Pharmacogenomics of Antihypertensive Drugs in Brazil: Recent Progress and Clinical Implications

Page: [1263 - 1275] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: The available antihypertensive drugs are effective and well tolerated agents. However, only about half of patients with treated hypertension achieve appropriate blood pressure control. Genetic and non-genetic factors contribute to the interindividual variability of the therapeutic response.

Objective: This review constitutes a comprehensive update of the pharmacogenomics of antihypertensive drugs and their clinical implications in Brazil.

Results: Twenty-five studies explored the influence of gene variants on drug response in patients with primary, resistant, or gestational hypertension. Variants in BDKRB2, NOS3, PRKCA, and VEGFA influenced the response to enalapril in patients with primary hypertension. AGT and MMP2 variants were associated with a high risk of resistance to antihypertensive treatment, whereas NOS2 variants were related to low risk. Moreover, NAT2 slow acetylators showed an increased response to hydralazine in patients with resistant hypertension. HMOX1, NAMPT, MMP9, NOS3, and TIMP1 variants might be markers of drug responsiveness in hypertensive or preeclamptic pregnant women. Power and replication of studies, polygenic nature of the response to therapy, and treatment with multiple drugs were important challenges to identify genetic predictors of antihypertensive response in Brazil.

Conclusion: Pharmacogenomic studies in Brazilian cohorts provide some evidence of variants, mainly in pharmacodynamics genes, which influence the response to antihypertensive drugs. However, some findings are limited by cohort size or therapeutic scheme and may be influenced by interactions with other genetic and non-genetic factors. Therefore, further investigations are needed to elucidate the contribution of pharmacogenomics to the efficacy and safety of antihypertensive therapy.

Keywords: Antihypertensive drugs, gestational hypertension, pharmacogenomics, primary hypertension, resistant hypertension, Brazilian, gene variants.

[1]
Fuchs, F.D.; Whelton, P.K. High blood pressure and cardiovascular disease. Hypertension, 2020, 75(2), 285-292.
[2]
Kario, K. management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring. Hypertension, 2020, 76(3), 640-650.
[3]
Alshami, A.; Romero, C.; Avila, A.; Varon, J. Management of hypertensive crises in the elderly. J. Geriatr. Cardiol., 2018, 15(7), 504-512.
[4]
Chow, C.K.; Gupta, R. Blood pressure control: a challenge to global health systems. Lancet, 2019, 394, 613-615.
[5]
Zhou, B.; Danaei, G.; Stevens, G.A. Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: an analysis of 123 nationally representative surveys. Lancet, 2019, 394(10199), 639-651.
[http://dx.doi.org/10.1016/S0140-6736(19)31145-6]
[6]
Rysz, J.; Franczyk, B. Rysz-Górzyńska, M.; Gluba-Brzózka, A. Pharmacogenomics of hypertension treatment. Int. J. Mol. Sci., 2020, 21(13), 1-26.
[http://dx.doi.org/10.3390/ijms21134709]
[7]
Malachias, M.V.B.; Gomes, M.A.M.; Nobre, F.; Alessi, A.; Feitosa, A.D.; Coelho, E.B. 7th Brazilian Guideline of Arterial Hypertension: Chapter 2 - Diagnosis and Classification. Arq. Bras. Cardiol., 2016, 107(3), 7-13.
[8]
Prieto, M.C.; Gonzalez, A.A.; Visniauskas, B.; Navar, L.G. The evolving complexity of the collecting duct renin–angiotensin system in hypertension. Nat. Rev. Nephrol., 2021, 17(7), 481-492.
[9]
Arendse, L.B.; Jan Danser, A.H.; Poglitsch, M. Novel therapeutic approaches targeting the renin- angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev., 2019, 71(4), 539-570.
[http://dx.doi.org/10.1124/pr.118.017129]
[10]
Singh, K.D. Karnik, SS Angiotensin Type 1 Receptor Blockers in Heart Failure. Curr. Drug Targets, 2019, 21(2), 125-131.
