Synthesis of Rutin Derivatives to Enhance Lipid Solubility and Development of Topical Formulation with a Validated Analytical Method

Page: [117 - 128] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Rutin is available on the market as a topical formulation for the treatment of several conditions, such as internal bleeding, hemorrhoids, and varicose veins. However, these gels have low solubility and limited bioavailability due to their decreased lipid solubility.

Objective: In this study, we aimed to synthesize potentially novel lipophilic rutin prodrugs. The suggested library of these rutin prodrugs includes changing the solubility profile to facilitate rutin transport across biological barriers, thereby improving drug delivery through topical application.

Methods: Six rutin derivatives were synthesized based on the ester prodrug strategy. The synthesized compounds were formulated as topical ointments, and their permeability via Franz diffusion was measured. An ultraviolet (UV) analytical method was developed in our laboratories to quantify rutin derivatives both as raw materials and in final dosage forms. The analytical method was then validated.

Results: The results of Franz diffusion analyses showed that transdermal permeability increased by 10-fold for decaacetylated rutin compared to the other esterified rutins. A simple analytical method for the analysis of the formulated rutin ester was developed and validated. Moreover, the formulated ointment of decaacetylated rutin in our research laboratory was found to be stable under stability accelerated conditions. Synthesis of potentially more lipophilic compounds would yield novel rutin prodrugs suitable for topical formulation.

Conclusion: This project provides a synthetic approach for many similar natural products. The research idea and strategy followed in this research project could be adapted by pharmaceutical and herbal establishments.

Keywords: Decaacetylated rutin, validation, franz diffusion, transfusion, topical.

