, T.; Neerman-Arbez, M.; Fontana, P. MicroRNA-126 is a regulator of platelet-supported thrombin generation. Platelets, 2020, 31(6), 746-755.
[http://dx.doi.org/10.1080/09537104.2020.1775804] [PMID: 32529909]
[55]
Meng, Q.; Wang, W.; Yu, X.; Li, W.; Kong, L.; Qian, A.; Li, C.; Li, X. Upregulation of microRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J. Cell. Biochem., 2015, 116(8), 1613-1623.
[http://dx.doi.org/10.1002/jcb.25115] [PMID: 25652288]
[56]
Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.T.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2012, 97(12), E2271-E2276.
[http://dx.doi.org/10.1210/jc.2012-1996] [PMID: 23032062]
[57]
Li, J.; Sun, H.; Liu, T.; Kong, J. MicroRNA-423 promotes proliferation, migration and invasion and induces chemoresistance of endometrial cancer cells. Exp. Ther. Med., 2018, 16(5), 4213-4224.
[http://dx.doi.org/10.3892/etm.2018.6710] [PMID: 30344696]
[58]
Fan, K-L.; Zhang, H-F.; Shen, J.; Zhang, Q.; Li, X-L. Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J., 2013, 65(1), 12-16.
[http://dx.doi.org/10.1016/j.ihj.2012.12.022] [PMID: 23438607]
[59]
Yan, H.; Ma, F.; Zhang, Y.; Wang, C.; Qiu, D.; Zhou, K. miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis. Medicine (Baltimore), 2017, 96(22), e6825.
[60]
Luo, P.; He, T.; Jiang, R.; Li, G. MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. Mol. Med. Rep., 2015, 12(1), 1163-1168.
[http://dx.doi.org/10.3892/mmr.2015.3491] [PMID: 25776937]
[61]
Jäntti, T.; Segersvärd, H.; Tolppanen, H.; Tarvasmäki, T.; Lassus, J.; Devaux, Y.; Vausort, M.; Pulkki, K.; Sionis, A.; Bayes-Genis, A.; Tikkanen, I.; Lakkisto, P.; Harjola, V.P. Circulating levels of microRNA 423-5p are associated with 90 day mortality in cardiogenic shock. ESC Heart Fail., 2019, 6(1), 98-102.
[http://dx.doi.org/10.1002/ehf2.12377] [PMID: 30472788]
[62]
Liu, K.; Wang, L.; Sun, E. Prognostic value of miR-221 in human malignancy: Evidence from 3041 subjects. BMC Cancer, 2019, 19(1), 867.
[http://dx.doi.org/10.1186/s12885-019-6079-1] [PMID: 31470827]
[63]
Plé, H.; Landry, P.; Benham, A.; Coarfa, C.; Gunaratne, P.H.; Provost, P. The repertoire and features of human platelet microRNAs. PLoS One, 2012, 7(12), e50746.
[http://dx.doi.org/10.1371/journal.pone.0050746] [PMID: 23226537]
[64]
Peng, L.; Liu, J.; Qin, L.; Liu, J.; Xi, S.; Lu, C.; Yin, T. Interaction between platelet-derived microRNAs and CYP2C19*2 genotype on clopidogrel antiplatelet responsiveness in patients with ACS. Thromb. Res., 2017, 157, 97-102.
[http://dx.doi.org/10.1016/j.thromres.2017.07.011] [PMID: 28734158]
[65]
Tham, Y.K.; Bernardo, B.C.; Ooi, J.Y.Y.; Weeks, K.L.; McMullen, J.R. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch. Toxicol., 2015, 89(9), 1401-1438.
[http://dx.doi.org/10.1007/s00204-015-1477-x] [PMID: 25708889]
[66]
Wang, C.; Wang, S.; Zhao, P.; Wang, X.; Wang, J.; Wang, Y.; Song, L.; Zou, Y.; Hui, R. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J. Cell. Biochem., 2012, 113(6), 2040-2046.
[http://dx.doi.org/10.1002/jcb.24075] [PMID: 22275134]
[67]
Kuosmanen, S.M.; Hartikainen, J.; Hippeläinen, M.; Kokki, H.; Levonen, A-L.; Tavi, P. MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS One, 2015, 10(3), e0119646.