[11]
Malachias, M.V.B.; Paulo César Veiga Jardim, P.C.V.; Almeida, F.A.; Lima Júnior, E.; Feitosa, G.S. Pharmacological treatment. Arq. Bras. Cardiol., 2016, 107(3), 35-43.
[12]
Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical renin-angiotensin system in kidney physiology. Compr. Physiol., 2014, 4(3), 1201-1228.
[http://dx.doi.org/10.1002/cphy.c130040]
[13]
Lau, J.; Rousseau, J.; Kwon, D.; Bénard, F.; Lin, K.S. A systematic review of molecular imaging agents targeting bradykinin B1 and B2 receptors. Pharmaceuticals, 2020, 13(8), 1-20.
[14]
Erdös, E.G.; Tan, F.; Skidgel, R.A. Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension, 2010, 55(2), 214-220.
[15]
Ancion, A.; Tridetti, J.; Nguyen Trung, M-L.; Oury, C.; Lancellotti, P. A review of the role of bradykinin and nitric oxide in the cardioprotective action of angiotensin-converting enzyme inhibitors: focus on perindopril. Cardiol. Ther., 2019, 8(2), 179-191.
[http://dx.doi.org/10.1007/s40119-019-00150-w]
[16]
Wzgarda, A.; Kleszcz, R.; Prokop, M. Unknown face of known drugs – what else can we expect from angiotensin converting enzyme inhibitors? Eur. J. Pharmacol., 2017, 797, 9-19.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.031]
[17]
Moraes, C.F.; Souza, E.R.; Souza, V.C. A common polymorphism in the renin angiotensin system is associated with differential outcome of antihypertensive pharmacotherapy prescribed to Brazilian older women. Clin. Chim. Acta, 2008, 396(1-2), 70-75.
[http://dx.doi.org/10.1016/j.cca.2008.07.002]
[18]
Silva, P.S.; Fontana, V.; Luizon, M.R. ENOS and BDKRB2 genotypes affect the antihypertensive responses to enalapril. Eur. J. Clin. Pharmacol., 2013, 69(2), 167-177.
[http://dx.doi.org/10.1007/s00228-012-1326-2]
[19]
Oliveira-Paula, G.H.; Luizon, M.R.; Lacchini, R. Gene–Gene Interactions Among PRKCA, NOS3 and BDKRB2 Polymorphisms Affect the Antihypertensive Effects of Enalapril. Basic Clin. Pharmacol. Toxicol., 2017, 120(3), 284-291.
[http://dx.doi.org/10.1111/bcpt.12682]
[20]
Luo, K.; Yang, P.; Xu, G. Risk of bradykinin B2 receptor -58T/C gene polymorphism on hypertension: A meta-analysis. Nephrology, 2016, 21(8), 655-662.
[21]
Cotta Filho, C.K.; Oliveira-Paula, G.H.; Rondon Pereira, V.C.; Lacchini, R. Clinically relevant endothelial nitric oxide synthase polymorphisms and their impact on drug response. Expert Opin. Drug Metab. Toxicol., 2020, 16(10), 927-951.
[http://dx.doi.org/10.1080/17425255.2020.1804857]
[22]
Zhai, Z.; Wang, Z.; Wang, L.; Chen, S.; Ren, H.; Wang, D. Relationship between inducible NOS single- nucleotide polymorphisms and hypertension in Han Chinese. Herz, 2018, 43(5), 461-465.
[http://dx.doi.org/10.1007/s00059-017-4591-0]
[23]
Nikkari, S.T.; Määttä, K.M.; Kunnas, T.A. Functional inducible nitric oxide synthase gene variants associate with hypertension a case-control study in a finnish population-the TAMRISK study. Med. (United States), 2015, 94(46), e1958.
[24]
Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med., 2000, 6(5), 347-373.
[http://dx.doi.org/10.1007/BF03401781]
[25]
Li, Q.; Youn, J.Y.; Cai, H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J. Hypertens., 2015, 33(6), 1128-1136.
