Self-Assembled Tocopherol-Albumin Nanoparticles with Full Biocompatibility for Chemo-photothermal Therapy against Breast Cancer

Page: [49 - 63] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: The combination of photothermal therapy (PTT) and chemotherapy has proven to be a promising strategy for cancer treatment. Various nanomaterials have shown great potential in combination therapy, including gold, graphene oxide, iron oxide, and other nanoparticles. However, their undefinable toxicity in vivo greatly slowed down their development for clinical applications.

Objective: The present work aimed to develop a multifunctional nanoparticle for chemo-photothermal therapy composed of acknowledged biocompatible materials.

Methods: A novel biocompatible nanoparticle (HIT-NPs) was self-assembled through the intrinsic interaction between D-α-tocopherol Succinate (TOS), human serum albumin (HSA) and indocyanine green (ICG). Doxorubicin (DOX) was then loaded due to the ion pairing between DOX and TOS. The feasibility of combined chemo-photothermal therapy induced by DOX-loaded HIT-NPs was carefully evaluated.

Results: In vitro, HIT-NPs showed no cytotoxicity on human normal liver cells (HL-7702 cells) but obvious killing effects on murine breast cancer cells (4T1 cells). The combined chemo-photothermal therapeutic effect on 4T1 cells was successfully obtained. DOX-loaded HIT-NPs could effectively accumulate in 4T1 subcutaneous tumors after intravenous injection, and the tumor temperature rapidly increased under laser exposure, indicating the feasibility of PTT in vivo.

Conclusion: The self-assembled HIT-NPs could provide a promising platform for combined chemo- photothermal cancer therapy with full biocompatibility.

