Fabrication of Cefixime Nanoparticles Loaded Films and their Ex Vivo Antimicrobial Effect on Periodontitis Patient’s Saliva

Page: [361 - 371] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aim: This study was designed to prepare and evaluate cefixime-loaded nanoparticles containing low molecular weight chitosan films for the enhanced topical treatment of periodontitis.

Methods: To fabricate the enhanced antimicrobial films, a nanoprecipitation method for cefixime nanoparticles followed by a solvent evaporation method for these nanoparticles loaded films were adopted in this study. Nine batches of nanoparticles (NPs) with different concentrations of ethyl cellulose and polyvinyl alcohol were prepared and evaluated. Furthermore, nine batches of optimized NPs loaded films with different concentrations of low molecular weight chitosan and glycerol were fabricated and evaluated. Optimized NPs loaded films were assessed for their antimicrobial activity against the periodontitis patient’s saliva samples.

Results: The FT-IR spectroscopy and XRD study revealed that there was no interaction between the drug and all other excipients and the drug remained amorphous form in chitosan film. The SEM study revealed that the prepared NPs were spherical in shape and uniformly distributed in chitosan film. In vitro drug release study revealed the NPs have a sustained release profile up to 8 days and NPs loaded films have up to 11 days. The conventional marketed mouth wash shows a low inhibition zone of 5.70 ± 0.043 mm, whereas NPs loaded film shows a higher inhibition zone of 6.72 ± 0.063 mm against periodontal microorganisms present in the patient’s saliva. The stability study revealed that the optimized NPs loaded film shows no dramatic change in drug release profile and folding endurance after six months.

Conclusion: This present study highlights the possible usage of cefixime NPs loaded films in enhanced periodontal treatment.

Keywords: Cefixime, nanoparticles, nanoparticles loaded film, periodontal diseases, ex vivo antimicrobial study, stabilitystudy