[http://dx.doi.org/10.1097/HJH.0000000000000587]
[26]
Nakayama, M.; Yasue, H.; Yoshimura, M. T-786 → C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation, 1999, 99(22), 2864-2870.
[http://dx.doi.org/10.1161/01.CIR.99.22.2864]
[27]
Oliveira-Paula, G.H.; Tanus-Santos, J.E. Nitrite-stimulated gastric formation of s-nitrosothiols as an antihypertensive therapeutic strategy. Curr. Drug Targets, 2018, 20(4), 431-443.
[http://dx.doi.org/10.2174/1389450119666180816120816]
[28]
Salvi, E.; Kuznetsova, T.; Thijs, L. Target sequencing, cell experiments, and a population study establish endothelial nitric oxide synthase (eNOS) gene as hypertension susceptibility gene. Hypertension, 2013, 62(5), 844-852.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01428]
[29]
Oliveira-Paula, G.H.; Lacchini, R.; Luizon, M.R. Endothelial nitric oxide synthase tagSNPs influence the effects of enalapril in essential hypertension. Nitric Oxide -. Biol. Chem., 2016, 55-56, 62-69.
[30]
Kikkawa, U. The story of PKC: A discovery marked by unexpected twists and turns. IUBMB Life, 2019, 71(6), 697-705.
[http://dx.doi.org/10.1002/iub.1963]
[31]
Singh, R.K.; Kumar, S.; Gautam, P.K. Protein kinase C-α and the regulation of diverse cell responses. Biomol. Concepts, 2017, 8(3–4), 143-153.
[http://dx.doi.org/10.1515/bmc-2017-0005]
[32]
Partovian, C.; Zhuang, Z.; Moodie, K. PKCα activates eNOS and increases arterial blood flow in vivo. Circ. Res., 2005, 97(5), 482-487.
[http://dx.doi.org/10.1161/01.RES.0000179775.04114.45]
[33]
Liu, Z.; Khalil, R.A. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol., 2018, 153, 91-122.
[34]
Ringvold, H.C.; Khalil, R.A. Protein Kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv. Pharmacol., 2017, 203-301.
[35]
Balakumar, P.; Jagadeesh, G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell. Signal., 2014, 26(10), 2147-2160.
[http://dx.doi.org/10.1016/j.cellsig.2014.06.011]
[36]
Turner, S.T.; Boerwinkle, E.; O’Connell, J.R. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension, 2013, 62(2), 391-397.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00436]
[37]
Bates, D.O.; Beazley-Long, N.; Benest, A.V. Physiological role of vascular endothelial growth factors as homeostatic regulators. Compr. Physiol., 2018, 8(3), 955-979.
[http://dx.doi.org/10.1002/cphy.c170015]
[38]
Zito, C.; Manganaro, R.; Carerj, S.; Antonini-Canterin, F.; Benedetto, F. Peripheral artery disease and stroke. J. Cardiovasc. Echogr., 2020, 30(5), S17-S25.
[http://dx.doi.org/10.4103/jcecho.jcecho_4_19]
[39]
Oliveira-Paula, G.H.; Lacchini, R.; Fontana, V.; Silva, P.S.; Biagi, C.; Tanus-Santos, J.E. Polymorphisms in VEGFA gene affect the antihypertensive responses to enalapril. Eur. J. Clin. Pharmacol., 2015, 71(8), 949-957.
[http://dx.doi.org/10.1007/s00228-015-1872-5]
[40]
Wang, Y.; Huang, Q.; Liu, J. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: A meta-analysis. Oncotarget, 2017, 8(18), 30539-30551.
[41]
Malachias, M.V.B.; Rodrigues, C.I.S.; Muxfeldt, E.; Salles, G.F.; Moreno Júnior, H.; Gus, M. Resistant arterial hypertension. Arq. Bras. Cardiol., 2016, 107(3), 75-78.
[http://dx.doi.org/10.5935/abc.20160163]
[42]
Sethi, A.A.; Nordestgaard, B.G.; Tybæeg-Hansen, A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: A meta-analysis. Arterioscler. Thromb. Vasc. Biol., 2003, 23(7), 1269-1275.
