Decitabine Enhances Acute Myeloid Leukemia Cell Apoptosis through SH3BGRL Upregulation

Page: [2274 - 2281] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) is downregulated in acute myeloid leukemia (AML). Clinically, DNA demethylating drug decitabine (DAC) combined with traditional chemotherapies reveals better efficacy on AML patients than the conventional chemotherapies alone. Our previous results revealed that human SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) plays a tumor suppressive role in AML but whether there is a connection between DAC and SH3BGRL expression remains elusive.

Methods: Here, we tentatively treated AML cell lines U937, MV4, and HL-60 with DAC and Western Blots, RT-PCR was used to detect the expression of SH3BGRL. Cell proliferation and apoptosis were determined using Annexin V/7- AAD staining. Real-time RT-PCR and Western blot were used to determine the expression of SH3BGRL mRNA and protein. Methylation-specific PCR was used to quantify the DNA methylation in AML cell lines.

Results: DAC had cytotoxicity in HL-60, MV4, and U937. In U937 cell lines, treatment with DAC showed the upregulation of cleaved caspase3, PARP, and SH3BGRL. Upon treatment, up-regulation of SH3BGRL mRNA and protein was dose-dependent and this activity was partially inhibited in endogenous SH3BGRL knockdown cell lines.

Conclusion: Thus, our results demonstrated a possibly cytotoxic role of DAC on AML cells by upregulation of SH3BGRL expression at epigenetic modulation level and the methylation status in the SH3BGRL promoter region could be a supplemental diagnostic marker to the precise administration of DAC to AML patients.

Keywords: Acute myeloid leukemia, SH3BGRL, apoptosis, decitabine, methylation, DAC.

