Homocysteinylation and Sulfhydration in Diseases

Page: [1726 - 1735] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.

Keywords: Homocysteine, homocysteinylation, hydrogen sulfide, sulfhydration, protein modification, diseases.

Graphical Abstract

[1]
Jakubowski, H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J. Biol. Chem., 2002, 277(34), 30425-30428.
[http://dx.doi.org/10.1074/jbc.C200267200] [PMID: 12093791]
[2]
Sikora, M.; Marczak, Ł.; Kubalska, J.; Graban, A.; Jakubowski, H. Identification of N-homocysteinylation sites in plasma proteins. Amino Acids, 2014, 46(1), 235-244.
[http://dx.doi.org/10.1007/s00726-013-1617-7] [PMID: 24292153]
[3]
Jacovina, A.T.; Deora, A.B.; Ling, Q.; Broekman, M.J.; Almeida, D.; Greenberg, C.B.; Marcus, A.J.; Smith, J.D.; Hajjar, K.A. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J. Clin. Invest., 2009, 119(11), 3384-3394.
[http://dx.doi.org/10.1172/JCI39591] [PMID: 19841537]
[4]
Hortin, G.L.; Seam, N.; Hoehn, G.T. Bound homocysteine, cysteine, and cysteinylglycine distribution between albumin and globulins. Clin. Chem., 2006, 52(12), 2258-2264.
[http://dx.doi.org/10.1373/clinchem.2006.074302] [PMID: 17068168]
[5]
Jakubowski, H. Homocysteine in protein structure/function and human disease; Springer-Verlag, 2013.
[http://dx.doi.org/10.1007/978-3-7091-1410-0]
[6]
Jakubowski, H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev., 2019, 99(1), 555-604.
[http://dx.doi.org/10.1152/physrev.00003.2018] [PMID: 30427275]
[7]
Paul, B.D.; Snyder, S.H. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci., 2015, 40(11), 687-700.
[http://dx.doi.org/10.1016/j.tibs.2015.08.007] [PMID: 26439534]
[8]
Mustafa, A.K.; Gadalla, M.M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S.K.; Barrow, R.K.; Yang, G.; Wang, R.; Snyder, S.H. H2S signals through protein S-sulfhydration. Sci. Signal., 2009, 2(96), ra72.
[http://dx.doi.org/10.1126/scisignal.2000464] [PMID: 19903941]
[9]
Krishnan, N.; Fu, C.; Pappin, D.J.; Tonks, N.K. H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal., 2011, 4(203), ra86.
[http://dx.doi.org/10.1126/scisignal.2002329] [PMID: 22169477]
[10]
Jakubowski, H. Homocysteine editing, thioester chemistry, coenzyme A, and the origin of coded peptide synthesis? Life (Basel), 2017, 7(1), 6.
[http://dx.doi.org/10.3390/life7010006] [PMID: 28208756]
[11]
Vallee, Y.; Shalayel, I.; Ly, K-D.; Rao, K.V.R.; De Paëpe, G.; Märker, K.; Milet, A. At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. Int. J. Dev. Biol., 2017, 61(8-9), 471-478.
[http://dx.doi.org/10.1387/ijdb.170028yv] [PMID: 29139533]
[12]
Johnson, T.B. Sulfur linkages in proteins. J. Biol. Chem., 1911, 9, 439-448.
[http://dx.doi.org/10.1016/S0021-9258(18)91443-2]
[13]
Howard Mueller, J. A new sulphur-containing amino acid isolated from casein. Exp. Biol. Med., 1922, 19(4), 161-163.
[http://dx.doi.org/10.3181/00379727-19-75]
[14]
Barger, G.; Coyne, F.P. The amino-acid methionine; constitution and synthesis. Biochem. J., 1928, 22(6), 1417-1425.
[http://dx.doi.org/10.1042/bj0221417] [PMID: 16744158]
[15]
Butz, L.W.; Du Vigneaud, V. The formation of a homologue of cysteine by the decomposition of methionine with sulfuric acid. J. Biol. Chem., 1932, 99, 135-142.
[http://dx.doi.org/10.1016/S0021-9258(18)76074-2]
[16]
Finkelstein, J.D. Homocysteine: a history in progress. Nutr. Rev., 2000, 58(7), 193-204.
[http://dx.doi.org/10.1111/j.1753-4887.2000.tb01862.x] [PMID: 10941255]
[17]
Jakubowski, H. Translational incorporation of S-nitrosohomo-cysteine into protein. J. Biol. Chem., 2000, 275(29), 21813-21816.
[http://dx.doi.org/10.1074/jbc.C000280200] [PMID: 10829011]
[18]
Herrmann, W.; Obeid, R. Homocysteine: a biomarker in neurodegenerative diseases. Clin. Chem. Lab. Med., 2011, 49(3), 435-441.
[PMID: 21388339]
[19]
Chan, A.Y.; Alsaraby, A.; Shea, T.B. Folate deprivation increases tau phosphorylation by homocysteine-induced calcium influx and by inhibition of phosphatase activity: Alleviation by S-adenosyl methionine. Brain Res., 2008, 1199, 133-137.