[http://dx.doi.org/10.1161/01.ATV.0000079007.40884.5C]
[43]
Sarhan, N.M.; Shahin, M.H.; El Rouby, N.M. Effect of genetic and nongenetic factors on the clinical response to mineralocorticoid receptor antagonist therapy in Egyptians with heart failure. Clin. Transl. Sci., 2020, 13(1), 195-203.
[http://dx.doi.org/10.1111/cts.12702]
[44]
Yugar-Toledo, J.C.; Martin, J.F.V.; Krieger, J.E. Gene variation in resistant hypertension: Multilocus analysis of the angiotensin 1-converting enzyme, angiotensinogen, and endothelial nitric oxide synthase genes. DNA Cell Biol., 2011, 30(8), 555-564.
[http://dx.doi.org/10.1089/dna.2010.1156]
[45]
Sandrim, V.C.; Luizon, M.R.; Izidoro-Toledo, T.C.; Coelho, E.B.; Moreno, H.; Tanus-Santos, J.E. Functional VEGF haplotypes affect the susceptibility to hypertension. J. Hum. Hypertens., 2013, 27(1), 31-37.
[http://dx.doi.org/10.1038/jhh.2011.110]
[46]
Oliveira-Paula, G.H.; Lacchini, R.; Coeli-Lacchini, F.B.; Junior, H.M.; Tanus-Santos, J.E. Inducible nitric oxide synthase haplotype associated with hypertension and responsiveness to antihypertensive drug therapy. Gene, 2013, 515(2), 391-395.
[http://dx.doi.org/10.1016/j.gene.2012.12.059]
[47]
Wang, S.S.; Davis, S.; Cerhan, J.R. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis, 2006, 27(9), 1828-1834.
[http://dx.doi.org/10.1093/carcin/bgl013]
[48]
Fu, L.; Zhao, Y.; Lu, J. Functional single nucleotide polymorphism-1026C/A of inducible nitric oxide synthase gene with increased YY1-binding affinity is associated with hypertension in a Chinese Han population. J. Hypertens., 2009, 27(5), 991-1000.
[http://dx.doi.org/10.1097/HJH.0b013e3283294bec]
[49]
Sandrim, V.C.; Yugar-Toledo, J.C.; Desta, Z.; Flockhart, D.A.; Moreno, H.; Tanus-Santos, J.E. Endothelial nitric oxide synthase haplotypes are related to blood pressure elevation, but not to resistance to antihypertensive drug therapy. J. Hypertens., 2006, 24(12), 2393-2397.
[http://dx.doi.org/10.1097/01.hjh.0000251899.47626.4f]
[50]
Takeda, Y.; Demura, M.; Yoneda, T.; Takeda, Y. Dna methylation of the angiotensinogen gene, agt, and the aldosterone synthase gene, cyp11b2 in cardiovascular diseases. Int. J. Mol. Sci., 2021, 22(9)
[http://dx.doi.org/10.3390/ijms22094587]
[51]
Martinerie, L.; Munier, M.; Le Menuet, D.; Meduri, G.; Viengchareun, S.; Lombès, M. The mineralocorticoid signaling pathway throughout development: Expression, regulation and pathophysiological implications. Biochimie, 2013, 95(2), 148-157.
[52]
Pathan, M.K.; Cohen, D.L. Resistant hypertension: where are we now and where do we go from here? Integr. Blood Press. Control, 2020, 13, 83-93.
[PMID: 32801854]
[53]
Gray, Z.; Tu, W.; Chertow, G.M.; Bhalla, V. Aldosterone sensitivity: An opportunity to explore the pathogenesis of hypertension. Am. J. Physiol. Renal Physiol., 2021, 320(3), F325-F335.
[http://dx.doi.org/10.1152/ajprenal.00415.2020]
[54]
Fontana, V.; De Faria, A.P.C.; Barbaro, N.R. Modulation of aldosterone levels by -344 C/T CYP11B2 polymorphism and spironolactone use in resistant hypertension. J. Am. Soc. Hypertens., 2014, 8(3), 146-151.
