Detection of Oncometabolite Nicotine Imine in the Nail of Oral Cancer Patients; Predicted as an Inhibitor of DNMT1

Page: [301 - 309] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Nicotine-metabolized product nicotine imine is suggested to play a role in metabolic changes occurring in oral cancer. There is a significant gap in the detection of oncometabolite nicotine imine in biological fluids and nails of oral cancer patients. Oncometabolites are designated as metabolites that are usually elevated in cancer cells compared to normal cells. Interestingly, a direct or indirect link is missing that establishes a role of nicotine imine in pro-cancer cellular events, including global DNA hypomethylation, a potential metabolic-epigenetic axis in oral cancer.

Methods: A novel vertical tube gel electrophoresis (VTGE) system assisted purification and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based identification of nicotine imine in the nails of oral cancer patients were conducted. Further, nicotine imine was evaluated for its molecular interactions with various methyltransferases, including DNA methyltransferase 1 (DNMT1), by molecular docking and molecular dynamics (MD) simulations.

Results: Data suggested the presence of nicotine imine in the nails of oral cancer patients. Molecular docking and MD simulations revealed a specific binding affinity of nicotine imine with DNMT1. Binding with nicotine imine is within the CXCC regulatory domain of DNMT1, including key residues as ARG690, PRO574, VAL658, PRO692 and ALA695. Similar binding residues are displayed by DNMT1 inhibitor 5'-Aza-2'-deoxycytidine.

Conclusion: Nicotine imine is suggested as a predictive biomarker for oral cancer patients, and this finding is first of its kind. Molecular docking and dynamics simulation propose the role of nicotine imine as an inhibitor of DNMT1. This work supports the involvement of synergistic pro-tumor metabolic-epigenomic axis by nicotine imine that may contribute towards potential mutagenesis of normal squamous epithelium.

Keywords: Metabolites, Biomarkers, Nails, Oral cancer, Epigenetic modification, Metabolic reprogramming