[http://dx.doi.org/10.1371/journal.pone.0119646] [PMID: 25763857]
[68]
Barwari, T.; Eminaga, S.; Mayr, U.; Lu, R.; Armstrong, P.C.; Chan, M.V.; Sahraei, M.; Fernández-Fuertes, M.; Moreau, T.; Barallobre-Barreiro, J.; Lynch, M.; Yin, X.; Schulte, C.; Baig, F.; Pechlaner, R.; Langley, S.R.; Zampetaki, A.; Santer, P.; Weger, M.; Plasenzotti, R.; Schosserer, M.; Grillari, J.; Kiechl, S.; Willeit, J.; Shah, A.M.; Ghevaert, C.; Warner, T.D.; Fernández-Hernando, C.; Suárez, Y.; Mayr, M. Inhibition of profibrotic microRNA-21 affects platelets and their releasate. JCI Insight, 2018, 3(21), 123335.
[http://dx.doi.org/10.1172/jci.insight.123335] [PMID: 30385722]
[69]
Chen, C-H.; Hsu, S-Y.; Chiu, C-C.; Leu, S. MicroRNA-21 mediates the protective effect of cardiomyocyte-derived conditioned medium on ameliorating myocardial infarction in rats. Cells, 2019, 8(8), 935.
[http://dx.doi.org/10.3390/cells8080935] [PMID: 31430983]
[70]
Cheng, Y.; Zhang, C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res., 2010, 3(3), 251-255.
[http://dx.doi.org/10.1007/s12265-010-9169-7] [PMID: 20560046]
[71]
Bonci, D. MicroRNA-21 as therapeutic target in cancer and cardiovascular disease. Recent Patents Cardiovasc. Drug Discov. (Discont.), 2010, 5(3), 156-161.
[http://dx.doi.org/10.2174/157489010793351962] [PMID: 20649511]
[72]
Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Xu, H.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; Chen, Q.; Gao, Y.; Wang, Y.; Li, X.; Zhao, Y. Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell. Physiol. Biochem., 2017, 42(6), 2207-2219.
[http://dx.doi.org/10.1159/000479995] [PMID: 28817807]
[73]
Huang, C-K.; Bär, C.; Thum, T. miR-21, mediator, and potential therapeutic target in the cardiorenal syndrome. Front. Pharmacol., 2020, 11, 726.
[http://dx.doi.org/10.3389/fphar.2020.00726] [PMID: 32499708]
[74]
Li, F.; Xu, Y.; Deng, S.; Li, Z.; Zou, D.; Yi, S.; Sui, W.; Hao, M.; Qiu, L. MicroRNA-15a/16-1 cluster located at chromosome 13q14 is down-regulated but displays different expression pattern and prognostic significance in multiple myeloma. Oncotarget, 2015, 6(35), 38270-38282.
[http://dx.doi.org/10.18632/oncotarget.5681] [PMID: 26516702]
[75]
Osman, A.; Fälker, K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets, 2011, 22(6), 433-441.
[http://dx.doi.org/10.3109/09537104.2011.560305] [PMID: 21438667]
[76]
Rink, C.; Khanna, S. MicroRNA in ischemic stroke etiology and pathology. Physiol. Genomics, 2011, 43(10), 521-528.
[http://dx.doi.org/10.1152/physiolgenomics.00158.2010] [PMID: 20841499]
[77]
Li, G.; Morris-Blanco, K.C.; Lopez, M.S.; Yang, T.; Zhao, H.; Vemuganti, R.; Luo, Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog. Neurobiol., 2018, 163-164, 59-78.
[http://dx.doi.org/10.1016/j.pneurobio.2017.08.002] [PMID: 28842356]
[78]
Gimbrone, M.A.Jr.; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[79]
Lu, W.J.; Zeng, L.L.; Wang, Y.; Zhang, Y.; Liang, H.B.; Tu, X.Q.; He, J.R.; Yang, G.Y. Blood microRNA-15a correlates with IL-6, IGF-1 and acute cerebral ischemia. Curr. Neurovasc. Res., 2018, 15(1), 63-71.
[http://dx.doi.org/10.2174/1567202615666180319143509] [PMID: 29557747]
[80]
Yang, X.; Tang, X.; Sun, P.; Shi, Y.; Liu, K.; Hassan, S.H.; Stetler, R.A.; Chen, J.; Yin, K.J. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke, 2017, 48(7), 1941-1947.
[http://dx.doi.org/10.1161/STROKEAHA.117.017284] [PMID: 28546328]
[81]
Nishi, M.; Eguchi-Ishimae, M.; Wu, Z.; Gao, W.; Iwabuki, H.; Kawakami, S.; Tauchi, H.; Inukai, T.; Sugita, K.; Hamasaki, Y.; Ishii, E.; Eguchi, M. Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia, 2013, 27(2), 389-397.
