Plasma Concentration Profiles for Hepatotoxic Pyrrolizidine Alkaloid Senkirkine in Humans Extrapolated from Rat Data Sets Using a Simplified Physiologically Based Pharmacokinetic Model

Page: [64 - 69] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Aim: The main aim of the current study was to obtain forward dosimetry assessments of pyrrolizidine alkaloid senkirkine plasma and liver concentrations by setting up a human physiologically based pharmacokinetic (PBPK) model based on the limited information available.

Background: The risks associated with plant-derived pyrrolizidine alkaloids as natural toxins have been assessed.

Objective: The pyrrolizidine alkaloid senkirkine was investigated because it was analyzed in a European transcriptomics study of natural hepatotoxins and in a study of the alkaloidal constituents of traditional Japanese food plants Petasites japonicus. The in silico human plasma and liver concentrations of senkirkine were modeled using doses reported for acute-term toxicity in humans.

Methods: Using a simplified PBPK model established using rat pharmacokinetic data, forward dosimetry was conducted. Since in vitro rat and human intrinsic hepatic clearances were similar; an allometric scaling approach was applied to rat parameters to create a human PBPK model.

Results: After oral administration of 1.0 mg/kg in rats in vivo, water-soluble senkirkine was absorbed and cleared from plasma to two orders of magnitude below the maximum concentration in 8 h. Human in silico senkirkine plasma concentration curves were generated after virtual daily oral administrations of 3.0 mg/kg senkirkine (the dose involved in an acute fatal hepatotoxicity case). A high concentration of senkirkine in the culture medium caused in vitro hepatotoxicity as evidenced by lactate dehydrogenase leakage from human hepatocyte-like HepaRG cells.

Conclusion: Higher virtual concentrations of senkirkine in human liver and plasma than those in rat plasma were estimated using the current rat and human PBPK models. Current simulations suggest that if P. japonicus (a water-soluble pyrrolizidine alkaloid-producing plant) is ingested daily as food, hepatotoxic senkirkine could be continuously present in human plasma and liver.

Keywords: PBPK modeling, allometric scaling, hepatotoxin, HepaRG, P. japonicus, toxins.