[http://dx.doi.org/10.1016/j.jash.2013.12.001]
[55]
Lacchini, R.; Sabha, M.; Coeli, F.B. T allele of -344C/T polymorphism in aldosterone synthase gene is not associated with resistant hypertension. Hypertens. Res., 2009, 32(2), 159-162.
[http://dx.doi.org/10.1038/hr.2008.36]
[56]
Hanukoglu, A.; Vargas-Poussou, R.; Landau, Z.; Yosovich, K.; Hureaux, M.; Zennaro, M.C. Renin- aldosterone system evaluation over four decades in an extended family with autosomal dominant pseudohypoaldosteronism due to a deletion in the NR3C2 gene. J. Steroid Biochem. Mol. Biol., 2020, 204, 105755.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105755]
[57]
Epstein, M. Aldosterone and mineralocorticoid receptor signaling as determinants of cardiovascular and renal injury: from hans selye to the present. Am. J. Nephrol., 2021, 52(3), 209-216.
[http://dx.doi.org/10.1159/000515622]
[58]
Jaisser, F.; Farman, N. Emerging roles of the mineralocorticoid receptor in pathology: Toward new paradigms in clinical pharmacology. Pharmacol. Rev., 2016, 68(1), 49-75.
[http://dx.doi.org/10.1124/pr.115.011106]
[59]
Sueta, D.; Yamamoto, E.; Tsujita, K. Mineralocorticoid receptor blockers: novel selective nonsteroidal mineralocorticoid receptor antagonists. Curr. Hypertens. Rep., 2020, 22(3)
[http://dx.doi.org/10.1007/s11906-020-1023-y]
[60]
Buonafine, M.; Bonnard, B.; Jaisser, F. Mineralocorticoid receptor and cardiovascular disease. Am. J. Hypertens., 2018, 31(11), 1165-1174.
[http://dx.doi.org/10.1093/ajh/hpy120]
[61]
Ritter, A.M.V.; Fontana, V.; De Faria, A.P.C. Association of mineralocorticoid receptor polymorphism I180V with left ventricular hypertrophy in resistant hypertension. Am. J. Hypertens., 2016, 29(2), 245-250.
[http://dx.doi.org/10.1093/ajh/hpv070]
[62]
Nikolov, A.; Popovski, N. Role of Gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel), 2021, 11(3), 480.
[http://dx.doi.org/10.3390/diagnostics11030480]
[63]
Hardy, E.; Hardy-Sosa, A.; Fernandez-Patron, C. MMP-2: Is too low as bad as too high in the cardiovascular system? [Internet] Am. J. Physiol. -. Hear. Circ. Physiol., 2018, 315(5), H1332-H1340.
[http://dx.doi.org/10.1152/ajpheart.00198.2018]
[64]
Sabbatini, A.R.; Barbaro, N.R.; de Faria, A.P. Matrix metalloproteinase-2 − 735C/T polymorphism is associated with resistant hypertension in a specialized outpatient clinic in Brazil. Gene, 2017, 620, 23-29.
[http://dx.doi.org/10.1016/j.gene.2017.04.004]
[65]
Dofara, S.G.; Chang, S.L.; Diorio, C. Gene polymorphisms and circulating levels of MMP-2 and MMP- 9: A review of their role in breast cancer risk. Anticancer Res., 2020, 40(7), 3619-3631.
[http://dx.doi.org/10.21873/anticanres.14351]
[66]
Pham, D.V.; Park, P.H. Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch. Pharm. Res., 2020, 43(10), 997-1016.
[http://dx.doi.org/10.1007/s12272-020-01274-7]
[67]
Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol., 2019, 15(6), 367-385.
[http://dx.doi.org/10.1038/s41581-019-0145-4]
[68]
Tanaka, M. Improving obesity and blood pressure. Hypertens. Res., 2020, 43(2), 79-89.