[http://dx.doi.org/10.1038/leu.2012.242] [PMID: 22918121]
[82]
Yan, H.; Fang, M.; Liu, X-Y. Role of microRNAs in stroke and poststroke depression. Sci. World J., 2013, 2013, 459692.
[http://dx.doi.org/10.1155/2013/459692] [PMID: 24363618]
[83]
Ultimo, S.; Zauli, G.; Martelli, A.M.; Vitale, M.; McCubrey, J.A.; Capitani, S.; Neri, L.M. Cardiovascular disease-related miRNAs expression: Potential role as biomarkers and effects of training exercise. Oncotarget, 2018, 9(24), 17238-17254.
[http://dx.doi.org/10.18632/oncotarget.24428] [PMID: 29682219]
[84]
Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol., 2013, 13, 178.
[http://dx.doi.org/10.1186/1471-2377-13-178] [PMID: 24237608]
[85]
Galea, I. The blood-brain barrier in systemic infection and inflammation. Cell. Mol. Immunol., 2021, 18(11), 2489-2501.
[http://dx.doi.org/10.1038/s41423-021-00757-x] [PMID: 34594000]
[86]
Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 gene: A typical multifunctional microRNA. Biochim. Biophys. Acta (BBA), 2009, 1792(6), 497-505.
[http://dx.doi.org/10.1016/j.bbadis.2009.02.013]
[87]
Jiang, T.; Zhou, S.; Li, X.; Song, J.; An, T.; Huang, X.; Ping, X.; Wang, L. MicroRNA-155 induces protection against cerebral ischemia/reperfusion injury through regulation of the Notch pathway in vivo. Exp. Ther. Med., 2019, 18(1), 605-613.
[http://dx.doi.org/10.3892/etm.2019.7590] [PMID: 31258696]
[88]
Mann, M.; Mehta, A.; Zhao, J.L.; Lee, K.; Marinov, G.K.; Garcia-Flores, Y.; Lu, L.F.; Rudensky, A.Y.; Baltimore, D. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat. Commun., 2017, 8(1), 851.
[http://dx.doi.org/10.1038/s41467-017-00972-z] [PMID: 29021573]
[89]
Zhang, L.; Liu, C.; Huang, C.; Xu, X.; Teng, J. miR-155 knockdown protects against cerebral ischemia and reperfusion injury by targeting MafB. BioMed Res. Int., 2020, 2020, 6458204.
[http://dx.doi.org/10.1155/2020/6458204] [PMID: 32090104]
[90]
Roitbak, T. Silencing a multifunctional microRNA is beneficial for stroke recovery. Front. Mol. Neurosci., 2018, 11, 58.
[http://dx.doi.org/10.3389/fnmol.2018.00058] [PMID: 29527155]
[91]
Sun, Y.; Liu, R.; Xia, X.; Xing, L.; Yang, C.; Jiang, J. Large-scale profiling of lncRNAs in human non-nucleated cells: Implications in cell function and disease. SSRN Electron. J., 2018. Available at SSRN 3295647
[http://dx.doi.org/10.2139/ssrn.3295649]
[92]
Xu, G.; Zhang, W.; Wang, Z.; Chen, M.; Shi, B. Matrine regulates H2O2-induced oxidative stress through long non- coding RNA HOTAIR/miR-106b-5p axis via AKT and STAT3 pathways. Biosci. Rep., 2020, 40(5), BSR20192560.
[http://dx.doi.org/10.1042/BSR20192560] [PMID: 32395744]
[93]
Sun, C.; Huang, L.; Li, Z.; Leng, K.; Xu, Y.; Jiang, X.; Cui, Y. Long non-coding RNA MIAT in development and disease: A new player in an old game. J. Biomed. Sci., 2018, 25(1), 23.
[http://dx.doi.org/10.1186/s12929-018-0427-3] [PMID: 29534728]
[94]
Wang, X-M.; Li, X-M.; Song, N.; Zhai, H.; Gao, X-M.; Yang, Y-N. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed. Pharmacother., 2019, 118, 109208.
[http://dx.doi.org/10.1016/j.biopha.2019.109208] [PMID: 31302423]
[95]
Collins, L.; Binder, P.; Chen, H.; Wang, X. Regulation of long non-coding RNAs and MicroRNAs in heart disease: Insight into mechanisms and therapeutic approaches. Front. Physiol., 2020, 11, 798.
[http://dx.doi.org/10.3389/fphys.2020.00798] [PMID: 32754048]
[96]
Chen, C.; Tang, Y.; Sun, H.; Lin, X.; Jiang, B. The roles of long noncoding RNAs in myocardial pathophysiology. Biosci. Rep., 2019, 39(11), BSR20190966.