[http://dx.doi.org/10.1016/j.brainres.2008.01.008] [PMID: 18279842]
[20]
Mendoza-Oliva, A.; Ferrera, P.; Arias, C. Interplay between cholesterol and homocysteine in the exacerbation of amyloid-β toxicity in human neuroblastoma cells. CNS Neurol. Disord. Drug Targets, 2013, 12(6), 842-848.
[http://dx.doi.org/10.2174/18715273113129990083] [PMID: 23844691]
[21]
Kuszczyk, M.; Gordon-Krajcer, W.; Lazarewicz, J.W. Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem. Int., 2009, 55(1-3), 174-180.
[http://dx.doi.org/10.1016/j.neuint.2009.02.010] [PMID: 19428823]
[22]
Kruman, I.I.; Culmsee, C.; Chan, S.L.; Kruman, Y.; Guo, Z.; Penix, L.; Mattson, M.P. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci., 2000, 20(18), 6920-6926.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06920.2000] [PMID: 10995836]
[23]
Finkelstein, J.D.; Martin, J.J. Methionine metabolism in mammals. Adaptation to methionine excess. J. Biol. Chem., 1986, 261(4), 1582-1587.
[http://dx.doi.org/10.1016/S0021-9258(17)35979-3] [PMID: 3080429]
[24]
Zhang, J.; Zheng, Y.G. SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chem. Biol., 2016, 11(3), 583-597.
[http://dx.doi.org/10.1021/acschembio.5b00812] [PMID: 26540123]
[25]
Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr., 1999, 19, 217-246.
[http://dx.doi.org/10.1146/annurev.nutr.19.1.217] [PMID: 10448523]
[26]
Finkelstein, J.D. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemost., 2000, 26(3), 219-225.
[http://dx.doi.org/10.1055/s-2000-8466] [PMID: 11011839]
[27]
Zang, T.; Pottenplackel, L.P.; Handy, D.E.; Loscalzo, J.; Dai, S.; Deth, R.C.; Zhou, Z.S.; Ma, J. Comparison of protein N-homocysteinylation in rat plasma under elevated homocysteine using a specific chemical labeling method. Molecules, 2016, 21(9), 1195.
[http://dx.doi.org/10.3390/molecules21091195] [PMID: 27617989]
[28]
Teng, Y-W.; Mehedint, M.G.; Garrow, T.A.; Zeisel, S.H. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem., 2011, 286(42), 36258-36267.
[http://dx.doi.org/10.1074/jbc.M111.265348] [PMID: 21878621]
[29]
Zhao, Y.; Wu, S.; Gao, X.; Zhang, Z.; Gong, J.; Zhan, R.; Wang, X.; Wang, W.; Qian, L. Inhibition of cystathionine β-synthase is associated with glucocorticoids over-secretion in psychological stress-induced hyperhomocystinemia rat liver. Cell Stress Chaperones, 2013, 18(5), 631-641.
[http://dx.doi.org/10.1007/s12192-013-0416-0] [PMID: 23512717]
[30]
James, D. House, Margaret E. Brosnan, and John T. Brosnan, Characterization of homocysteine metabolism in the rat kidney. Biochem. J., 1997, 328(1), 287-292.
[http://dx.doi.org/10.1042/bj3280287]
[31]
Hensley, K.; Denton, T.T. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic. Biol. Med., 2015, 78, 123-134.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.581] [PMID: 25463282]
[32]
Jakubowski, H. Quality control in tRNA charging -- editing of homocysteine. Acta Biochim. Pol., 2011, 58(2), 149-163.
[http://dx.doi.org/10.18388/abp.2011_2259] [PMID: 21643559]
[33]
Jakubowski, H. Quality control in tRNA charging. Wiley Interdiscip. Rev. RNA, 2012, 3(3), 295-310.
[http://dx.doi.org/10.1002/wrna.122] [PMID: 22095844]
[34]
Zimny, J.; Sikora, M.; Guranowski, A.; Jakubowski, H. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J. Biol. Chem., 2006, 281(32), 22485-22492.
[http://dx.doi.org/10.1074/jbc.M603656200] [PMID: 16769724]
[35]
Marsillach, J.; Suzuki, S.M.; Richter, R.J.; McDonald, M.G.; Rademacher, P.M.; MacCoss, M.J.; Hsieh, E.J.; Rettie, A.E.; Furlong, C.E. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PLoS One, 2014, 9(10), e110054.
[http://dx.doi.org/10.1371/journal.pone.0110054] [PMID: 25333274]
[36]
Sengupta, S.; Chen, H.; Togawa, T.; DiBello, P.M.; Majors, A.K.; Büdy, B.; Ketterer, M.E.; Jacobsen, D.W. Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J. Biol. Chem., 2001, 276(32), 30111-30117.
[http://dx.doi.org/10.1074/jbc.M104324200] [PMID: 11371573]
[37]
Maron, B.A.; Loscalzo, J. The treatment of hyperhomocysteinemia. Annu. Rev. Med., 2009, 60(1), 39-54.