Graphical Abstract

[1]
Lahlou, M. Screening of natural products for drug discovery. Expert Opin. Drug Discov., 2007, 2(5), 697-705.
[http://dx.doi.org/10.1517/17460441.2.5.697]
[2]
Ganeshpurkar, A.; Saluja, A. K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025]
[3]
Brodowska, K. M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
[4]
Vinson, J. A.; Dabbagh, Y. A. Tea phenols: Antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins. Nutrition Research, 1998, 18(6), 1067-1075.
[http://dx.doi.org/10.1016/S0271-5317(98)00089-X]
[5]
Sunada, S.; Fujisawa, H.; Cartwright, I. M.; Maeda, J.; Brents, C. A.; Mizuno, K.; Aizawa, Y.; Kato, T. A.; Uesaka, M. Monoglucosyl-rutin as a potential radioprotector in mammalian cells. Mol. Med. Rep., 2014, 10(1), 10-14.
[http://dx.doi.org/10.3892/mmr.2014.2181]
[6]
Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol., 2000, 11(1), 43-47.
[7]
Kumar, S.; Mishra, A.; Pandey, A. K. Antioxidant mediated protective effect of parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern. Med., 2013, 13(1), 495154.
[http://dx.doi.org/10.1186/1472-6882-13-120]
[8]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10(4), 162750.
[9]
Hosseinzadeh, H.; Nassiri-Asl, M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J. Endocrinol. Invest., 2014, 37(9), 783-788.
[http://dx.doi.org/10.1007/s40618-014-0096-3]
[10]
Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (fagopyrumesculentummoench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 1999, 47(11), 4649-4652.
[11]
Huang, W.-y.; Zhang, H.-c.; Liu, W.-x.; Li, C.-y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in nanjing. J. Zhejiang Univ. Sci., 2012, 13(2), 94-102.
[http://dx.doi.org/10.1631/jzus.B1100137]
[12]
Abuajah, C. I.; Ogbonna, A. C.; Osuji, C. M. Functional components and medicinal properties of food: A review. J. Food Sci. Technol., 2015, 52(5), 2522-2529.
[http://dx.doi.org/10.1007/s13197-014-1396-5]
[13]
Serban, T. H. G. The isolation and identification of rutin from pharmaceutical products. Researchgate, 2016, 109-114.
[14]
Khalifa, T. I.; Muhtadi, F. J.; Hassan, M. M. A. Rutin. Analytical profiles of drug substances, 1983, 12, 623-681.
[http://dx.doi.org/10.1016/S0099-5428(08)60177-X]
[15]
Luo, H.; Jiang, B. H.; King, S. M.; Chen, Y. C. Inhibition of cell growth and vegf expression in ovarian cancer cells by flavonoids. Nutr Cancer, 2008, 60(6), 800-809.
[http://dx.doi.org/10.1080/01635580802100851]
[16]
Ratnam, D. V.; Ankola, D. D.; Bhardwaj, V.; Sahana, D. K.; Kumar, M. N. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015]
[17]
Russo, A.; Acquaviva, R.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Virgata, G.; Barcellona, M. L.; Vanella, A. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol. Toxicol., 2000, 16(2), 91-98.
[18]
Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509]
[19]
Boudina, S.; Abel, E. D. Diabetic cardiomyopathy revisited. Circulation, 2007, 115(25), 3213-3223.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.679597]
[20]
Das, S.; Rosazza, J.P.N. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod., 2006, 69(3), 499-508.
[21]
Biely, P.; Cziszarova, M.; Wong, K. K.; Fernyhough, A. Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16. Biotechnol. Lett., 2014, 36(11), 2249-2255.
[http://dx.doi.org/10.1007/s10529-014-1599-x]
[22]
Lauro, M. R.; Torre, M. L.; Maggi, L.; De Simone, F.; Conte, U.; Aquino, R. P. Fast- and slow-release tablets for oral administration of flavonoids: Rutin and quercetin. Drug Dev. Ind. Pharm., 2002, 28(4), 371-379.
[23]
N'Da, D. D. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules, 2014, 19(12), 20780-20807.
[http://dx.doi.org/10.3390/molecules191220780]
[24]
Baldisserotto, A.; Vertuani, S.; Bino, A.; De Lucia, D.; Lampronti, I.; Milani, R.; Gambari, R.; Manfredini, S. Design, synthesis and biological activity of a novel rutin analogue with improved lipid soluble properties. Bioorg. Med. Chem., 2015, 23(1), 264-271.
[http://dx.doi.org/10.1016/j.bmc.2014.10.023]
[25]
Di, L.; Kerns, E. H. Prodrugs. Drug-like properties, 2016, 471-485.
[http://dx.doi.org/10.1016/B978-0-12-801076-1.00039-3]
[26]
Ita, K. B. Prodrugs for transdermal drug delivery – trends and challenges. J. Drug Target., 2016, 24(8), 671-678.
[27]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[28]
Abualhasan, M.; Assali, M.; Jaradat, N.; Sarhan, T. Synthesis, formulation and analytical method validation of rutin derivative. Lett. Drug Des. Discov., 2019, 16(6), 685-695.
[http://dx.doi.org/10.2174/1570180816666181108114706]
[29]
Viskupicova, J.; Danihelova, M.; Ondrejovic, M.; Liptaj, T.; Sturdik, E. Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chemistry, 2010, 123(1), 45-50.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.125]
[30]
Han, Y.; Ding, Y.; Xie, D.; Hu, D.; Li, P.; Li, X.; Xue, W.; Jin, L.; Song, B. Design, synthesis, and antiviral activity of novel rutin derivatives containing 1, 4-pentadien-3-one moiety. Eur. J. Med. Chem., 2015, 92, 732-737.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.017] [PMID: 25618020]
[31]
Stuard, S.; Cesarone, M. R.; Belcaro, G.; Dugall, M.; Ledda, A.; Cacchio, M.; Ricci, A.; Ippolito, E.; Renzo, A. D.; Grossi, M. G. Five-year treatment of chronic venous insufficiency with o-(β-hydroxyethyl)-rutosides: Safety aspects. Int. J. Angiol., 2011, 17(03), 143-148.
[32]
You, H. J.; Ahn, H. J.; Ji, G. E. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger. J. Agric. Food Chem., 2010, 58(20), 10886-10892.