[http://dx.doi.org/10.1042/BSR20190966] [PMID: 31694052]
[97]
Zhang, X.; Hamblin, M.H.; Yin, K-J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol., 2017, 14(12), 1705-1714.
[http://dx.doi.org/10.1080/15476286.2017.1358347] [PMID: 28837398]
[98]
Hu, H.; Wu, J.; Li, D.; Zhou, J.; Yu, H.; Ma, L. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis. Biomed. Pharmacother., 2018, 106, 738-746.
[http://dx.doi.org/10.1016/j.biopha.2018.06.122] [PMID: 29990866]
[99]
Sun, R.; Zhang, L. Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomed. Pharmacother., 2019, 111, 1036-1045.
[http://dx.doi.org/10.1016/j.biopha.2018.12.122] [PMID: 30841417]
[100]
Hu, H.; Wu, J.; Yu, X.; Zhou, J.; Yu, H.; Ma, L. Long non- coding RNA MALAT1 enhances the apoptosis of cardiomyocytes through autophagy inhibition by regulating TSC2-mTOR signaling. Biol. Res., 2019, 52(1), 58.
[http://dx.doi.org/10.1186/s40659-019-0265-0] [PMID: 31783925]
[101]
Askarian-Amiri, M.E.; Crawford, J.; French, J.D.; Smart, C.E.; Smith, M.A.; Clark, M.B.; Ru, K.; Mercer, T.R.; Thompson, E.R.; Lakhani, S.R.; Vargas, A.C.; Campbell, I.G.; Brown, M.A.; Dinger, M.E.; Mattick, J.S. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA, 2011, 17(5), 878-891.
[http://dx.doi.org/10.1261/rna.2528811] [PMID: 21460236]
[102]
Kolenda, T.; Guglas, K.; Kopczyńska, M.; Teresiak, A.; Bliźniak, R.; Mackiewicz, A.; Lamperska, K.; Mackiewicz, J. Oncogenic role of ZFAS1 lncRNA in head and neck squamous cell carcinomas. Cells, 2019, 8(4), 366.
[http://dx.doi.org/10.3390/cells8040366] [PMID: 31010087]
[103]
Zhang, Y.; Jiao, L.; Sun, L.; Li, Y.; Gao, Y.; Xu, C.; Shao, Y.; Li, M.; Li, C.; Lu, Y.; Pan, Z.; Xuan, L.; Zhang, Y.; Li, Q.; Yang, R.; Zhuang, Y.; Zhang, Y.; Yang, B. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca2+ overload and contractile dysfunction in a mouse model of myocardial infarction. Circ. Res., 2018, 122(10), 1354-1368.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312117] [PMID: 29475982]
[104]
Kong, Y.; Hsieh, C-H.; Alonso, L.C. ANRIL: A lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front. Endocrinol. (Lausanne), 2018, 9(405), 405.
[http://dx.doi.org/10.3389/fendo.2018.00405] [PMID: 30087655]
[105]
Papait, R.; Kunderfranco, P.; Stirparo, G.G.; Latronico, M.V.G.; Condorelli, G. Long noncoding RNA: A new player of heart failure? J. Cardiovasc. Transl. Res., 2013, 6(6), 876-883.
[http://dx.doi.org/10.1007/s12265-013-9488-6] [PMID: 23835777]
[106]
Holdt, L.M.; Beutner, F.; Scholz, M.; Gielen, S.; Gäbel, G.; Bergert, H.; Schuler, G.; Thiery, J.; Teupser, D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol., 2010, 30(3), 620-627.
[http://dx.doi.org/10.1161/ATVBAHA.109.196832] [PMID: 20056914]
[107]
Hannou, S.A.; Wouters, K.; Paumelle, R.; Staels, B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: What have we learned from GWASs? Trends Endocrinol. Metab., 2015, 26(4), 176-184.
[http://dx.doi.org/10.1016/j.tem.2015.01.008] [PMID: 25744911]
[108]
Dai, W.; Lee, D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. J. Cell. Biochem., 2019, 120(10), 18446-18456.
[http://dx.doi.org/10.1002/jcb.29162] [PMID: 31211466]
[109]
Zhou, X.; Han, X.; Wittfeldt, A.; Sun, J.; Liu, C.; Wang, X.; Gan, L.M.; Cao, H.; Liang, Z. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol., 2016, 13(1), 98-108.