[http://dx.doi.org/10.1146/annurev.med.60.041807.123308] [PMID: 18729731]
[38]
Refsum, H.; Ueland, P.M.; Nygård, O.; Vollset, S.E. Homocysteine and cardiovascular disease. Annu. Rev. Med., 1998, 49(1), 31-62.
[http://dx.doi.org/10.1146/annurev.med.49.1.31] [PMID: 9509248]
[39]
Smith, A.D.; Refsum, H. Homocysteine, B vitamins, and cognitive impairment. Annu. Rev. Nutr., 2016, 36(1), 211-239.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050947] [PMID: 27431367]
[40]
Bleich, S.; Degner, D.; Wiltfang, J.; Maler, J.M.; Niedmann, P.; Cohrs, S.; Mangholz, A.; Porzig, J.; Sprung, R.; Rüther, E.; Kornhuber, J. Elevated homocysteine levels in alcohol withdrawal. Alcohol Alcohol., 2000, 35(4), 351-354.
[http://dx.doi.org/10.1093/alcalc/35.4.351] [PMID: 10905999]
[41]
Obeid, R.; Herrmann, W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett., 2006, 580(13), 2994-3005.
[http://dx.doi.org/10.1016/j.febslet.2006.04.088] [PMID: 16697371]
[42]
Bhatia, P.; Singh, N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol., 2015, 29(6), 522-528.
[http://dx.doi.org/10.1111/fcp.12145] [PMID: 26376956]
[43]
Francis, P.T.; Poynton, A.; Lowe, S.L.; Najlerahim, A.; Bridges, P.K.; Bartlett, J.R.; Procter, A.W.; Bruton, C.J.; Bowen, D.M. Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem. Brain Res., 1989, 494(2), 315-324.
[http://dx.doi.org/10.1016/0006-8993(89)90600-8] [PMID: 2570624]
[44]
Folstein, M.; Liu, T.; Peter, I.; Buell, J.; Arsenault, L.; Scott, T.; Qiu, W.W.; Qiu, W.W. The homocysteine hypothesis of depression. Am. J. Psychiatry, 2007, 164(6), 861-867.
[http://dx.doi.org/10.1176/ajp.2007.164.6.861] [PMID: 17541043]
[45]
Almeida, O.P.; Ford, A.H.; Hirani, V.; Singh, V.; vanBockxmeer, F.M.; McCaul, K.; Flicker, L. B vitamins to enhance treatment response to antidepressants in middle-aged and older adults: results from the B-VITAGE randomised, double-blind, placebo-controlled trial. Br. J. Psychiatry, 2014, 205(6), 450-457.
[http://dx.doi.org/10.1192/bjp.bp.114.145177] [PMID: 25257064]
[46]
Robert, C.A.; David, S.; Kim, A. Jobst, H.R.; Leslsy, S.; Per, M.U. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer Disease. JAMA Neurol., 1998, 55(11), 1449-1455.
[47]
Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med., 2002, 346(7), 476-483.
[http://dx.doi.org/10.1056/NEJMoa011613] [PMID: 11844848]
[48]
Wright, C.B.; Lee, H.S.; Paik, M.C.; Stabler, S.P.; Allen, R.H.; Sacco, R.L. Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology, 2004, 63(2), 254-260.
[http://dx.doi.org/10.1212/01.WNL.0000129986.19019.5D] [PMID: 15277617]
[49]
Hasegawa, T.; Kosoku, Y.; Sano, Y.; Yoshida, H.; Kudoh, C.; Tabira, T. Homocysteic acid in blood can detect mild cognitive impairment: a preliminary study. J. Alzheimers Dis., 2020, 77(2), 773-780.
[http://dx.doi.org/10.3233/JAD-200234] [PMID: 32741817]
[50]
An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenetics, 2019, 11(1), 139.
[http://dx.doi.org/10.1186/s13148-019-0741-y] [PMID: 31601260]
[51]
Jakubowski, H. Molecular basis of homocysteine toxicity in humans. Cell. Mol. Life Sci., 2004, 61(4), 470-487.
[http://dx.doi.org/10.1007/s00018-003-3204-7] [PMID: 14999406]
[52]
Blom, H.J. Consequences of homocysteine export and oxidation in the vascular system. Semin. Thromb. Hemost., 2000, 26(3), 227-232.
[http://dx.doi.org/10.1055/s-2000-8467] [PMID: 11011840]
[53]
Sass, J.O.; Nakanishi, T.; Sato, T.; Sperl, W.; Shimizu, A. S-homocysteinylation of transthyretin is detected in plasma and serum of humans with different types of hyperhomocysteinemia. Biochem. Biophys. Res. Commun., 2003, 310(1), 242-246.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.089] [PMID: 14511677]
[54]
Lim, A.; Sengupta, S.; McComb, M.E.; Théberge, R.; Wilson, W.G.; Costello, C.E.; Jacobsen, D.W. In vitro and in vivo interactions of homocysteine with human plasma transthyretin. J. Biol. Chem., 2003, 278(50), 49707-49713.
