Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated
intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance
genes are the critical elements that make microorganisms resistant to conventional antibiotics.
A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic
purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration
of new molecules has become a continuous endeavour. Many such molecules are at various stages of
the investigation. A surprisingly high number of new molecules are currently in the stage of phase 3
clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin,
plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin,
nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere,
relebactam, tedizolid, cadazolid, sutezolid, triclosan, and afabiacin. This article aims to review the
investigational and recently approved antibacterials with a focus on their structure, mechanisms of
action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases
of clinical trials is also discussed while attributing the same to various causal factors.
Keywords:
Antimicrobials, microbial resistance, macrolides, aminoglycosides, pleuromutilins, tetracyclines, fluoroquinolones, oxazolidinones, fatty acid biosynthesis inhibitors, cephalosporins.
Graphical Abstract
[26]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G.K.; Braidy, N.; Bucar, F.; Cifuentes, A.; D’Onofrio, G.; Bodkin, M.; Diederich, M.; Dinkova-Kostova, A.T.; Efferth, T.; El Bairi, K.; Arkells, N.; Fan, T-P.; Fiebich, B.L.; Freissmuth, M.; Georgiev, M.I.; Gibbons, S.; Godfrey, K.M.; Gruber, C.W.; Heer, J.; Huber, L.A.; Ibanez, E.; Kijjoa, A.; Kiss, A.K.; Lu, A.; Macias, F.A.; Miller, M.J.S.; Mocan, A.; Müller, R.; Nicoletti, F.; Perry, G.; Pittalà, V.; Rastrelli, L.; Ristow, M.; Russo, G.L.; Silva, A.S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities.
Nat. Rev. Drug Discov., 2021,
20(3), 200-216.
[
http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID:
33510482]
[117]
Heck, J.V.; Leanza, W.J.; Ratcliffe, R.W.; Salzmann, T.N.; Wilkening, R.R.; Szymonifka, M.J.; Shankaran, K. 9-Deoxo-8a-aza-8ahomoerythromycin a derivatives modified at the 4"- and 8apositions. CA2064634A1 1992.
[137]
McGuire, J.; Boniece, W.; Higgens, C.; Hoehn, M.; Stark, W.; Westhead, J.; Wolfe, R. Tylosin, a new antibiotic: I. Microbiological studies. Antibiot. Chemother. (Northfield Ill.), 1961, 11(5), 320-327.
[175]
Paterno, M.R.; Brunner, L.S.; Norton, S.E.; Blondeau, J.M. In vitro activity of SS734, a novel fluoroquinolone for bacterial conjunctivitis, against ocular isolates from a Phase II clinical study. Invest. Ophthalmol. Vis. Sci., 2007, 48(13), 766-766.
[180]
McGuirk, P.; Jefson, M.; Shryock, E.; Schaaf, T. The synthesis and antibacterial activity of danofloxacin (CP–76,136): A new quinolone for Veterinary Medicine. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989, p. 1187.
[192]
Stern, R.M. Antimicrobial 6,7-dihydro-5,8-dimethyl-9-fluoro-1-oxo-1H,5H-benzo (ij) quinolizine-2-carboxylic acid and derivatives. U.S. Patent 4472405A, 1984.
[194]
Sanzgiri, Y.D.; Knaub, S.R.; Riley, C.M. Lomefloxacin.In: Analytical Profiles of Drug Substances and Excipients; Brittain, H.G., Ed.; Academic Press, 1994, pp. 321-369.
[209]
Bartel, S.T.J.; Himmler, T.; Rast, H-G.; Hallenbach, W.; Heinen, E.; Pirro, F.; Scheer, M.; Stegemann, M.; Stupp, H-P.; Wetzstein, H-G. Possibly substituted 8-cyano-1-cyclopropyl-7-(2,8-
diazabicyclo-[4.3.0]-nonan-8-yl)-6-fluoro-1,4-dihydro-4-oxo-3-
quinolin carboxylic acids and their derivatives. U.S. Patent
6323213B1, 1997.
[211]
Lesher, G.Y. 1,4-Dihydro-4-oxo-7-pyridyl-3-quinolinecarboxylic acid derivatives. US patent U.S. Patent 3907808A, 1975.
[217]
Matsumoto, J-I.; Miyamoto, T.; Egawa, H.; Nakamura, S. 5-
substituted-6,8-difluoroquinolines useful as antibacterial agents.
U.S. Patent 4795751A, 1989.
[224]
Cheng, C.; Chen, M-L.; Tseng, C.; Uang, Y-S.; Huang, C-L.; Hsu, K-Y. A relative bioavailability study of 500 mg calcium p-aminosalicylate film coating tablet in healthy individuals. Yao Wu Shi Pin Fen Xi, 2014, 22, 242-247.
[239]
Ramanathan, M.R.; Howell, C.K.; Sanders, J.M. Drugs in tuberculosis and leprosy. In: Side Eff. Drugs Annu; , 2018; 40, pp. 363-376.
[241]
Bianchi, S.; Felder, E.; Tiepolo, U. Terizidone. A new Schiff base of D-cycloserine. In: Farmaco Prat; , 1965; 20, pp. (7)366-371.