[http://dx.doi.org/10.1038/s41440-019-0348-x]
[69]
de Faria, A.P.C.; Modolo, R.; Sabbatini, A.R. Adiponectin -11377C/G and +276G/T polymorphisms affect adiponectin levels but do not modify responsiveness to therapy in resistant hypertension. Basic Clin. Pharmacol. Toxicol., 2015, 117(1), 65-72.
[http://dx.doi.org/10.1111/bcpt.12368]
[70]
de Faria, A.P.; Ritter, A.M.V.; Sabbatini, A.R.; Modolo, R.; Moreno, H. Effects of leptin and leptin receptor SNPs on clinical- and metabolic-related traits in apparent treatment-resistant hypertension. Blood Press., 2017, 26(2), 74-80.
[http://dx.doi.org/10.1080/08037051.2016.1192945]
[71]
Bruckmueller, H.; Cascorbi, I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin. Drug Metab. Toxicol., 2021, 17(4), 369-396.
[http://dx.doi.org/10.1080/17425255.2021.1876661]
[72]
Bruhn, O.; Cascorbi, I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1337-1354.
[http://dx.doi.org/10.1517/17425255.2014.952630]
[73]
Xiao, Q.; Zhou, Y.; Lauschke, V.M. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics, 2020, 21(18), 1299-1310.
[74]
Xiao, Q.; Zhou, Y.; Lauschke, V.M. Ethnogeographic and inter-individual variability of human ABC transporters. Hum. Genet., 2020, 139(5), 623-646.
[http://dx.doi.org/10.1007/s00439-020-02150-6]
[75]
Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.W.A. “silent” polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315(5811), 525-528.
[76]
Genvigir, F.D.V.; Cerda, A.; Hirata, T.D.C.; Hirata, M.H.; Hirata, R.D.C. Mycophenolic acid pharmacogenomics in kidney transplantation. J. Transl. Genet. Genomics, 2020, 4, 320-355.
[77]
Lacchini, R.; Figueiredo, V.N.; Demacq, C. MDR-1 C3435T polymorphism may affect blood pressure in resistant hypertensive patients independently of its effects on aldosterone release. JRAAS -. J. Renin Angiotensin Aldosterone Syst., 2014, 15(2), 170-176.
[78]
Collins, K.S.; Raviele, A.L.J.; Elchynski, A.L. Genotype-guided hydralazine therapy. Am. J. Nephrol., 2020, 51(10), 764-776.
[http://dx.doi.org/10.1159/000510433]
[79]
Spinasse, L.B.; Santos, A.R.; Suffys, P.N.; Muxfeldt, E.S.; Salles, G.F. Different phenotypes of the NAT2 gene influences hydralazine antihypertensive response in patients with resistant hypertension. Pharmacogenomics, 2014, 15(2), 169-178.
[http://dx.doi.org/10.2217/pgs.13.202]
[80]
Malachias, M.V.B.; de Figueiredo, C.E.P.; Sass, N.; Antonello, I.C.; Torloni, M.R.; Bortolotto, M.R de FL. Arterial hypertension in pregnancy. Arq. Bras. Cardiol., 2016, 107(3), 49-52.
[81]
Luizon, M.R.; Palei, A.C.; Cavalli, R.C.; Sandrim, V.C. Pharmacogenetics in the treatment of preclampsia: Current findings, challenges and perspectives. Pharmacogenomics, 2017, 18(6), 571-583.
[82]
Luizon, M.R.; Pereira, D.A.; Sandrim, V.C. Pharmacogenomics of hypertension and preeclampsia: Focus on gene-gene interactions. Front. Pharmacol., 2018, 9, 168.
[http://dx.doi.org/10.3389/fphar.2018.00168]
[83]
Melchiorre, K.; Giorgione, V.; Thilaganathan, B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol., 2021, S0002-9378(20), 31198-31204.
[84]
Abraham, N.G.; Kappas, A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev., 2008, 60(1), 79-127.
[http://dx.doi.org/10.1124/pr.107.07104]
[85]
Martínez-Casales, M.; Hernanz, R.; Alonso, M.J. Vascular and macrophage heme oxygenase-1 in hypertension: a mini-review. Front. Physiol., 2021, 12, 643435.