[http://dx.doi.org/10.1074/jbc.M306748200] [PMID: 14507924]
[55]
Kang, S.S.; Wong, P.W.; Becker, N. Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediatr. Res., 1979, 13(10), 1141-1143.
[http://dx.doi.org/10.1203/00006450-197910000-00012] [PMID: 503641]
[56]
Glushchenko, A.V.; Jacobsen, D.W. Molecular targeting of proteins by L-homocysteine: mechanistic implications for vascular disease. Antioxid. Redox Signal., 2007, 9(11), 1883-1898.
[http://dx.doi.org/10.1089/ars.2007.1809] [PMID: 17760510]
[57]
Perła-Kaján, J.; Twardowski, T.; Jakubowski, H. Mechanisms of homocysteine toxicity in humans. Amino Acids, 2007, 32(4), 561-572.
[http://dx.doi.org/10.1007/s00726-006-0432-9] [PMID: 17285228]
[58]
Sikora, M.; Marczak, L.; Twardowski, T.; Stobiecki, M.; Jakubowski, H. Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal. Biochem., 2010, 405(1), 132-134.
[http://dx.doi.org/10.1016/j.ab.2010.04.034] [PMID: 20659604]
[59]
Perła-Kajan, J.; Utyro, O.; Rusek, M.; Malinowska, A.; Sitkiewicz, E.; Jakubowski, H. N-Homocysteinylation impairs collagen cross-linking in cystathionine β-synthase-deficient mice: a novel mechanism of connective tissue abnormalities. FASEB J., 2016, 30(11), 3810-3821.
[http://dx.doi.org/10.1096/fj.201600539] [PMID: 27530978]
[60]
Perła-Kaján, J.; Marczak, Ł.; Kaján, L.; Skowronek, P.; Twardowski, T.; Jakubowski, H. Modification by homocysteine thiolactone affects redox status of cytochrome C. Biochemistry, 2007, 46(21), 6225-6231.
[http://dx.doi.org/10.1021/bi602463m] [PMID: 17474717]
[61]
Sauls, D.L.; Lockhart, E.; Warren, M.E.; Lenkowski, A.; Wilhelm, S.E.; Hoffman, M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry, 2006, 45(8), 2480-2487.
[http://dx.doi.org/10.1021/bi052076j] [PMID: 16489740]
[62]
Jakubowski, H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J., 1999, 13(15), 2277-2283.
[http://dx.doi.org/10.1096/fasebj.13.15.2277] [PMID: 10593875]
[63]
Jakubowski, H. Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World. FEBS Lett., 2016, 590(4), 469-481.
[http://dx.doi.org/10.1002/1873-3468.12085] [PMID: 26831912]
[64]
Jakubowski, H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J. Biol. Chem., 1997, 272(3), 1935-1942.
[http://dx.doi.org/10.1016/S0021-9258(19)67504-6] [PMID: 8999883]
[65]
Jakubowski, H.; Zhang, L.; Bardeguez, A.; Aviv, A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ. Res., 2000, 87(1), 45-51.
[http://dx.doi.org/10.1161/01.RES.87.1.45] [PMID: 10884371]
[66]
Jakubowski, H.; Boers, G.H.J.; Strauss, K.A. Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J., 2008, 22(12), 4071-4076.
[http://dx.doi.org/10.1096/fj.08-112086] [PMID: 18708589]
[67]
Jakubowski, Hieronim; Perla-Kaján, Joanna; Finnell, Richard H.; Cabrera, Robert M.; Wang, Hong; Gupta, Sapna; Kruger, Warren D.; Kraus, Jan P.; Shih, Diana M Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J., 2009, 23(6), 1721-1727.
[http://dx.doi.org/10.1096/fj.08-127548] [PMID: 19204075]
[68]
Jakubowski, H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J. Nutr., 2001, 131(11), 2983S-2987S.
[http://dx.doi.org/10.1093/jn/131.11.2983S] [PMID: 11694633]
[69]
Borowczyk, K.; Suliburska, J.; Jakubowski, H. Demethylation of methionine and keratin damage in human hair. Amino Acids, 2018, 50(5), 537-546.
[http://dx.doi.org/10.1007/s00726-018-2545-3] [PMID: 29480334]
[70]
Liu, M.; Zhang, Z.; Zang, T.; Spahr, C.; Cheetham, J.; Ren, D.; Zhou, Z.S. Discovery of undefined protein cross-linking chemistry: a comprehensive methodology utilizing 18O-labeling and mass spectrometry. Anal. Chem., 2013, 85(12), 5900-5908.
[http://dx.doi.org/10.1021/ac400666p] [PMID: 23634697]
[71]
Sauls, D.L.; Warren, M.; Hoffman, M. Homocysteinylated fibrinogen forms disulfide-linked complexes with albumin. Thromb. Res., 2011, 127(6), 576-581.
