Sodium Tanshinone IIA Sulfonate Improves Adverse Ventricular Remodeling Post-MI by Reducing Myocardial Necrosis, Modulating Inflammation, and Promoting Angiogenesis

Page: [751 - 759] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background and Objective: Myocardial infarction (MI) leads to pathological cardiac remodeling and heart failure. Sodium tanshinone IIA sulfonate (STS) shows to possess therapeutic potential. The present study aimed to explore the potential role of STS in ventricular remodeling post-MI.

Methods: Mice were randomly divided into sham, MI + normal saline (NS) and MI + STS (20.8 mg/kg/day intraperitoneally) groups. MI was established following left anterior descending artery ligation. Cardiac function was evaluated using echocardiography. Scar size and myocardial fibrosis-associated markers were detected using Masson’s trichrome staining and western blot analysis (WB). Necrosis and inflammation were assessed using H&E staining, lactate dehydrogenase (LDH) detection, ELISA, immunohistochemical staining, and WB. Furthermore, angiogenesis markers and associated proteins were detected using immunohistochemical staining and WB.

Results: Mice treated with STS exhibited significant improvements in cardiac function, smaller scar size, and low expression levels of α-smooth muscle actin and collagen I and III at 28 days following surgery, compared with the NS-treated group. Moreover, treatment with STS reduced eosinophil necrosis, the infiltration of inflammatory cells, plasma levels of LDH, high mobility group protein B1, interleukin-1β and tumor necrosis factor- α, and protein expression of these cytokines at 3 days. Macrophage infiltration was also decreased in the STS group in the early phase. Additionally, CD31+ vascular density, protein levels of hypoxia-inducible factor- 1α, and vascular endothelial growth factor were elevated in the STS-treated mice at 28 days.

Conclusion: STS improved pathological remodeling post-MI, and the associated therapeutic effects may be a result of a decrease in myocardial necrosis, modulation of inflammation, and an increase in angiogenesis.

Keywords: Sodium tanshinone IIA sulfonate, myocardial infarction, cardiac function, cardiac remodeling, necrosis, inflammation, angiogenesis.