[http://dx.doi.org/10.3389/fphys.2021.643435]
[86]
Nakasone, R.; Ashina, M.; Abe, S.; Tanimura, K.; Van Rostenberghe, H.; Fujioka, K. The role of heme oxygenase-1 promoter polymorphisms in perinatal disease. Int. J. Environ. Res. Public Health, 2021, 18(7)
[http://dx.doi.org/10.3390/ijerph18073520]
[87]
Sandrim, V.C.; Luizon, M.R.; Pilan, E. Interaction between NOS3 and HMOX1 on antihypertensive drug responsiveness in preeclampsia. Rev. Bras. Ginecol. Obstet., 2020, 42(8), 460-467.
[http://dx.doi.org/10.1055/s-0040-1712484]
[88]
Barančík, M.; Grešová, L.; Barteková, M.; Dovinová, I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol. Res., 2016, 65, S1-S10.
[http://dx.doi.org/10.33549/physiolres.933403]
[89]
Chen, B.; Lu, Y.; Chen, Y.; Cheng, J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J. Endocrinol., 2015, 225(3), R83-R99.
[http://dx.doi.org/10.1530/JOE-14-0662]
[90]
Karan, A.; Bhakkiyalakshmi, E.; Jayasuriya, R.; Sarada, D.V.L.; Ramkumar, K.M. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol. Res., 2020, 153, 104601.
[http://dx.doi.org/10.1016/j.phrs.2019.104601]
[91]
Palei, A.C.T.; Sandrim, V.C.; Amaral, L.M. Effects of matrix metalloproteinase (mmp)-2 polymorphisms on responsiveness to antihypertensive therapy of women with hypertensive disorders of pregnancy. Basic Clin. Pharmacol. Toxicol., 2012, 111(4), 262-267.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00905.x]
[92]
Palei, A.C.T.; Sandrim, V.C.; Amaral, L.M. Matrix metalloproteinase-9 polymorphisms affect plasma MMP-9 levels and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharmacogenomics J., 2012, 12(6), 489-498.
[http://dx.doi.org/10.1038/tpj.2011.31]
[93]
Watson, C.; Spiers, J.P.; Waterstone, M. Investigation of association of genetic variant rs3918242 of matrix metalloproteinase-9 with hypertension, myocardial infarction and progression of ventricular dysfunction in Irish Caucasian patients with diabetes: a report from the STOP-HF follow-up programme. BMC Cardiovasc. Disord., 2021, 21(1), 87.
[http://dx.doi.org/10.1186/s12872-021-01860-7]
[94]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; La Rosa, C.C.D. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 1-53.
[http://dx.doi.org/10.3390/ijms21249739]
[95]
Andreucci, M.; Provenzano, M.; Faga, T. Aortic aneurysms, chronic kidney disease and metalloproteinases. Biomolecules, 2021, 11(2), 1-13.
[96]
Masciantonio, M.G.; Lee, C.K.S.; Arpino, V.; Mehta, S.; Gill, S.E. The balance between metalloproteinases and timps: critical regulator of microvascular endothelial cell function in health and disease. Prog. Mol. Biol. Transl. Sci., 2017, 147, 101-131.
[97]
Luizon, M.R.; Palei, A.C.T.; Sandrim, V.C. Tissue inhibitor of matrix metalloproteinase-1 polymorphism, plasma TIMP-1 levels, and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharmacogenomics J., 2014, 14(6), 535-541.
[http://dx.doi.org/10.1038/tpj.2014.26]
[98]
Dakroub, A.; Nasser, S.A.; Kobeissy, F. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J. Cell. Physiol., 2021, 236(9), 6282-6296.
[99]
Luizon, M.R.; Palei, A.C.T.; Belo, V.A. Gene-gene interactions in the NAMPT pathway, plasma visfatin/NAMPT levels, and antihypertensive therapy responsiveness in hypertensive disorders of pregnancy. Pharmacogenomics J., 2017, 17(5), 427-434.