[http://dx.doi.org/10.1080/15476286.2015.1122164] [PMID: 26618242]
[110]
Murray, R.; Bryant, J.; Titcombe, P.; Barton, S.J.; Inskip, H.; Harvey, N.C.; Cooper, C.; Lillycrop, K.; Hanson, M.; Godfrey, K.M. DNA methylation at birth within the promoter of ANRIL predicts markers of cardiovascular risk at 9 years. Clin. Epigenetics, 2016, 8(1), 90.
[http://dx.doi.org/10.1186/s13148-016-0259-5] [PMID: 27594927]
[111]
Bai, Y.; Nie, S.; Jiang, G.; Zhou, Y.; Zhou, M.; Zhao, Y.; Li, S.; Wang, F.; Lv, Q.; Huang, Y.; Yang, Q.; Li, Q.; Li, Y.; Xia, Y.; Liu, Y.; Liu, J.; Qian, J.; Li, B.; Wu, G.; Wu, Y.; Wang, B.; Cheng, X.; Yang, Y.; Ke, T.; Li, H.; Ren, X.; Ma, X.; Liao, Y.; Xu, C.; Tu, X.; Wang, Q.K. Regulation of CARD8 expression by ANRIL and association of CARD8 single nucleotide polymorphism rs2043211 (p.C10X) with ischemic stroke. Stroke, 2014, 45(2), 383-388.
[http://dx.doi.org/10.1161/STROKEAHA.113.003393] [PMID: 24385277]
[112]
Cheng, M.; An, S.; Li, J. CDKN2B-AS may indirectly regulate coronary artery disease-associated genes via targeting miR-92a. Gene, 2017, 629, 101-107.
[http://dx.doi.org/10.1016/j.gene.2017.07.070] [PMID: 28760552]
[113]
Rinn, J.L.; Kertesz, M.; Wang, J.K.; Squazzo, S.L.; Xu, X.; Brugmann, S.A.; Goodnough, L.H.; Helms, J.A.; Farnham, P.J.; Segal, E.; Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129(7), 1311-1323.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[114]
He, S.; Liu, S.; Zhu, H. The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evol. Biol., 2011, 11(1), 102.
[http://dx.doi.org/10.1186/1471-2148-11-102] [PMID: 21496275]
[115]
Davidovich, C.; Zheng, L.; Goodrich, K.J.; Cech, T.R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol., 2013, 20(11), 1250-1257.
[http://dx.doi.org/10.1038/nsmb.2679] [PMID: 24077223]
[116]
Avazpour, N.; Hajjari, M.; Yazdankhah, S.; Sahni, A.; Foroughmand, A.M. Circulating HOTAIR RNA is potentially up-regulated in coronary artery disease. Genom. Inform., 2018, 16(4), e25.
[117]
Jiang, Y.; Mo, H.; Luo, J.; Zhao, S.; Liang, S.; Zhang, M.; Yuan, J. HOTAIR is a potential novel biomarker in patients with congenital heart diseases. BioMed Res. Int., 2018, 2018, 2850657.
[http://dx.doi.org/10.1155/2018/2850657] [PMID: 29707567]
[118]
Wu, H.; Liu, J.; Li, W.; Liu, G.; Li, Z. LncRNA-HOTAIR promotes TNF-α production in cardiomyocytes of LPS-induced sepsis mice by activating NF-κB pathway. Biochem. Biophys. Res. Commun., 2016, 471(1), 240-246.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.117] [PMID: 26806307]
[119]
Akbari, M.; Yassaee, F.; Aminbeidokhti, M.; Abedin-Do, A.; Mirfakhraie, R. LncRNA SRA1 may play a role in the uterine leiomyoma tumor growth regarding the MED12 mutation pattern. Int. J. Womens Health, 2019, 11, 495-500.
[http://dx.doi.org/10.2147/IJWH.S211632] [PMID: 31507331]
[120]
Sheng, L.; Ye, L.; Zhang, D.; Cawthorn, W.P.; Xu, B. New insights into the long non-coding RNA SRA: Physiological functions and mechanisms of action. Front. Med. (Lausanne), 2018, 5(244), 244.
[http://dx.doi.org/10.3389/fmed.2018.00244] [PMID: 30238005]
[121]
Lanz, R.B.; Razani, B.; Goldberg, A.D.; O’Malley, B.W. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16081-16086.
[http://dx.doi.org/10.1073/pnas.192571399] [PMID: 12444263]
[122]
Friedrichs, F.; Zugck, C.; Rauch, G-J.; Ivandic, B.; Weichenhan, D.; Müller-Bardorff, M.; Meder, B.; El Mokhtari, N.E.; Regitz-Zagrosek, V.; Hetzer, R.; Schäfer, A.; Schreiber, S.; Chen, J.; Neuhaus, I.; Ji, R.; Siemers, N.O.; Frey, N.; Rottbauer, W.; Katus, H.A.; Stoll, M. HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res., 2009, 19(3), 395-403.