[http://dx.doi.org/10.1016/j.thromres.2011.01.009] [PMID: 21316742]
[72]
Undas, A.; Perła, J.; Lacinski, M.; Trzeciak, W.; Kaźmierski, R.; Jakubowski, H. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke, 2004, 35(6), 1299-1304.
[http://dx.doi.org/10.1161/01.STR.0000128412.59768.6e] [PMID: 15131313]
[73]
Sharma, G.S.; Kumar, T.; Singh, L.R. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS One, 2014, 9(12), e116386.
[http://dx.doi.org/10.1371/journal.pone.0116386] [PMID: 25551634]
[74]
Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, 272(33), 20313-20316.
[http://dx.doi.org/10.1074/jbc.272.33.20313] [PMID: 9252331]
[75]
Vlassara, H. Recent progress on the biologic and clinical significance of advanced glycosylation end products. J. Lab. Clin. Med., 1994, 124(1), 19-30.
[PMID: 8035098]
[76]
Bossenmeyer-Pourié, C.; Smith, A.D.; Lehmann, S.; Deramecourt, V.; Sablonnière, B.; Camadro, J.M.; Pourié, G.; Kerek, R.; Helle, D.; Umoret, R.; Guéant-Rodriguez, R.M.; Rigau, V.; Gabelle, A.; Sequeira, J.M.; Quadros, E.V.; Daval, J.L.; Guéant, J.L. N-homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer’s disease and vascular dementia. J. Pathol., 2019, 248(3), 291-303.
[http://dx.doi.org/10.1002/path.5254] [PMID: 30734924]
[77]
Jakubowski, H. Quantification of urinary S- and N-homocysteinylated protein and homocysteine-thiolactone in mice. Anal. Biochem., 2016, 508, 118-123.
[http://dx.doi.org/10.1016/j.ab.2016.06.002] [PMID: 27293214]
[78]
Gurda, D.; Handschuh, L.; Kotkowiak, W.; Jakubowski, H. Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids, 2015, 47(7), 1319-1339.
[http://dx.doi.org/10.1007/s00726-015-1956-7] [PMID: 25802182]
[79]
Zhang, Q.; Bai, B.; Mei, X.; Wan, C.; Cao, H.; Dan, Li Wang, S.; Zhang, M.; Wang, Z.; Wu, J.; Wang, H.; Huo, J.; Ding, G.; Zhao, J.; Xie, Q.; Wang, L.; Qiu, Z.; Zhao, S.; Zhang, T. Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat. Commun., 2018, 9(1), 3436.
[http://dx.doi.org/10.1038/s41467-018-05451-7] [PMID: 30143612]
[80]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[81]
Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal., 2014, 20(5), 770-782.
[http://dx.doi.org/10.1089/ars.2013.5339] [PMID: 23600844]
[82]
Singh, S.; Padovani, D.; Leslie, R.A.; Chiku, T.; Banerjee, R. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem., 2009, 284(33), 22457-22466.
[http://dx.doi.org/10.1074/jbc.M109.010868] [PMID: 19531479]
[83]
Chiku, T.; Padovani, D.; Zhu, W.; Singh, S.; Vitvitsky, V.; Banerjee, R. H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J. Biol. Chem., 2009, 284(17), 11601-11612.
[http://dx.doi.org/10.1074/jbc.M808026200] [PMID: 19261609]
[84]
Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal., 2009, 11(4), 703-714.
[http://dx.doi.org/10.1089/ars.2008.2253] [PMID: 18855522]
[85]
Shibuya, N.; Mikami, Y.; Kimura, Y.; Nagahara, N.; Kimura, H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem., 2009, 146(5), 623-626.
[http://dx.doi.org/10.1093/jb/mvp111] [PMID: 19605461]
[86]
Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun., 2013, 4(1), 1366.
[http://dx.doi.org/10.1038/ncomms2371] [PMID: 23340406]
[87]
Hildebrandt, T.M.; Grieshaber, M.K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J., 2008, 275(13), 3352-3361.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06482.x] [PMID: 18494801]
[88]
Bouillaud, F.; Blachier, F. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid. Redox Signal., 2011, 15(2), 379-391.
[http://dx.doi.org/10.1089/ars.2010.3678] [PMID: 21028947]
[89]
Jackson, M.R.; Melideo, S.L.; Jorns, M.S. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry, 2012, 51(34), 6804-6815.
[http://dx.doi.org/10.1021/bi300778t] [PMID: 22852582]
[90]
Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; Snyder, S.H.; Wang, R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 2008, 322(5901), 587-590.
[http://dx.doi.org/10.1126/science.1162667] [PMID: 18948540]
[91]
Zhang, Q.; Yuan, L.; Liu, D.; Wang, J.; Wang, S.; Zhang, Q.; Gong, Y.; Liu, H.; Hao, A.; Wang, Z. Hydrogen sulfide attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation. Pharmacol. Res., 2014, 84, 32-44.