[1]
Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med 2017; 376(21): 2053-64.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[2]
Huang CK, Dai D, Xie H, et al. Lgr4 governs a pro-inflammatory program in macrophages to antagonize post-infarction cardiac repair. Circ Res 2020; 127(8): 953-73.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315807] [PMID: 32600176]
[3]
Hashemi D, Dettmann L, Trippel TD, et al. Economic impact of heart failure with preserved ejection fraction: insights from the ALDO-DHF trial. ESC Heart Fail 2020; 7(3): 786-93.
[http://dx.doi.org/10.1002/ehf2.12606] [PMID: 31984661]
[4]
Wang Z, Li J, Zhang J, Xie X. Sodium tanshinone IIA sulfonate inhibits proliferation, migration, invasion and inflammation in rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2019; 73: 370-8.
[http://dx.doi.org/10.1016/j.intimp.2019.05.023] [PMID: 31132732]
[5]
Zhou ZY, Zhao WR, Zhang J, Chen XL, Tang JY. Sodium tanshinone IIA sulfonate: A review of pharmacological activity and pharmacokinetics. Biomed Pharmacother 2019; 118: 109362.
[http://dx.doi.org/10.1016/j.biopha.2019.109362] [PMID: 31545252]
[6]
Qiu X, Miles A, Jiang X, Sun X, Yang N. Sulfotanshinone sodium injection for unstable angina pectoris: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med 2012; 2012: 715790.
[http://dx.doi.org/10.1155/2012/715790] [PMID: 22548119]
[7]
Zhu J, Xu Y, Ren G, et al. Tanshinone IIA sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol 2017; 815: 427-36.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.047] [PMID: 28970012]
[8]
Bacmeister L, Schwarzl M, Warnke S, et al. Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114(3): 19.
[http://dx.doi.org/10.1007/s00395-019-0722-5] [PMID: 30887214]
[9]
Danzl K, Messner B, Doppler C, et al. Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. J Mol Cell Cardiol 2019; 126: 105-17.
[http://dx.doi.org/10.1016/j.yjmcc.2018.11.012] [PMID: 30472251]
[10]
Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008; 117(25): 3216-26.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769331] [PMID: 18574060]
[11]
Abbate A, Van Tassell BW, Seropian IM, et al. Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail 2010; 12(4): 319-22.
[http://dx.doi.org/10.1093/eurjhf/hfq017] [PMID: 20335350]
[12]
Berry MF, Woo YJ, Pirolli TJ, et al. Administration of a tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J Heart Lung Transplant 2004; 23(9): 1061-8.
[http://dx.doi.org/10.1016/j.healun.2004.06.021] [PMID: 15454172]
[13]
Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018; 186: 73-87.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.001] [PMID: 29330085]
[14]
Li W, Li J, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J Immunol 2007; 178(6): 3856-64.
[http://dx.doi.org/10.4049/jimmunol.178.6.3856] [PMID: 17339485]
[15]
Guan R, Wang J, Li Z, et al. Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1α signaling pathway. Front Pharmacol 2018; 9: 263.
[http://dx.doi.org/10.3389/fphar.2018.00263] [PMID: 29765317]
[16]
Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2011; 124(6): 720-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039008] [PMID: 21788589]
[17]
Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK. Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 2005; 112(9)(Suppl.): I123-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.525147] [PMID: 16159803]
[18]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 2019; 176(6): 1248-64.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[19]
Zhang J, Ding L, Zhao Y, et al. Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 2009; 119(13): 1776-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.800565] [PMID: 19307480]
[20]
Yue X, Lin X, Yang T, et al. Rnd3/RhoE modulates hypoxia-inducible factor 1α/vascular endothelial growth factor signaling by stabilizing hypoxia-inducible factor 1α and regulates responsive cardiac angiogenesis. Hypertension 2016; 67(3): 597-605.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06412] [PMID: 26781283]
[21]
Xu Z, Wu L, Sun Y, et al. Tanshinone IIA pretreatment protects free flaps against hypoxic injury by upregulating stem cell-related biomarkers in epithelial skin cells. BMC Complement Altern Med 2014; 14: 331.
[http://dx.doi.org/10.1186/1472-6882-14-331] [PMID: 25186638]
[22]
Gao E, Lei YH, Shang X, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 2010; 107(12): 1445-53.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223925] [PMID: 20966393]
[23]
Zhang L, Zhang B, Yu Y, et al. Angiotensin II increases hmgb1 expression in the myocardium through at1 and at2 receptors when under pressure overload. Int Heart J 2021; 62(1): 162-70.
[http://dx.doi.org/10.1536/ihj.20-384] [PMID: 33455985]
[24]
Mitsos S, Koletsis EN, Katsanos K, et al. Intramyocardial thrombin promotes angiogenesis and improves cardiac function in an experimental rabbit model of acute myocardial infarction. J Thorac Cardiovasc Surg 2014; 147(4): 1376-83.
[http://dx.doi.org/10.1016/j.jtcvs.2013.05.036] [PMID: 23856196]
[25]
Zhang L, Liu M, Jiang H, et al. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure. J Cell Mol Med 2016; 20(3): 459-70.
[http://dx.doi.org/10.1111/jcmm.12743] [PMID: 26647902]
[26]
Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 2020; 116(6): 1101-12.
[http://dx.doi.org/10.1093/cvr/cvz336] [PMID: 31841135]
[27]
Czepluch FS, Wollnik B, Hasenfuß G. Genetic determinants of heart failure: facts and numbers. ESC Heart Fail 2018; 5(3): 211-7.
[http://dx.doi.org/10.1002/ehf2.12267] [PMID: 29457878]
[28]
Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013; 339(6116): 161-6.
[http://dx.doi.org/10.1126/science.1230719] [PMID: 23307733]
[29]
Leuschner F, Dutta P, Gorbatov R, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29(11): 1005-10.
[http://dx.doi.org/10.1038/nbt.1989] [PMID: 21983520]
[30]
Maekawa N, Wada H, Kanda T, et al. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J Am Coll Cardiol 2002; 39(7): 1229-35.
[http://dx.doi.org/10.1016/S0735-1097(02)01738-2] [PMID: 11923051]
[31]
Abbate A, Kontos MC, Grizzard JD, et al. VCU-ART Investigators. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 2010; 105(10): 1371-1377.e1.
[http://dx.doi.org/10.1016/j.amjcard.2009.12.059] [PMID: 20451681]
[32]
Hayashidani S, Tsutsui H, Shiomi T, et al. Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 2003; 108(17): 2134-40.
[http://dx.doi.org/10.1161/01.CIR.0000092890.29552.22] [PMID: 14517168]
[33]
Kuang Y, Li X, Liu X, et al. Vascular endothelial S1pr1 ameliorates adverse cardiac remodeling via stimulating reparative macrophage proliferation after myocardial infarction. Cardiovasc Res 2021; 117(2): 585-99.
[PMID: 32091582]
[34]
Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 2004; 165(2): 439-47.
[http://dx.doi.org/10.1016/S0002-9440(10)63309-3] [PMID: 15277218]
[35]
Peng L, Fu C, Liang Z, et al. Pulsed electromagnetic fields increase angiogenesis and improve cardiac function after myocardial ischemia in mice. Circ J 2020; 84(2): 186-93.
[http://dx.doi.org/10.1253/circj.CJ-19-0758] [PMID: 31915323]
[36]
Shindo T, Ito K, Ogata T, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2016; 36(6): 1220-9.
[http://dx.doi.org/10.1161/ATVBAHA.115.306477] [PMID: 27079882]
[37]
Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 2000; 342(9): 626-33.
[http://dx.doi.org/10.1056/NEJM200003023420904] [PMID: 10699162]
[38]
Kido M, Du L, Sullivan CC, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 2005; 46(11): 2116-24.
[http://dx.doi.org/10.1016/j.jacc.2005.08.045] [PMID: 16325051]