[http://dx.doi.org/10.1101/gr.076653.108] [PMID: 19064678]
[123]
Biondi, B. Mechanisms in endocrinology: Heart failure and thyroid dysfunction. Eur. J. Endocrinol., 2012, 167(5), 609-618.
[http://dx.doi.org/10.1530/EJE-12-0627] [PMID: 22956554]
[124]
Xu, B.; Koenig, R.J. An RNA-binding domain in the thyroid hormone receptor enhances transcriptional activation. J. Biol. Chem., 2004, 279(32), 33051-33056.
[http://dx.doi.org/10.1074/jbc.M404930200] [PMID: 15180993]
[125]
Lanz, R.B.; Chua, S.S.; Barron, N.; Söder, B.M.; DeMayo, F.; O’Malley, B.W. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol. Cell. Biol., 2003, 23(20), 7163-7176.
[http://dx.doi.org/10.1128/MCB.23.20.7163-7176.2003] [PMID: 14517287]
[126]
Zhang, S.; Gao, S.; Wang, Y.; Jin, P.; Lu, F. lncRNA SRA1 Promotes the activation of cardiac myofibroblasts through negative regulation of miR-148b. DNA Cell Biol., 2019, 38(4), 385-394.
[http://dx.doi.org/10.1089/dna.2018.4358] [PMID: 30694702]
[127]
Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Kobayashi, N.; Todo, Y.; Watari, H. Long non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors. Front. Genet., 2018, 9(471), 471.
[http://dx.doi.org/10.3389/fgene.2018.00471] [PMID: 30374364]
[128]
Li, P.; Duan, S.; Fu, A. Long noncoding RNA NEAT1 correlates with higher disease risk, worse disease condition, decreased miR-124 and miR-125a and predicts poor recurrence-free survival of acute ischemic stroke. J. Clin. Lab. Anal., 2020, 34(2), e23056.
[http://dx.doi.org/10.1002/jcla.23056] [PMID: 31721299]
[129]
Wang, L.; Xia, J-W.; Ke, Z-P.; Zhang, B-H. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J. Cell. Physiol., 2019, 234(4), 5319-5326.
[http://dx.doi.org/10.1002/jcp.27340] [PMID: 30259979]
[130]
Du, X-J.; Wei, J.; Tian, D.; Yan, C.; Hu, P.; Wu, X.; Yang, W.; Hu, X. NEAT1 promotes myocardial ischemia-reperfusion injury via activating the MAPK signaling pathway. J. Cell. Physiol., 2019, 234(10), 18773-18780.
[http://dx.doi.org/10.1002/jcp.28516] [PMID: 30950059]
[131]
Zhang, P.; Cao, L.; Zhou, R.; Yang, X.; Wu, M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat. Commun., 2019, 10(1), 1495.
[http://dx.doi.org/10.1038/s41467-019-09482-6] [PMID: 30940803]
[132]
Wang, P.; Zhang, N.; Liang, J.; Li, J.; Han, S.; Li, J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J. Neurosci. Res., 2015, 93(11), 1756-1768.
[http://dx.doi.org/10.1002/jnr.23637] [PMID: 26301516]
[133]
Guo, D.; Ma, J.; Yan, L.; Li, T.; Li, Z.; Han, X.; Shui, S. Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell. Physiol. Biochem., 2017, 43(1), 182-194.
[http://dx.doi.org/10.1159/000480337] [PMID: 28854438]
[134]
Zhang, T.; Wang, H.; Li, Q.; Fu, J.; Huang, J.; Zhao, Y. MALAT1 activates the P53 signaling pathway by regulating MDM2 to promote ischemic stroke. Cell. Physiol. Biochem., 2018, 50(6), 2216-2228.
[http://dx.doi.org/10.1159/000495083] [PMID: 30419554]
[135]
Wang, H.; Zheng, X.; Jin, J.; Zheng, L.; Guan, T.; Huo, Y.; Xie, S.; Wu, Y.; Chen, W. LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J. Biomed. Sci., 2020, 27(1), 40.
[http://dx.doi.org/10.1186/s12929-020-00635-0] [PMID: 32138732]
[136]
Salemi, M.; Marchese, G.; Cordella, A.; Cannarella, R.; Barone, C.; Salluzzo, M.G.; Calogero, A.E.; Romano, C. Long non-coding RNA GAS5 expression in patients with Down syndrome. Int. J. Med. Sci., 2020, 17(10), 1315-1319.