[http://dx.doi.org/10.1016/j.phrs.2014.04.009] [PMID: 24788079]
[92]
Stamler, J.S.; Simon, D.I.; Osborne, J.A.; Mullins, M.E.; Jaraki, O.; Michel, T.; Singel, D.J.; Loscalzo, J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA, 1992, 89(1), 444-448.
[http://dx.doi.org/10.1073/pnas.89.1.444] [PMID: 1346070]
[93]
Marino, S.M.; Gladyshev, V.N. Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid. Redox Signal., 2011, 15(1), 135-146.
[http://dx.doi.org/10.1089/ars.2010.3561] [PMID: 20812876]
[94]
Greiner, R.; Pálinkás, Z.; Bäsell, K.; Becher, D.; Antelmann, H.; Nagy, P.; Dick, T.P. Polysulfides link H2S to protein thiol oxidation. Antioxid. Redox Signal., 2013, 19(15), 1749-1765.
[http://dx.doi.org/10.1089/ars.2012.5041] [PMID: 23646934]
[95]
Poole, L.B.; Nelson, K.J. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol., 2008, 12(1), 18-24.
[http://dx.doi.org/10.1016/j.cbpa.2008.01.021] [PMID: 18282483]
[96]
Klomsiri, C.; Karplus, P.A.; Poole, L.B. Cysteine-based redox switches in enzymes. Antioxid. Redox Signal., 2011, 14(6), 1065-1077.
[http://dx.doi.org/10.1089/ars.2010.3376] [PMID: 20799881]
[97]
Finkel, T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal., 2012, 5(215), 10.
[http://dx.doi.org/10.1126/scisignal.2002943] [PMID: 22416275]
[98]
Paul, B.D.; Snyder, S.H.H. 2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(8), 499-507.
[http://dx.doi.org/10.1038/nrm3391] [PMID: 22781905]
[99]
Francoleon, N.E.; Carrington, S.J.; Fukuto, J.M. The reaction of H(2)S with oxidized thiols: generation of persulfides and implications to H(2)S biology. Arch. Biochem. Biophys., 2011, 516(2), 146-153.
[http://dx.doi.org/10.1016/j.abb.2011.09.015] [PMID: 22001739]
[100]
Zhang, D.; Macinkovic, I.; Devarie-Baez, N.O.; Pan, J.; Park, C-M.; Carroll, K.S.; Filipovic, M.R.; Xian, M. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. Int. Ed. Engl., 2014, 53(2), 575-581.
[http://dx.doi.org/10.1002/anie.201305876] [PMID: 24288186]
[101]
Nagy, P.; Winterbourn, C.C. Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem. Res. Toxicol., 2010, 23(10), 1541-1543.
[http://dx.doi.org/10.1021/tx100266a] [PMID: 20845929]
[102]
Ju, Y.; Fu, M.; Stokes, E.; Wu, L.; Yang, G. H2S-mediated protein S-sulfhydration: a prediction for its formation and regulation. Molecules, 2017, 22(8), 1334.
[http://dx.doi.org/10.3390/molecules22081334] [PMID: 28800080]
[103]
Zhang, D.; Du, J.; Tang, C.; Huang, Y.; Jin, H. H2S-induced sulfhydration: biological function and detection methodology. Front. Pharmacol., 2017, 8, 608.
[http://dx.doi.org/10.3389/fphar.2017.00608] [PMID: 28932194]
[104]
Sun, H-J.; Wu, Z-Y.; Nie, X-W.; Bian, J-S. Role of hydrogen sulfide and polysulfides in neurological diseases: focus on protein S-Persulfidation. Curr. Neuropharmacol., 2021, 19(6), 868-884.
[http://dx.doi.org/10.2174/1570159X18666200905143550] [PMID: 32888271]
[105]
Cao, L.; Cao, X.; Zhou, Y.; Nagpure, B.V.; Wu, Z-Y.; Hu, L.F.; Yang, Y.; Sethi, G.; Moore, P.K.; Bian, J-S. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav. Immun., 2018, 73, 603-614.
[http://dx.doi.org/10.1016/j.bbi.2018.07.005] [PMID: 29981830]
[106]
Sen, T.; Saha, P.; Jiang, T.; Sen, N. Sulfhydration of AKT triggers Tau-phosphorylation by activating glycogen synthase kinase 3β in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2020, 117(8), 4418-4427.
[http://dx.doi.org/10.1073/pnas.1916895117] [PMID: 32051249]
[107]
Saha, S.; Chakraborty, P.K.; Xiong, X.; Dwivedi, S.K.; Mustafi, S.B.; Leigh, N.R.; Ramchandran, R.; Mukherjee, P.; Bhattacharya, R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration. FASEB J., 2016, 30(1), 441-456.
[http://dx.doi.org/10.1096/fj.15-278648] [PMID: 26405298]
[108]
Dunah, A.W.; Jeong, H.; Griffin, A.; Kim, Y-M.; Standaert, D.G.; Hersch, S.M.; Mouradian, M.M.; Young, A.B.; Tanese, N.; Krainc, D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 2002, 296(5576), 2238-2243.