Graphical Abstract

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Jiang X, Wu J, Wang J, Huang R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob Induc Dis 2019; 12: 17-29.
[3]
Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol 2020; 102: 104551.
[http://dx.doi.org/10.1016/j.oraloncology.2019.104551] [PMID: 31986342]
[4]
Sarode G, Maniyar N, Sarode SC, Jafer M, Patil S, Awan KH. Epidemiologic aspects of oral cancer. Dis Mon 2020; 66(12): 100988.
[http://dx.doi.org/10.1016/j.disamonth.2020.100988] [PMID: 32605720]
[5]
Hecht SS. Carcinogen biomarkers for lung or oral cancer chemoprevention trials. IARC Sci Publ 2001; 154: 245-55.
[PMID: 11220664]
[6]
Kovacic P, Cooksy A. Iminium metabolite mechanism for nicotine toxicity and addiction: Oxidative stress and electron transfer. Med Hypotheses 2005; 64(1): 104-11.
[http://dx.doi.org/10.1016/j.mehy.2004.03.048] [PMID: 15533623]
[7]
Nakajima M. Smoking behavior and related cancers: the role of CYP2A6 polymorphisms. Curr Opin Mol Ther 2007; 9(6): 538-44.
[PMID: 18041664]
[8]
Khariwala SS, Ma B, Ruszczak C, et al. High level of tobacco carcinogen-derived dna damage in oral cells is an independent predictor of oral/head and neck cancer risk in smokers. Cancer Prev Res (Phila) 2017; 10(9): 507-13.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0140] [PMID: 28679497]
[9]
Benowitz NL, Hukkanen J, Jacob P III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 2009; (192): 29-60.
[http://dx.doi.org/10.1007/978-3-540-69248-5_2] [PMID: 19184645]
[10]
von Weymarn LB, Retzlaff C, Murphy SE. CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine Δ5‘(1’)iminium ion. J Pharmacol Exp Ther 2012; 343(2): 307-15.
[http://dx.doi.org/10.1124/jpet.112.195255] [PMID: 22869927]
[11]
Chang CM, Edwards SH, Arab A, Del Valle-Pinero AY, Yang L, Hatsukami DK. Biomarkers of tobacco exposure: Summary of an FDA-sponsored public workshop. Cancer Epidemiol Biomarkers Prev 2017; 26(3): 291-302.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0675] [PMID: 28151705]
[12]
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7(1): 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[13]
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134(5): 703-7.
[http://dx.doi.org/10.1016/j.cell.2008.08.021] [PMID: 18775299]
[14]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[15]
Kim J, DeBerardinis RJ. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab 2019; 30(3): 434-46.
[http://dx.doi.org/10.1016/j.cmet.2019.08.013] [PMID: 31484055]
[16]
Jiang E, Xu Z, Wang M, et al. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 2019; 33(4): 5690-703.
[http://dx.doi.org/10.1096/fj.201802226R] [PMID: 30698991]
[17]
Wu Y, Siadaty MS, Berens ME, Hampton GM, Theodorescu D. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene 2008; 27(52): 6679-89.
[http://dx.doi.org/10.1038/onc.2008.264] [PMID: 18724390]
[18]
Kilgore JA, Du X, Melito L, et al. Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem 2013; 288(27): 19673-84.
[http://dx.doi.org/10.1074/jbc.M112.443895] [PMID: 23671287]
[19]
Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol 2013; 9(5): 300-6.
[http://dx.doi.org/10.1038/nchembio.1204] [PMID: 23455543]
[20]
Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 2016; 17(5): 284-99.
[http://dx.doi.org/10.1038/nrg.2016.13] [PMID: 26972587]
[21]
Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res 2016; 44(18): 8556-75.
[http://dx.doi.org/10.1093/nar/gkw723] [PMID: 27521372]
[22]
Miletić V, Odorčić I, Nikolić P, Svedružić ŽM. In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt1. PLoS One 2017; 12(4): e0174410.
[http://dx.doi.org/10.1371/journal.pone.0174410] [PMID: 28399172]
[23]
Kraus D, Yang Q, Kong D, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 2014; 508(7495): 258-62.
[http://dx.doi.org/10.1038/nature13198] [PMID: 24717514]
[24]
Crujeiras AB, Pissios P, Moreno-Navarrete JM, et al. An epigenetic signature in adipose tissue is linked to nicotinamide N-methyltransferase gene expression. Mol Nutr Food Res 2018; 24: e1700933.
[http://dx.doi.org/10.1002/mnfr.201700933] [PMID: 29688621]
[25]
Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301(5895): 89-92.
[http://dx.doi.org/10.1038/301089a0] [PMID: 6185846]
[26]
Lopez-Serra L, Esteller M. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 2008; 98(12): 1881-5.