Graphical Abstract

[1]
Naoe, T.; Kiyoi, H. Gene mutations of acute myeloid leukemia in the genome era. Int. J. Hematol., 2013, 97(2), 165-174.
[http://dx.doi.org/10.1007/s12185-013-1257-4] [PMID: 23359299]
[2]
Prada-Arismendy, J.; Arroyave, J.C.; Röthlisberger, S. Molecular biomarkers in acute myeloid leukemia. Blood Rev., 2017, 31(1), 63-76.
[http://dx.doi.org/10.1016/j.blre.2016.08.005] [PMID: 27639498]
[3]
Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; Gundem, G.; Van Loo, P.; Martincorena, I.; Ganly, P.; Mudie, L.; McLaren, S.; O’Meara, S.; Raine, K.; Jones, D.R.; Teague, J.W.; Butler, A.P.; Greaves, M.F.; Ganser, A.; Döhner, K.; Schlenk, R.F.; Döhner, H.; Campbell, P.J. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med., 2016, 374(23), 2209-2221.
[http://dx.doi.org/10.1056/NEJMoa1516192] [PMID: 27276561]
[4]
Levis, M. Midostaurin approved for FLT3-mutated AML. Blood, 2017, 129(26), 3403-3406.
[http://dx.doi.org/10.1182/blood-2017-05-782292] [PMID: 28546144]
[5]
DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; Donnellan, W.; Fathi, A.T.; Pigneux, A.; Erba, H.P.; Prince, G.T.; Stein, A.S.; Uy, G.L.; Foran, J.M.; Traer, E.; Stuart, R.K.; Arellano, M.L.; Slack, J.L.; Sekeres, M.A.; Willekens, C.; Choe, S.; Wang, H.; Zhang, V.; Yen, K.E.; Kapsalis, S.M.; Yang, H.; Dai, D.; Fan, B.; Goldwasser, M.; Liu, H.; Agresta, S.; Wu, B.; Attar, E.C.; Tallman, M.S.; Stone, R.M.; Kantarjian, H.M. Durable remissions with ivosidenib in idh1-mutated relapsed or refractory AML. N. Engl. J. Med., 2018, 378(25), 2386-2398.
[http://dx.doi.org/10.1056/NEJMoa1716984] [PMID: 29860938]
[6]
Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; Kantarjian, H.M.; Collins, R.; Patel, M.R.; Frankel, A.E.; Stein, A.; Sekeres, M.A.; Swords, R.T.; Medeiros, B.C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R.D.; Yen, K.E.; Agresta, S.; de Botton, S.; Tallman, M.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130(6), 722-731.
[http://dx.doi.org/10.1182/blood-2017-04-779405] [PMID: 28588020]
[7]
Granfeldt Østgård, L.S.; Medeiros, B.C.; Sengeløv, H.; Nørgaard, M.; Andersen, M.K.; Dufva, I.H.; Friis, L.S.; Kjeldsen, E.; Marcher, C.W.; Preiss, B.; Severinsen, M.; Nørgaard, J.M. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J. Clin. Oncol., 2015, 33(31), 3641-3649.
[http://dx.doi.org/10.1200/JCO.2014.60.0890] [PMID: 26304885]
[8]
Mrózek, K.; Eisfeld, A.K.; Kohlschmidt, J.; Carroll, A.J.; Walker, C.J.; Nicolet, D.; Blachly, J.S.; Bill, M.; Papaioannou, D.; Wang, E.S.; Uy, G.L.; Kolitz, J.E.; Powell, B.L.; Blum, W.; Stone, R.M.; Byrd, J.C.; Bloomfield, C.D. Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia, 2019, 33(7), 1620-1634.
[http://dx.doi.org/10.1038/s41375-019-0390-3] [PMID: 30737482]
[9]
Filì, C.; Candoni, A.; Zannier, M.E.; Olivieri, J.; Imbergamo, S.; Caizzi, M.; Nadali, G.; Di Bona, E.; Ermacora, A.; Gottardi, M.; Facchinelli, D.; Ciancia, R.; Lazzarotto, D.; Dubbini, M.V.; Festini, G.; Gherlinzoni, F.; Michieli, M.G.; Semenzato, G.; Fanin, R. Efficacy and toxicity of decitabine in patients with acute myeloid leukemia (AML): A multicenter real-world experience. Leuk. Res., 2019, 76, 33-38.
[http://dx.doi.org/10.1016/j.leukres.2018.11.015] [PMID: 30529681]
[10]
Liu, J.; Jia, J.S.; Gong, L.Z.; Lu, S.Y.; Zhu, H.H.; Huang, X.J.; Jiang, H. [Efficacy and safety of decitabine in combination with G-CSF, low-dose cytarabine and aclarubicin in MDS-EB and AML-MRC] Zhonghua Xue Ye Xue Za Zhi, 2018, 39(9), 734-738.
[PMID: 30369183]
[11]
Ye, X.N.; Zhou, X.P.; Wei, J.Y.; Xu, G.X.; Li, Y.; Mao, L.P.; Huang, J.; Ren, Y.L.; Mei, C.; Wang, J.H.; Lou, Y.J.; Ma, L.Y.; Yu, W.J.; Ye, L.; Xie, L.L.; Luo, Y.W.; Hu, C.; Niu, L.M.; Dou, M.H.; Jin, J.; Tong, H.Y. Epigenetic priming with decitabine followed by low-dose idarubicin/cytarabine has an increased anti-leukemic effect compared to traditional chemotherapy in high-risk myeloid neoplasms. Leuk. Lymphoma, 2016, 57(6), 1311-1318.
[http://dx.doi.org/10.3109/10428194.2015.1091931] [PMID: 26372888]
[12]
He, P.F.; Zhou, J.D.; Yao, D.M.; Ma, J.C.; Wen, X.M.; Zhang, Z.H.; Lian, X.Y.; Xu, Z.J.; Qian, J.; Lin, J. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget, 2017, 8(25), 41498-41507.
[http://dx.doi.org/10.18632/oncotarget.17241] [PMID: 28489568]
[13]
Blagitko-Dorfs, N.; Schlosser, P.; Greve, G.; Pfeifer, D.; Meier, R.; Baude, A.; Brocks, D.; Plass, C.; Lübbert, M. Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation. Leukemia, 2019, 33(4), 945-956.
[http://dx.doi.org/10.1038/s41375-018-0293-8] [PMID: 30470836]
[14]
Wang, H.; Liu, B.; Al-Aidaroos, A.Q.; Shi, H.; Li, L.; Guo, K.; Li, J.; Tan, B.C.; Loo, J.M.; Tang, J.P.; Thura, M.; Zeng, Q. Dual-faced SH3BGRL: oncogenic in mice, tumor suppressive in humans. Oncogene, 2016, 35(25), 3303-3313.
[http://dx.doi.org/10.1038/onc.2015.391] [PMID: 26455318]
[15]
Li, W.; Yan, Q.; Ding, X.; Shen, C.; Hu, M.; Zhu, Y.; Qin, D.; Lu, H.; Krueger, B.J.; Renne, R.; Gao, S.J.; Lu, C. The SH3BGR/STAT3 pathway regulates cell migration and angiogenesis induced by a gammaherpesvirus MicroRNA. PLoS Pathog., 2016, 12(4), e1005605.
[http://dx.doi.org/10.1371/journal.ppat.1005605] [PMID: 27128969]
[16]
Xu, L.; Zhang, M.; Li, H.; Guan, W.; Liu, B.; Liu, F.; Wang, H.; Li, J.; Yang, S.; Tong, X.; Wang, H. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk. Lymphoma, 2018, 59(4), 918-930.
[http://dx.doi.org/10.1080/10428194.2017.1344843] [PMID: 28679293]
[17]
Tallman, M.S.; Wang, E.S.; Altman, J.K.; Appelbaum, F.R.; Bhatt, V.R.; Bixby, D.; Coutre, S.E.; De Lima, M.; Fathi, A.T.; Fiorella, M.; Foran, J.M.; Hall, A.C.; Jacoby, M.; Lancet, J.; LeBlanc, T.W.; Mannis, G.; Marcucci, G.; Martin, M.G.; Mims, A.; O’Donnell, M.R.; Olin, R.; Peker, D.; Perl, A.; Pollyea, D.A.; Pratz, K.; Prebet, T.; Ravandi, F.; Shami, P.J.; Stone, R.M.; Strickland, S.A.; Wieduwilt, M.; Gregory, K.M.; Hammond, L.; Ogba, N. OCN. Acute Myeloid Leukemia, Version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2019, 17(6), 721-749.
[http://dx.doi.org/10.6004/jnccn.2019.0028] [PMID: 31200351]
[18]
Qu, S.; Liu, B.; Guo, X.; Shi, H.; Zhou, M.; Li, L.; Yang, S.; Tong, X.; Wang, H. Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD-negative acute myeloid leukemia. Cancer, 2014, 120(14), 2130-2141.
[http://dx.doi.org/10.1002/cncr.28668] [PMID: 24737397]
[19]
Bohl, S.R.; Bullinger, L.; Rücker, F.G. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev. Hematol., 2018, 11(5), 361-371.
[http://dx.doi.org/10.1080/17474086.2018.1453802] [PMID: 29543073]
[20]
Shin,, D.Y.;; Park,, Y.S.;; Yang,, K.;; Kim,, G.Y.;; Kim,, W.J.;; Han,, M.H.;; Kang,, H.S.;; Choi,, Y.H. Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation. Int. J. Oncol.,, 2012, 41(3), 910-918.
[http://dx.doi.org/10.3892/ijo.2012.1546] [PMID: 22767021]