[http://dx.doi.org/10.1126/science.1072613] [PMID: 11988536]
[109]
Marutani, E.; Yamada, M.; Ida, T.; Tokuda, K.; Ikeda, K.; Kai, S.; Shirozu, K.; Hayashida, K.; Kosugi, S.; Hanaoka, K.; Kaneki, M.; Akaike, T.; Ichinose, F. Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J. Am. Heart Assoc., 2015, 4(11), e002125.
[http://dx.doi.org/10.1161/JAHA.115.002125] [PMID: 26546573]
[110]
Li, Y-L.; Wu, P-F.; Chen, J-G.; Wang, S.; Han, Q-Q.; Li, D.; Wang, W.; Guan, X-L.; Li, D.; Long, L.H.; Huang, J.G.; Wang, F. Activity-dependent sulfhydration signal controls N-methyl-D-aspartate subtype glutamate receptor-dependent synaptic plasticity via increasing D-serine availability. Antioxid. Redox Signal., 2017, 27(7), 398-414.
[http://dx.doi.org/10.1089/ars.2016.6936] [PMID: 28051338]
[111]
Vandiver, M.S.; Paul, B.D.; Xu, R.; Karuppagounder, S.; Rao, F.; Snowman, A.M.; Ko, H.S.; Lee, Y.I.; Dawson, V.L.; Dawson, T.M.; Sen, N.; Snyder, S.H. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun., 2013, 4, 1626.
[http://dx.doi.org/10.1038/ncomms2623] [PMID: 23535647]
[112]
Xie, Z-Z.; Shi, M-M.; Xie, L.; Wu, Z-Y.; Li, G.; Hua, F.; Bian, J-S. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid. Redox Signal., 2014, 21(18), 2531-2542.
[http://dx.doi.org/10.1089/ars.2013.5604] [PMID: 24766279]
[113]
Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun., 1997, 237(3), 527-531.
[http://dx.doi.org/10.1006/bbrc.1997.6878] [PMID: 9299397]
[114]
Huang, S.; Li, H.; Ge, J. A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway. Int. J. Cardiol. Heart Vasc., 2015, 7, 51-57.
[http://dx.doi.org/10.1016/j.ijcha.2015.01.010] [PMID: 28785645]
[115]
Chang, L.; Geng, B.; Yu, F.; Zhao, J.; Jiang, H.; Du, J.; Tang, C. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids, 2008, 34(4), 573-585.
[http://dx.doi.org/10.1007/s00726-007-0011-8] [PMID: 18071843]
[116]
Bar-Or, D.; Curtis, C.G.; Sullivan, A.; Rael, L.T.; Thomas, G.W.; Craun, M.; Bar-Or, R.; Maclean, K.N.; Kraus, J.P. Plasma albumin cysteinylation is regulated by cystathionine β-synthase. Biochem. Biophys. Res. Commun., 2004, 325(4), 1449-1453.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.191] [PMID: 15555590]
[117]
Sun, J.; Aponte, A.M.; Menazza, S.; Gucek, M.; Steenbergen, C.; Murphy, E. Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovasc. Res., 2016, 110(1), 96-106.
[http://dx.doi.org/10.1093/cvr/cvw037] [PMID: 26907390]
[118]
Barbato, J.C.; Catanescu, O.; Murray, K.; DiBello, P.M.; Jacobsen, D.W. Targeting of metallothionein by L-homocysteine: a novel mechanism for disruption of zinc and redox homeostasis. Arterioscler. Thromb. Vasc. Biol., 2007, 27(1), 49-54.
[http://dx.doi.org/10.1161/01.ATV.0000251536.49581.8a] [PMID: 17082481]
[119]
Briggs, R.G.; Fee, J.A. Sulfhydryl reactivity of human erythrocyte superoxide dismutase. On the origin of the unusual spectral properties of the protein when prepared by a procedure utilizing chloroform and ethanol for the precipitation of hemoglobin. Biochim. Biophys. Acta, 1978, 537(1), 100-109.
[http://dx.doi.org/10.1016/0005-2795(78)90606-2] [PMID: 718975]
[120]
de Beus, M.D.; Chung, J.; Colón, W. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci., 2004, 13(5), 1347-1355.
[http://dx.doi.org/10.1110/ps.03576904] [PMID: 15096637]
[121]
Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr., 2006, 83(2), 456S-460S.
[http://dx.doi.org/10.1093/ajcn/83.2.456S] [PMID: 16470012]
[122]
Xie, L.; Gu, Y.; Wen, M.; Zhao, S.; Wang, W.; Ma, Y.; Meng, G.; Han, Y.; Wang, Y.; Liu, G.; Moore, P.K.; Wang, X.; Wang, H.; Zhang, Z.; Yu, Y.; Ferro, A.; Huang, Z.; Ji, Y. Hydrogen sulfide induces keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes, 2016, 65(10), 3171-3184.