[http://dx.doi.org/10.1038/sj.bjc.6604374] [PMID: 18542062]
[27]
Sina AA, Carrascosa LG, Liang Z, et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun 2018; 9(1): 4915.
[http://dx.doi.org/10.1038/s41467-018-07214-w] [PMID: 30514834]
[28]
Yu X, Ma R, Wu Y, Zhai Y, Li S. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Front Genet 2018; 9: 394.
[http://dx.doi.org/10.3389/fgene.2018.00394] [PMID: 30283496]
[29]
Zhang X, Feng H, Li D, Liu S, Amizuka N, Li M. Identification of differentially expressed genes induced by aberrant methylation in oral squamous cell carcinomas using integrated bioinformatic analysis. Int J Mol Sci 2018; 19(6): 1698.
[http://dx.doi.org/10.3390/ijms19061698] [PMID: 29875348]
[30]
Mahmood N, Rabbani SA. Targeting DNA hypomethylation in malignancy by epigenetic therapies. Adv Exp Med Biol 2019; 1164: 179-96.
[http://dx.doi.org/10.1007/978-3-030-22254-3_14] [PMID: 31576549]
[31]
Yu J, Xie T, Wang Z, et al. DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov Today 2019; 24(12): 2323-31.
[http://dx.doi.org/10.1016/j.drudis.2019.08.006] [PMID: 31494187]
[32]
Oyoo-Okoth E, Admiraal W, Osano O, Ngure V, Kraak MH, Omutange ES. Monitoring exposure to heavy metals among children in Lake Victoria, Kenya: environmental and fish matrix. Environ Saf 2010; 73(7): 1797-803.
[http://dx.doi.org/10.1016/j.ecoenv.2010.07.040] [PMID: 20705339]
[33]
Alves A, Covaci A, Voorspoels S. Method development for assessing the human exposure to organophosphate flame retardants in hair and nails. Chemosphere 2017; 168: 692-8.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.006] [PMID: 27836264]
[34]
Cappelle D, Neels H, De Keukeleire S, et al. Ethyl glucuronide in keratinous matrices as biomarker of alcohol use: A correlation study between hair and nails. Forensic Sci Int 2017; 279: 187-91.
[http://dx.doi.org/10.1016/j.forsciint.2017.08.022] [PMID: 28892761]
[35]
Sharma NK, Kumar A, Waghmode A. Design of vertical tube electrophoretic system and method to fractionate small molecular weight compounds using polyacrylamide gel matrix. Patent application number no: INA 201921000760 The Indian patent official Journal No- 19/2018 2019; 9035.
[36]
Mitruka M, Gore CR, Kumar A, Sarode SC, Sharma NK. Undetectable free aromatic amino acids in nails of breast carcinoma: Biomarker discovery by a novel metabolite purification VTGE system. Front Oncol 2020; 10: 908.
[http://dx.doi.org/10.3389/fonc.2020.00908] [PMID: 32695662]
[37]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[38]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[39]
DSV3. Discovery studio visualizer v3.0. Accelrys software inc. 2010.
[40]
Schrödinger release 2019-4: Desmond molecular dynamics system, D E Shaw research. New York, NY 2019.
[41]
Schrödinger Release 2019-4: Maestro, Schrödinger, LLC. New York, NY 2019.
[42]
Schyman P, Liu R, Desai V, Wallqvist A. vNN Web Server for ADMET Predictions. Front Pharmacol 2017; 8: 889.
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[43]
Berkman CE, Park SB, Wrighton SA, Cashman JR. In vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem Pharmacol 1995; 50(4): 565-70.
[http://dx.doi.org/10.1016/0006-2952(95)00168-Y] [PMID: 7646564]
[44]
Koskela S, Hakkola J, Hukkanen J, et al. Expression of CYP2A genes in human liver and extrahepatic tissues. Biochem Pharmacol 1999; 57(12): 1407-13.
[http://dx.doi.org/10.1016/S0006-2952(99)00015-5] [PMID: 10353262]
[45]
Jackson-Grusby L, Laird PW, Magge SN, Moeller BJ, Jaenisch R. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 1997; 94(9): 4681-5.
[http://dx.doi.org/10.1073/pnas.94.9.4681] [PMID: 9114051]
[46]
Maslov AY, Lee M, Gundry M, et al. 5-aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1. Oncogene 2012; 31(50): 5172-9.
[http://dx.doi.org/10.1038/onc.2012.9] [PMID: 22349820]
[47]
Wright EP, Lamparska K, Smith SS, Waller ZAE. Substitution of cytosine with guanylurea decreases the stability of i-motif DNA. Biochemistry 2017; 56(36): 4879-83.
[http://dx.doi.org/10.1021/acs.biochem.7b00628] [PMID: 28853563]
[48]
McDaniel YZ, Patterson SE, Mansky LM. Distinct dual antiviral mechanism that enhances hepatitis B virus mutagenesis and reduces viral DNA synthesis. Antiviral Res 2019; 170: 104540.
[http://dx.doi.org/10.1016/j.antiviral.2019.104540] [PMID: 31247245]