[http://dx.doi.org/10.7150/ijms.45386] [PMID: 32624686]
[137]
Zhou, Y.; Chen, B. GAS5 mediated regulation of cell signaling (Review). Mol. Med. Rep., 2020, 22(4), 3049-3056.
[PMID: 32945519]
[138]
Wu, Y.; Gao, Z.; Zhang, J. Transcription factor E2F1 aggravates neurological injury in ischemic stroke via microRNA-122-targeted sprouty2. Neuropsychiatr. Dis. Treat., 2020, 16, 2633-2647.
[http://dx.doi.org/10.2147/NDT.S271320] [PMID: 33177827]
[139]
MacManus, J.P.; Jian, M.; Preston, E.; Rasquinha, I.; Webster, J.; Zurakowski, B. Absence of the transcription factor E2F1 attenuates brain injury and improves behavior after focal ischemia in mice. J. Cereb. Blood Flow Metab., 2003, 23(9), 1020-1028.
[http://dx.doi.org/10.1097/01.WCB.0000084249.20114.FA] [PMID: 12973018]
[140]
Buller, B.; Liu, X.; Wang, X.; Zhang, R.L.; Zhang, L.; Hozeska-Solgot, A.; Chopp, M.; Zhang, Z.G. MicroRNA-21 protects neurons from ischemic death. FEBS J., 2010, 277(20), 4299-4307.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07818.x] [PMID: 20840605]
[141]
Yang, L.; Wang, B.; Zhou, Q.; Wang, Y.; Liu, X.; Liu, Z.; Zhan, Z. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis., 2018, 9(7), 769.
[http://dx.doi.org/10.1038/s41419-018-0805-5] [PMID: 29991775]
[142]
Yu, X.; Li, Z. Long non-coding RNA growth arrest-specific transcript 5 in tumor biology. Oncol. Lett., 2015, 10(4), 1953-1958.
[http://dx.doi.org/10.3892/ol.2015.3553] [PMID: 26622780]
[143]
Maass, P.G.; Glažar, P.; Memczak, S.; Dittmar, G.; Hollfinger, I.; Schreyer, L.; Sauer, A.V.; Toka, O.; Aiuti, A.; Luft, F.C.; Rajewsky, N. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med. (Berl.), 2017, 95(11), 1179-1189.
[http://dx.doi.org/10.1007/s00109-017-1582-9] [PMID: 28842720]
[144]
Guo, Z.; Cao, Q.; Zhao, Z.; Song, C. Biogenesis, features, functions, and disease relationships of a specific circular RNA: CDR1as. Aging Dis., 2020, 11(4), 1009-1020.
[http://dx.doi.org/10.14336/AD.2019.0920] [PMID: 32765960]
[145]
Barrett, S.P.; Parker, K.R.; Horn, C.; Mata, M.; Salzman, J. ciRS-7 exonic sequence is embedded in a long non-coding RNA locus. PLoS Genet., 2017, 13(12), e1007114.
[http://dx.doi.org/10.1371/journal.pgen.1007114] [PMID: 29236709]
[146]
Piwecka, M.; Glažar, P.; Hernandez-Miranda, L.R.; Memczak, S.; Wolf, S.A.; Rybak-Wolf, A.; Filipchyk, A.; Klironomos, F.; Cerda Jara, C.A.; Fenske, P.; Trimbuch, T.; Zywitza, V.; Plass, M.; Schreyer, L.; Ayoub, S.; Kocks, C.; Kühn, R.; Rosenmund, C.; Birchmeier, C.; Rajewsky, N. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357), eaam8526.
[http://dx.doi.org/10.1126/science.aam8526] [PMID: 28798046]
[147]
Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol., 2019, 234(5), 5588-5600.
[http://dx.doi.org/10.1002/jcp.27384] [PMID: 30341894]
[148]
Zhang, Y.; Sun, L.; Xuan, L.; Pan, Z.; Li, K.; Liu, S.; Huang, Y.; Zhao, X.; Huang, L.; Wang, Z.; Hou, Y.; Li, J.; Tian, Y.; Yu, J.; Han, H.; Liu, Y.; Gao, F.; Zhang, Y.; Wang, S.; Du, Z.; Lu, Y.; Yang, B. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci. Rep., 2016, 6(1), 22384.
[http://dx.doi.org/10.1038/srep22384] [PMID: 26928231]
[149]
Geng, H-H.; Li, R.; Su, Y-M.; Xiao, J.; Pan, M.; Cai, X-X.; Ji, X.P. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One, 2016, 11(3), e0151753.