Graphical Abstract

[1]
Ciancio SG. Site specific delivery of antimicrobial agents for periodontal disease. Gen Dent 1999; 47(2): 172-178, 181.
[PMID: 10687494]
[2]
Rahman S, Ahuja A, Ali J, Khar RK. Site specific delivery systems for the treatment of periodontitis. Indian J Pharm Sci 2003; 65(2): 106-12.
[3]
Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Deliv 2016; 23(2): 363-77.
[http://dx.doi.org/10.3109/10717544.2014.935531] [PMID: 25005586]
[4]
Goyal G, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease. Crit Rev Ther Drug Carrier Syst 2014; 31(2): 89-119.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008117] [PMID: 24940625]
[5]
Mazzarino L, Borsali R, Lemos-Senna E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J Pharm Sci 2014; 103(11): 3764-71.
[http://dx.doi.org/10.1002/jps.24142] [PMID: 25187001]
[6]
Zambrano LMG, Brandao DA, Rocha FRG, et al. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci Rep 2018; 8(1): 6652.
[http://dx.doi.org/10.1038/s41598-018-24866-2] [PMID: 29703905]
[7]
Parmar R, Chauhan P, Chavda J, Shah S. Formulation and evaluation of cefixime strips for chronic periodontal treatment. Asian J Pharm 2016; 10(4): 232-8.
[8]
Dukić S, Matijević S, Daković D, Cutović T. Comparison of cefixime and amoxicillin plus metronidazole in the treatment of chronic periodontitis. Vojnosanit Pregl 2016; 73(6): 526-30.
[http://dx.doi.org/10.2298/VSP150326133D] [PMID: 27498443]
[9]
Tada DB, Singh S, Nagesha D, et al. Chitosan film containing poly(D,L-lactic-co-glycolic acid) nanoparticles: a platform for localized dual-drug release. Pharm Res 2010; 27(8): 1738-45.
[http://dx.doi.org/10.1007/s11095-010-0176-9] [PMID: 20521086]
[10]
Cui F, He C, Yin L, et al. Nanoparticles loaded in consumable polymeric oral films: a smart dosage form design for oral administration. Biomacromolecules 2007; 8(9): 2845-50.
[http://dx.doi.org/10.1021/bm070339e] [PMID: 17665945]
[11]
Ilea A, Andrei V, Feurdean CN, et al. Saliva, a magic biofluid available for multilevel assessment and a mirror of general health-a systematic review. Biosensors (Basel) 2019; 9(1): 27.
[http://dx.doi.org/10.3390/bios9010027] [PMID: 30769890]
[12]
Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Comparative analysis of bacterial profiles in unstimulated and stimulated saliva samples. J Oral Microbiol 2016; 8(1): 30112.
[http://dx.doi.org/10.3402/jom.v8.30112] [PMID: 26987356]
[13]
Kõll-Klais P, Mändar R, Leibur E, Marcotte H, Hammarström L, Mikelsaar M. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 2005; 20(6): 354-61.
[http://dx.doi.org/10.1111/j.1399-302X.2005.00239.x] [PMID: 16238595]
[14]
Parmar R, Chauhan P. Potentiating antibacterial effect of locally deliver caffeine nanoparticles on systemically used antibiotics in periodontal treatments. Asian J Pharm 2020; 14(2): 229-35.
[15]
Sonam CH, Chaudhary H, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol 2014; 64: 99-105.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.032] [PMID: 24315945]
[16]
Lima AMF, Andreani L, Soldi V, Borsali R. Influence of plasticizer addition and crosslinking process on morphology, water absorption and mechanical properties of sodium alginate films. Quim Nova 2007; 30(4): 832-7.
[http://dx.doi.org/10.1590/S0100-40422007000400014]
[17]
Rahmat N, Ahmad Z, Abdul R. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew Sustain Energy Rev 2010; 14(3): 987-1000.
[http://dx.doi.org/10.1016/j.rser.2009.11.010]
[18]
Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/ in vivo evaluation. AAPS PharmSciTech 2011; 12(4): 1335-47.
[http://dx.doi.org/10.1208/s12249-011-9701-3] [PMID: 21979886]
[19]
Eouani C, Piccerelle P, Prinderre P, Bourret E, Joachim J. In-vitro comparative study of buccal mucoadhesive performance of different polymeric films. Eur J Pharm Biopharm 2001; 52(1): 45-55.
[http://dx.doi.org/10.1016/S0939-6411(01)00146-1] [PMID: 11438423]
[20]
Mura P, Corti G, Cirri M, Maestrelli F, Mennini N, Bragagni M. Development of mucoadhesive films for buccal administration of flufenamic acid: effect of cyclodextrin complexation. J Pharm Sci 2010; 99(7): 3019-29.
[http://dx.doi.org/10.1002/jps.22068] [PMID: 20127823]
[21]
Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 2010; 82(2): 291-8.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.054]
[22]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[23]
Huang C, Neoh KG, Wang L, Kang ET, Shuter B. Surface functionalization of superparamagnetic nanoparticles for the development of highly efficient magnetic resonance probe for macrophages. Contrast Media Mol Imaging 2011; 6(4): 298-307.
[http://dx.doi.org/10.1002/cmmi.427] [PMID: 21287679]
[24]
Pan J, Wan D, Gong J. PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. Chem Commun (Camb) 2011; 47(12): 3442-4.
[http://dx.doi.org/10.1039/c0cc05520d] [PMID: 21301716]
[25]
Thanh NTK, Raton B, Eds. Magnetic nanoparticles: from fabrication to clinical applications. Boca Raton: CRC Press 2011.
[26]
Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicological considerations of clinically applicable nanoparticles. Nano Today 2011; 6: 585-607.
[http://dx.doi.org/10.1016/j.nantod.2011.10.001] [PMID: 23293661]
[27]
Brun A, Moignot N, Colombier ML, Dursun E. Emerging nanotechnology in non-surgical periodontal therapy in animal models: a systematic review. Nanomaterials (Basel) 2020; 10(7): 1414.
[http://dx.doi.org/10.3390/nano10071414] [PMID: 32698391]
[28]
Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 2019; 16(4): 331-45.
[http://dx.doi.org/10.1080/17425247.2019.1587408] [PMID: 30807242]
[29]
Eftekhari A, Dizaj SM, Chodari L, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103: 1018-27.
[http://dx.doi.org/10.1016/j.biopha.2018.04.126] [PMID: 29710659]
[30]
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complementary Altern Med 2015; 2015: 246012.
[31]
Ikinci G, Senel S, Akincibay H, et al. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 2002; 235(1-2): 121-7.
[http://dx.doi.org/10.1016/S0378-5173(01)00974-7] [PMID: 11879747]
[32]
Costa EM, Silva S, Pina C, Tavaria FK, Pintado M. Antimicrobial effect of chitosan against periodontal pathogens biofilms. SOJ Microbiol Infect Dis 2014; 2(1): 1-6.
[33]
Arancibia R, Maturana C, Silva D, et al. Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 2013; 92(8): 740-5.
[http://dx.doi.org/10.1177/0022034513494816] [PMID: 23788611]
[34]
Pokrowiecki R, Wojnarowicz J, Zareba T, et al. Nanoparticles and human saliva: a step towards drug delivery systems for dental and craniofacial biomaterials. Int J Nanomedicine 2019; 14: 9235-57.
[http://dx.doi.org/10.2147/IJN.S221608] [PMID: 31819427]