[http://dx.doi.org/10.1038/tpj.2016.35]
[100]
Sandrim, V.C.; Palei, A.C.T.; Cavalli, R.C. eNOS haplotypes associated with gestational hypertension or preeclampsia. Pharmacogenomics, 2008, 9(10), 1467-1473.
[http://dx.doi.org/10.2217/14622416.9.10.1467]
[101]
Sandrim, V.C.; Palei, A.C.T.; Luizon, M.R.; Izidoro-Toledo, T.C.; Cavalli, R.C.; Tanus-Santos, J.E. ENOS haplotypes affect the responsiveness to antihypertensive therapy in preeclampsia but not in gestational hypertension. Pharmacogenomics J., 2010, 10(1), 40-45.
[http://dx.doi.org/10.1038/tpj.2009.38]
[102]
Sandrim, V.C.; Palei, A.C.T.; Eleuterio, N.; Tanus-Santos, J.E.; Cavalli, R.C. Antihypertensive therapy in preeclampsia is not modulated by VEGF polymorphisms. Arch. Gynecol. Obstet., 2015, 291(4), 799-803.
[http://dx.doi.org/10.1007/s00404-014-3475-2]
[103]
Banerjee, A.; Moreno, A.; Pata, J.; Falson, P.; Prasad, R. ABCG: a new fold of ABC exporters and a whole new bag of riddles! Adv. Protein Chem. Struct. Biol., 2021, 123, 163-191.
[http://dx.doi.org/10.1016/bs.apcsb.2020.09.006]
[104]
Homolya, L. Medically important alterations in transport function and trafficking of abcg2. Int. J. Mol. Sci., 2021, 22(6), 1-30.
[http://dx.doi.org/10.3390/ijms22062786]
[105]
Malfará, B.N.; Benzi, J.R de L. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod. Toxicol., 2019, 85, 1-5.
[106]
Vardanyan, R.; Hruby, V. Antihypertensive drugs. In: Synthesis of Best-Seller Drugs; , 2016; pp. 329-356.
[107]
Suarez-Kurtz, G.; Paula, D.P.; Struchiner, C.J. Pharmacogenomic implications of population admixture: Brazil as a model case. Pharmacogenomics, 2014, 15(2), 209-219.
[108]
Suarez-Kurtz, G.; Parra, E.J. Population diversity in pharmacogenetics: a latin American perspective. Adv. Pharmacol., 2018, 83, 133-154.
[109]
de Souza, A.M.; Resende, S.S.; de Sousa, T.N.; de Brito, C.F.A. A systematic scoping review of the genetic ancestry of the brazilian population. Genet. Mol. Biol., 2019, 42(3), 495-508.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0076]
[110]
Cunningham, P.N.; Chapman, A.B. The future of pharmacogenetics in the treatment of hypertension. Pharmacogenomics, 2019, 20(3), 129-132.
[111]
Oliveira-Paula, G.H.; Pereira, S.C.; Tanus-Santos, J.E.; Lacchini, R. Pharmacogenomics and hypertension: Current insights. Pharm. Genomics Pers. Med., 2019, 12, 341-359.
[http://dx.doi.org/10.2147/PGPM.S230201]
[112]
Eadon, M.T.; Kanuri, S.H.; Chapman, A.B. Pharmacogenomic studies of hypertension: Paving the way for personalized antihypertensive treatment. Expert Rev. Precis. Med. Drug Dev., 2018, 3(1), 33-47.
[http://dx.doi.org/10.1080/23808993.2018.1420419]
[113]
Ruilope, L.M. Current challenges in the clinical management of hypertension. Nat. Rev. Cardiol., 2012, 9(5), 267-275.
[http://dx.doi.org/10.1038/nrcardio.2011.157]
[114]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96]
[115]
McDonagh, E.M.; Whirl-Carrillo, M.; Garten, Y.; Altman, R.B.; Klein, T.E. From pharmacogenomic knowledge acquisition to clinical applications: The PharmGKB as a clinical pharmacogenomic biomarker resource. Biomarkers Med., 2011, 5(6), 795-806.
[http://dx.doi.org/10.2217/bmm.11.94]