[http://dx.doi.org/10.1371/journal.pone.0151753] [PMID: 26998750]
[150]
Chen, C.; Shen, H.; Huang, Q.; Li, Q. The circular RNA CDR1as regulates the proliferation and apoptosis of human cardiomyocytes through the miR-135a/HMOX1 and miR-135b/HMOX1 axes. Genet. Test. Mol. Biomarkers, 2020, 24(9), 537-548.
[http://dx.doi.org/10.1089/gtmb.2020.0034] [PMID: 32762552]
[151]
Zhang, L.; Li, Y.; Liu, W.; Li, H.; Zhu, Z. Analysis of the complex interaction of CDR1as-miRNA-protein and detection of its novel role in melanoma. Oncol. Lett., 2018, 16(1), 1219-1225.
[http://dx.doi.org/10.3892/ol.2018.8700] [PMID: 29963195]
[152]
Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet., 2010, 6(12), e1001233.
[http://dx.doi.org/10.1371/journal.pgen.1001233] [PMID: 21151960]
[153]
Zhang, S.; Wang, W.; Wu, X.; Zhou, X. Regulatory roles of circular RNAs in coronary artery disease. Mol. Ther. Nucleic Acids, 2020, 21, 172-179.
[http://dx.doi.org/10.1016/j.omtn.2020.05.024] [PMID: 32585625]
[154]
Roberts, D.E.; Matsuda, T.; Bose, R. Molecular and functional characterization of the human platelet Na+ /Ca2+ exchangers. Br. J. Pharmacol., 2012, 165(4), 922-936.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01600.x] [PMID: 21790537]
[155]
Li, M.; Ding, W.; Tariq, M.A.; Chang, W.; Zhang, X.; Xu, W.; Hou, L.; Wang, Y.; Wang, J. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics, 2018, 8(21), 5855-5869.
[http://dx.doi.org/10.7150/thno.27285] [PMID: 30613267]
[156]
Lim, T.B.; Aliwarga, E.; Luu, T.D.A.; Li, Y.P.; Ng, S.L.; Annadoray, L.; Sian, S.; Ackers-Johnson, M.A.; Foo, R.S. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc. Res., 2019, 115(14), 1998-2007.
[http://dx.doi.org/10.1093/cvr/cvz130] [PMID: 31114845]
[157]
Mortuza, G.B.; Hermida, D.; Pedersen, A-K.; Segura-Bayona, S.; López-Méndez, B.; Redondo, P.; Rüther, P.; Pozdnyakova, I.; Garrote, A.M.; Muñoz, I.G.; Villamor-Payà, M.; Jauset, C.; Olsen, J.V.; Stracker, T.H.; Montoya, G. Molecular basis of tousled-like kinase 2 activation. Nat. Commun., 2018, 9(1), 2535.
[http://dx.doi.org/10.1038/s41467-018-04941-y] [PMID: 29955062]
[158]
Mehta, S.L.; Dempsey, R.J.; Vemuganti, R. Role of circular RNAs in brain development and CNS diseases. Prog. Neurobiol., 2020, 186, 101746.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101746] [PMID: 31931031]
[159]
Wu, F.; Han, B.; Wu, S.; Yang, L.; Leng, S.; Li, M.; Liao, J.; Wang, G.; Ye, Q.; Zhang, Y.; Chen, H.; Chen, X.; Zhong, M.; Xu, Y.; Liu, Q.; Zhang, J.H.; Yao, H. Circular RNA aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J. Neurosci., 2019, 39(37), 7369-7393.
[http://dx.doi.org/10.1523/JNEUROSCI.0299-19.2019] [PMID: 31311824]
[160]
Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; Liang, L.; Gu, J.; He, X.; Huang, S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7(1), 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[161]
Wang, Y.; Huang, J.; Ma, Y.; Tang, G.; Liu, Y.; Chen, X.; Zhang, Z.; Zeng, L.; Wang, Y.; Ouyang, Y.B.; Yang, G.Y. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J. Cereb. Blood Flow Metab., 2015, 35(12), 1977-1984.
[http://dx.doi.org/10.1038/jcbfm.2015.156] [PMID: 26126866]
[162]
Bazan, H.A.; Hatfield, S.A.; Brug, A.; Brooks, A.J.; Lightell, D.J., Jr; Woods, T.C. Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ. Cardiovasc. Genet., 2017, 10(4), e001720.
[http://dx.doi.org/10.1161/CIRCGENETICS.117.001720] [PMID: 28779016]