[http://dx.doi.org/10.2337/db16-0020] [PMID: 27335232]
[123]
Gomes, E.; Duarte, R.; Reis, R.P.; Cândido, A.; Cardim, N.; Correia, M.J.; Castela, S.; Cordeiro, R.; Ramos, A.; Lobo, J.L.; Correia, J.F.M. Homocysteine increase after acute myocardial infarction--can it explain the differences between case-control and cohort studies? Rev. Port. Cardiol., 2002, 21(5), 575-581.
[PMID: 12174520]
[124]
Zinellu, A.; Sotgia, S.; Scanu, B.; Deiana, L.; Talanas, G.; Terrosu, P.; Carru, C. Low density lipoprotein S-homocysteinylation is increased in acute myocardial infarction patients. Clin. Biochem., 2012, 45(4-5), 359-362.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.12.017] [PMID: 22240067]
[125]
Donnarumma, E.; Trivedi, R.K.; Lefer, D.J. Protective actions of H2S in acute myocardial infarction and heart failure. Compr. Physiol., 2017, 7(2), 583-602.
[http://dx.doi.org/10.1002/cphy.c160023] [PMID: 28333381]
[126]
Cortes-Canteli, M.; Paul, J.; Norris, E.H.; Bronstein, R.; Ahn, H.J.; Zamolodchikov, D.; Bhuvanendran, S.; Fenz, K.M.; Strickland, S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron, 2010, 66(5), 695-709.
[http://dx.doi.org/10.1016/j.neuron.2010.05.014] [PMID: 20547128]
[127]
Ahn, H.J.; Zamolodchikov, D.; Cortes-Canteli, M.; Norris, E.H.; Glickman, J.F.; Strickland, S. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21812-21817.
[http://dx.doi.org/10.1073/pnas.1010373107] [PMID: 21098282]
[128]
Chung, Y.C.; Kruyer, A.; Yao, Y.; Feierman, E.; Richards, A.; Strickland, S.; Norris, E.H. Hyperhomocysteinemia exacerbates Alzheimer’s disease pathology by way of the β-amyloid fibrinogen interaction. J. Thromb. Haemost., 2016, 14(7), 1442-1452.
[http://dx.doi.org/10.1111/jth.13340] [PMID: 27090576]
[129]
Khodadadi, S.; Riazi, G.H.; Ahmadian, S.; Hoveizi, E.; Karima, O.; Aryapour, H. Effect of N-homocysteinylation on physicochemical and cytotoxic properties of amyloid β-peptide. FEBS Lett., 2012, 586(2), 127-131.
[http://dx.doi.org/10.1016/j.febslet.2011.12.018] [PMID: 22200570]
[130]
Karima, O.; Riazi, G.; Khodadadi, S.; Aryapour, H.; Khalili, M.A.; Yousefi, L.; Moosavi-Movahedi, A.A. Altered tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro. FEBS Lett., 2012, 586(21), 3914-3919.
[http://dx.doi.org/10.1016/j.febslet.2012.09.024] [PMID: 23041345]
[131]
Olas, B.; Kontek, B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem. Biol. Interact., 2014, 220, 20-24.
[http://dx.doi.org/10.1016/j.cbi.2014.06.001] [PMID: 24929049]
[132]
Giovinazzo, D.; Bursac, B.; Sbodio, J.I.; Nalluru, S.; Vignane, T.; Snowman, A.M.; Albacarys, L.M.; Sedlak, T.W.; Torregrossa, R.; Whiteman, M.; Filipovic, M.R.; Snyder, S.H.; Paul, B.D. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc. Natl. Acad. Sci. USA, 2021, 118(4), e2017225118.
[http://dx.doi.org/10.1073/pnas.2017225118] [PMID: 33431651]
[133]
Ji, D.; Luo, C.; Liu, J.; Cao, Y.; Wu, J.; Yan, W.; Xue, K.; Chai, J.; Zhu, X.; Wu, Y.; Liu, H.; Wang, W. Insufficient S-sulfhydration of methylenetetrahydrofolate reductase contribute to the progress of hyperhomocysteinemia. Antioxid. Redox Signal., 2021, 36(1-3), 1-14.
[http://dx.doi.org/10.1089/ars.2021.0029] [PMID: 34409847]
[134]
Kamat, P.K.; Kyles, P.; Kalani, A.; Tyagi, N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood–brain barrier disruption, and synaptic disorder. Mol. Neurobiol., 2016, 53(4), 2451-2467.
[http://dx.doi.org/10.1007/s12035-015-9212-4] [PMID: 26019015]
[135]
Stroylova, Y.Y.; Semenyuk, P.I.; Asriyantz, R.A.; Gaillard, C.; Haertlé, T.; Muronetz, V.I. Creation of catalytically active particles from enzymes crosslinked with a natural bifunctional agent--homocysteine thiolactone. Biopolymers, 2014, 101(9), 975-984.
[http://dx.doi.org/10.1002/bip.22514] [PMID: 24912753]
[136]
Mir, S.; Sen, T.; Sen, N. Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol. Cell, 2014, 56(6), 786-795.
[http://dx.doi.org/10.1016/j.molcel.2014.10.019] [PMID: 25435139]