Graphical Abstract

[1]
Chen, T.; Mei, N.; Fu, P.P. Genotoxicity of pyrrolizidine alkaloids. J. Appl. Toxicol., 2010, 30(3), 183-196.
[PMID: 20112250]
[2]
Hirono, I.; Mori, H.; Yamada, K.; Hirata, Y.; Haga, M. Carcinogenic activity of petasitenine, a new pyrrolizidine alkaloid isolated from Petasites japonicus Maxim. J. Natl. Cancer Inst., 1977, 58(4), 1155-1157.
[http://dx.doi.org/10.1093/jnci/58.4.1155] [PMID: 191625]
[3]
Yamada, K.; Tatematsu, H.; Suzuki, M.; Hirata, Y.; Haga, M.; Hirono, I. Isolation and the structures of two new Alkaloids, Petasitenine and neopetasteinine from Petasites japonica Maxim. Chem. Lett., 1976, 5(5), 461-464.
[http://dx.doi.org/10.1246/cl.1976.461]
[4]
Yamanaka, H.; Nagao, M.; Sugimura, T.; Furuya, T.; Shirai, A.; Matsushima, T. Mutagenicity of pyrrolizidine alkaloids in the Salmonella/mammalian-microsome test. Mutat. Res., 1979, 68(3), 211-216.
[http://dx.doi.org/10.1016/0165-1218(79)90152-6] [PMID: 390394]
[5]
Neuman, M.G.; Cohen, L.; Opris, M.; Nanau, R.M.; Hyunjin, J. Hepatotoxicity of pyrrolizidine alkaloids. J. Pharm. Pharm. Sci., 2015, 18(4), 825-843.
[http://dx.doi.org/10.18433/J3BG7J] [PMID: 26626258]
[6]
Hirono, I.; Haga, M.; Fujii, M.; Matsuura, S.; Matsubara, N.; Nakayama, M.; Furuya, T.; Hikichi, M.; Takanashi, H.; Uchida, E.; Hosaka, S.; Ueno, I. Induction of hepatic tumors in rats by senkirkine and symphytine. J. Natl. Cancer Inst., 1979, 63(2), 469-472.
[PMID: 287835]
[7]
Mori, H.; Kawai, K.; Ohbayashi, F.; Bunai, Y.; Yamada, K.; Hirono, I. Some toxic properties of a carcinogenic pyrrolizidine alkaloid, petasitenine. J. Toxicol. Sci., 1984, 9(2), 143-149.
[http://dx.doi.org/10.2131/jts.9.143] [PMID: 6481824]
[8]
Mulder, P.P.J.; López, P.; Castellari, M.; Bodi, D.; Ronczka, S.; Preiss-Weigert, A.; These, A. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2018, 35(1), 118-133.
[http://dx.doi.org/10.1080/19440049.2017.1382726] [PMID: 28942718]
[9]
Kitajima, M.; Okabe, K.; Yoshida, M.; Nakabayashi, R.; Saito, K.; Kogure, N.; Takayama, H. New otonecine-type pyrrolizidine alkaloid from Petasites japonicus. J. Nat. Med., 2019, 73(3), 602-607.
[http://dx.doi.org/10.1007/s11418-019-01285-9] [PMID: 30784002]
[10]
EFSA. Scientific opinion on Pyrrolizidine alkaloids in food and feed. EFSA J., 2011, 9(11), 2406.
[11]
Ebmeyer, J.; Rasinger, J.D.; Hengstler, J.G.; Schaudien, D.; Creutzenberg, O.; Lampen, A.; Braeuning, A.; Hessel-Pras, S. Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study. Arch. Toxicol., 2020, 94(5), 1739-1751.
[http://dx.doi.org/10.1007/s00204-020-02779-2] [PMID: 32419051]
[12]
Wang, C.; Li, Y.; Gao, J.; He, Y.; Xiong, A.; Yang, L.; Cheng, X.; Ma, Y.; Wang, Z. The comparative pharmacokinetics of two pyrrolizidine alkaloids, senecionine and adonifoline, and their main metabolites in rats after intravenous and oral administration by UPLC/ESIMS. Anal. Bioanal. Chem., 2011, 401(1), 275-287.
[http://dx.doi.org/10.1007/s00216-011-5075-3] [PMID: 21573843]
[13]
Yanagi, M.; Kamiya, Y.; Murayama, N.; Banju, K.; Shimizu, M.; Yamazaki, H. Metabolic profiles for the pyrrolizidine alkaloid neopetasitenine and its metabolite petasitenine in humans extrapolated from rat in vivo and in vitro data sets using a simplified physiologically based pharmacokinetic model. J. Toxicol. Sci., 2021, 46(9), 391-399.
[http://dx.doi.org/10.2131/jts.46.391] [PMID: 34470991]
[14]
Kamiya, Y.; Handa, K.; Miura, T.; Ohori, J.; Shimizu, M.; Kitajima, M.; Shono, F.; Funatsu, K.; Yamazaki, H. An updated in silico prediction method for volumes of systemic circulation of 323 disparate chemicals for use in physiologically based pharmacokinetic models to estimate plasma and tissue concentrations after oral doses in rats. Chem. Res. Toxicol., 2021, 34(10), 2180-2183.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00249] [PMID: 34586804]
[15]
Edwards, S.W.; Preston, R.J. Systems biology and mode of action based risk assessment. Toxicol. Sci., 2008, 106(2), 312-318.
[http://dx.doi.org/10.1093/toxsci/kfn190] [PMID: 18791183]
[16]
Hayes, K.R.; Bradfield, C.A. Advances in toxicogenomics. Chem. Res. Toxicol., 2005, 18(3), 403-414.
[http://dx.doi.org/10.1021/tx0496690] [PMID: 15777080]
[17]
Miura, T.; Kamiya, Y.; Hina, S.; Kobayashi, Y.; Murayama, N.; Shimizu, M.; Yamazaki, H. Metabolic profiles of coumarin in human plasma extrapolated from a rat data set with a simplified physiologically based pharmacokinetic model. J. Toxicol. Sci., 2020, 45(11), 695-700.
[http://dx.doi.org/10.2131/jts.45.695] [PMID: 33132243]
[18]
Kamiya, Y.; Omura, A.; Hayasaka, R.; Saito, R.; Sano, I.; Handa, K.; Ohori, J.; Kitajima, M.; Shono, F.; Funatsu, K.; Yamazaki, H. Prediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning. Biochem. Pharmacol., 2021, 192, 114749.
[http://dx.doi.org/10.1016/j.bcp.2021.114749] [PMID: 34461115]
[19]
Ruan, J.; Yang, M.; Fu, P.; Ye, Y.; Lin, G. Metabolic activation of pyrrolizidine alkaloids: Insights into the structural and enzymatic basis. Chem. Res. Toxicol., 2014, 27(6), 1030-1039.
[http://dx.doi.org/10.1021/tx500071q] [PMID: 24836403]
[20]
Takanashi, H.; Umeda, M.; Hirono, I. Chromosomal aberrations and mutation in cultured mammalian cells induced by pyrrolizidine alkaloids. Mutat. Res., 1980, 78(1), 67-77.
[http://dx.doi.org/10.1016/0165-1218(80)90027-0] [PMID: 6991930]