Keywords: Combination therapy, photothermal therapy, chemotherapy, biocompatibility, albumin nanoparticles, tocopherol.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[3]
Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 2011, 103(2), 317-324.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[4]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[5]
Rahmathulla, G.; Recinos, P.F.; Kamian, K.; Mohammadi, A.M.; Ahluwalia, M.S.; Barnett, G.H. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology, 2014, 87(2), 67-82.
[http://dx.doi.org/10.1159/000362817] [PMID: 24994550]
[6]
Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16), 9494-9530.
[http://dx.doi.org/10.1039/C4NR00708E] [PMID: 25030381]
[7]
Wang, Y.; Xiao, Y.; Tang, R. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Chemistry, 2014, 20(37), 11826-11834.
[http://dx.doi.org/10.1002/chem.201403480] [PMID: 25077695]
[8]
You, J.; Zhang, R.; Xiong, C.; Zhong, M.; Melancon, M.; Gupta, S.; Nick, A.M.; Sood, A.K.; Li, C. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res., 2012, 72(18), 4777-4786.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1003] [PMID: 22865457]
[9]
Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3), 2056-2067.
[http://dx.doi.org/10.1021/nn400334y] [PMID: 23413798]
[10]
Jang, B.; Moorthy, M.S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K.D.; Kwak, M.; Oh, J.; Jin, J.O. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Oncotarget, 2018, 9(16), 12649-12661.
[http://dx.doi.org/10.18632/oncotarget.23898] [PMID: 29560098]
[11]
Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 2017, 29 (1).
[http://dx.doi.org/10.1002/adma.201603276] [PMID: 27797119]
[12]
Liu, G.; Ma, J.; Li, Y.; Li, Q.; Tan, C.; Song, H.; Cai, S.; Chen, D.; Hou, Z.; Chen, Q.; Zhu, X. Core-interlayer-shell Fe3O4@mSiO2@lipid-PEG-methotrexate nanoparticle for multimodal imaging and multistage targeted chemo-photodynamic therapy. Int. J. Pharm., 2017, 521(1-2), 19-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.068] [PMID: 28163230]
[13]
An, F.F.; Zhang, X.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics, 2017, 7(15), 3667-3689.
[http://dx.doi.org/10.7150/thno.19365] [PMID: 29109768]
[14]
Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[http://dx.doi.org/10.2147/IJN.S3061] [PMID: 19516888]
[15]
Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater., 2015, 27(5), 903-910.
[http://dx.doi.org/10.1002/adma.201404308] [PMID: 25504416]
[16]
Sheng, Z.; Hu, D.; Zheng, M.; Zhao, P.; Liu, H.; Gao, D.; Gong, P.; Gao, G.; Zhang, P.; Ma, Y.; Cai, L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano, 2014, 8(12), 12310-12322.
[http://dx.doi.org/10.1021/nn5062386] [PMID: 25454579]
[17]
Sahu, A.; Lee, J.H.; Lee, H.G.; Jeong, Y.Y.; Tae, G. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy. J. Control. Release, 2016, 236, 90-99.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.031] [PMID: 27349352]
[18]
Hu, D.; Zhang, J.; Gao, G.; Sheng, Z.; Cui, H.; Cai, L. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics, 2016, 6(7), 1043-1052.
[http://dx.doi.org/10.7150/thno.14566] [PMID: 27217837]
[19]
Sheng, Z.; Hu, D.; Xue, M.; He, M.; Gong, P.; Cai, L. Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett., 2013, 5, 145-150.
[http://dx.doi.org/10.1007/BF03353743]
[20]
Wang, H.; Li, X.; Tse, B.W.; Yang, H.; Thorling, C.A.; Liu, Y.; Touraud, M.; Chouane, J.B.; Liu, X.; Roberts, M.S.; Liang, X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics, 2018, 8(5), 1227-1242.
[http://dx.doi.org/10.7150/thno.22872] [PMID: 29507616]
[21]
Duhem, N.; Danhier, F.; Préat, V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J. Control. Release, 2014, 182, 33-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.009] [PMID: 24631865]
[22]
Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer, 2008, 123(4), 739-752.
[http://dx.doi.org/10.1002/ijc.23689] [PMID: 18512238]
[23]
Zhang, X.; Peng, X.; Yu, W.; Hou, S.; Zhao, Y.; Zhang, Z.; Huang, X.; Wu, K. Alpha-tocopheryl succinate enhances doxorubicin-induced apoptosis in human gastric cancer cells via promotion of doxorubicin influx and suppression of doxorubicin efflux. Cancer Lett., 2011, 307(2), 174-181.
[http://dx.doi.org/10.1016/j.canlet.2011.04.001] [PMID: 21536373]
[24]
Oliveira, M.S.; Mussi, S.V.; Gomes, D.A.; Yoshida, M.I.; Frezard, F.; Carregal, V.M.; Ferreira, L.A.M. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2016, 140, 246-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.019] [PMID: 26764108]
[25]
Li, X.; Chen, D.; Wang, G.; Lu, Y. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem., 2013, 70, 22-36.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.033] [PMID: 24140914]
[26]
Zhu, D.; Fan, F.; Huang, C.; Zhang, Z.; Qin, Y.; Lu, L.; Wang, H.; Jin, X.; Zhao, H.; Yang, H.; Zhang, C.; Yang, J.; Liu, Z.; Sun, H.; Leng, X.; Kong, D.; Zhang, L. Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy. Acta Biomater., 2018, 75, 386-397.
[http://dx.doi.org/10.1016/j.actbio.2018.05.033] [PMID: 29793073]
[27]
Shalviri, A.; Raval, G.; Prasad, P.; Chan, C.; Liu, Q.; Heerklotz, H.; Rauth, A.M.; Wu, X.Y. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm., 2012, 82(3), 587-597.
[http://dx.doi.org/10.1016/j.ejpb.2012.09.001] [PMID: 22995704]
[28]
Lian, H.; Wu, J.; Hu, Y.; Guo, H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int. J. Nanomedicine, 2017, 12, 7777-7787.
[http://dx.doi.org/10.2147/IJN.S144634] [PMID: 29123392]
[29]
Li, M.; Tang, Z.; Lv, S.; Song, W.; Hong, H.; Jing, X.; Zhang, Y.; Chen, X. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials, 2014, 35(12), 3851-3864.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.018] [PMID: 24495487]
[30]
Pu, Y.; Chang, S.; Yuan, H.; Wang, G.; He, B.; Gu, Z. The anti-tumor efficiency of poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores. Biomaterials, 2013, 34(14), 3658-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.082] [PMID: 23433775]
[31]
Xue, X.; Fang, T.; Yin, L.; Jiang, J.; He, Y.; Dai, Y.; Wang, D. Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv., 2018, 25(1), 1826-1839.
[http://dx.doi.org/10.1080/10717544.2018.1482975] [PMID: 30458644]
[32]
Dong, Y.H.; Guo, Y.H.; Gu, X.B. Anticancer mechanisms of vitamin E succinate. Chin. J. Cancer, 2009, 28(10), 1114-1118.
[http://dx.doi.org/10.5732/cjc.008.10182] [PMID: 19799824]
[33]
Reinhold, H.S.; Endrich, B. Tumour microcirculation as a target for hyperthermia. Int. J. Hyperthermia, 1986, 2(2), 111-137.
[http://dx.doi.org/10.3109/02656738609012389] [PMID: 3540146]
[34]
van der Zee, J. Heating the patient: A promising approach? Ann. Oncol., 2002, 13(8), 1173-1184.
[http://dx.doi.org/10.1093/annonc/mdf280] [PMID: 12181239]