[33]
Sloan, K. B. Prodrugs: Topical and ocular drug delivery (drugs and the pharmaceutical sciences), 1st ed;
[34]
Simon, A.; Amaro, M. I.; Healy, A. M.; Cabral, L. M.; de Sousa, V. P. Comparative evaluation of rivastigmine permeation from a transdermal system in the franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int. J. Pharm., 2016, 512(1), 234-241.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.052]
[35]
Kulkarni, K. N.; Datta-Gupta, A. Estimating relative permeability from production data: A streamline approach. SPE Journal, 2013, 5(04), 402-411.
[36]
Snyder, L.R.; Glajch, J.L.; Kirkland, J.J. Practical HPLC Method Development; John Wiley & Sons: Nashville, TN, 1989.
[37]
Br, J. K. Understanding and implementing efficient analytical methods development and validation. 2003.
[38]
WHO. Guidelines for stability testing of pharmaceutical products containing well,established drug substances in conventional dosage forms. In: WHO Expert Committee on Specifications for Pharmaceutical Preparations, Technical Report Series; World Health Organization: Geneva, 1996; 863, pp. 65-79.
[39]
ICH. Good manufacturing practices for active pharmaceutical ingredients. International Conference on Harmonization, 2000,
[40]
F. R. Alsante KM, Hatajik TD, Lohr LL, Sharp TR, Snyder KD, Szczesny EJ. Degradation and impurity analysis for pharmaceutical drug candidates handbook of modern pharmaceutical analysis.85-172.Academic Press: Boston, 2001.
[41]
Christensen, J. M.; Chuong, M. C.; Le, H.; Pham, L.; Bendas, E. Hydrocortisone diffusion through synthetic membrane, mouse skin, and epiderm™ cultured skin. Arch. Drug Inf., 2011, 4(1), 10-21.
[42]
El-Kattan, A. F.; Asbill, C. S.; Kim, N.; Michniak, B. B. The effects of terpene enhancers on the percutaneous permeation of drugs with different lipophilicities. Int. J. Pharm., 2001, 215(1), 229-240.
[http://dx.doi.org/10.1016/S0378-5173(00)00699-2]
[43]
Xie, F.; Chai, J.-k.; Hu, Q.; Yu, Y.-h.; Ma, L.; Liu, L.-y.; Zhang, X.-l.; Li, B.-l.; Zhang, D.-h. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor. Int. J. Pharm., 2016, 507(1), 90-101.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.004]
[44]
Jenke, D. R. Chromatographic method validation: A review of current practices and procedures. I. General concepts and guidelines. J. Liq. Chromatogr. Relat. Technol., 1996, 19(5), 719-736.
[45]
Iqbal, D. N.; Ashraf, A.; Iqbal, M.; Nazir, A. Analytical method development and validation of hydrocortisone and clotrimazole in topical dosage form using rp-hplc. Future J. Pharm. Sci., 2020, 6(1), 49.
[http://dx.doi.org/10.1186/s43094-020-00065-7]
[46]
Baby, A. R.; Maciel, C. P. M.; Kaneko, T. M.; Velasco, M. V. R. UV spectrophotometric determination of bioflavonoids from a semisolid pharmaceutical dosage form containing trichilia catigua adr. Juss and ptychopetalum olacoides bentham standardized extract: Analytical method validation and statistical procedures. J. AOAC Int., 2019, 89(6), 1532-1537.
[47]
Aubry, A-F.; Tattersall, P.; Ruan, J. Development of stability indicating methods Handbook of stability testing in pharmaceutical development: Regulations, methodologies, and best practices; Huynh-Ba, K., Ed.; Springer New York: New York, NY, 2009, pp. 139-161.
[http://dx.doi.org/10.1007/978-0-387-85627-8_7]
[48]
Ioele, G.; Tavano, L.; Muzzalupo, R.; De Luca, M.; Ragno, G. Stability-indicating methods for nsaids in topical formulations and photoprotection in host-guest matrices. Mini Rev. Med. Chem., 2016, 16(8), 676-682.
[http://dx.doi.org/10.2174/1389557515666150709111744]
[49]
Ioele, G.; Tavano, L.; De Luca, M.; Ragno, G.; Picci, N.; Muzzalupo, R. Photostability and ex-vivo permeation studies on diclofenac in topical niosomal formulations. Int. J. Pharm., 2015, 494(1), 490-497.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.053]
[50]
Liederer, B. M.; Borchardt, R. T. Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci., 2006, 95(6), 1177-1195.
[http://dx.doi.org/10.1002/jps.20542]
[51]
Ma, X.; Huang, X.; Huang, G.; Li, L.; Wang, Y.; Luo, X.; Boothman, D. A.; Gao, J. Prodrug strategy to achieve lyophilizable, high drug loading micelle formulations through diester derivatives of β-lapachone. Adv. Healthc. Mater., 2014, 3(8), 1210-1216.
[http://dx.doi.org/10.1002/adhm.201300590]
[52]
Assali, M.; Joulani, M.; Awwad, R.; Assad, M.; Almasri, M.; Kittana, N.; Zaid, A. N. Facile synthesis of ciprofloxacin prodrug analogues to improve its water solubility and antibacterial activity. ChemistrySelect, 2016, 1(6), 1132-1135.
[http://dx.doi.org/10.1002/slct.201600091]
[53]
Assali, M.; Kittana, N.; Qasem, S. A.; Adas, R.; Saleh, D.; Arar, A.; Zohud, O. Combretastatin a4-camptothecin micelles as combination therapy for effective anticancer activity. RSC Advances, 2019, 9(2), 1055-1061.
[http://dx.doi.org/10.1039/C8RA08794F]
[54]
Assali, M.; Shawahna, R.; Dayyeh, S.; Shareef, M.; Alhimony, I-A. Dexamethasone-diclofenac loaded polylactide nanoparticles: Preparation, release and anti-inflammatory activity. Eur. J. Pharm. Sci., 2018, 122, 179-184.
[http://dx.doi.org/10.1016/j.ejps.2018.07.012] [PMID: 29981402]
[55]
Assali, M.; Shawahna, R.; Alhawareen, R.; Najajreh, H.; Rabaya, O.; Faroun, M.; Zyoud, A.; Hilal, H. Self-assembly of diclofenac prodrug into nanomicelles for enhancing the anti-inflammatory activity. RSC Advances, 2021, 11(36), 22433-22438.
[http://dx.doi.org/10.1039/D1RA03804D]