A Review Article on the Therapeutic Potential of Medicinal Plants for Prevention and Treatment of Secondary Infection in Patients with COVID-19

Article ID: e201221199147 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

COVID-19 is an infectious disease caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) that has rapidly spread all over the world, causing an international health crisis. Earlier, various synthetic antiviral drugs and clinical therapies have been used to control viral infections, but at present, there is no specific treatment available for COVID-19 infection. Several drugs, like ritonavir, lopinavir, hydroxychloroquine, and chloroquine, have been proposed. India is a hub of medicinal plants, so there is a chance to find effective means to combat the COVID-19 pandemic. The medicinal herbal formulations may enhance immunity and help develop a powerful antiviral drug, which is urgently needed to control the outbreak of coronavirus. In this review article, we have discussed the epidemiology, clinical outcomes, treatment, and prevention of this novel epidemic coronavirus from the medicinal herbal formulation perspective. We have also emphasized the reported antiviral activity and immunity-boosting properties of the Indian medicinal plants. This article also suggests that the drug or formulation obtained from plant sources would have low fatal outcomes, exhibit quick response, and be safe in the management and prevention of this pandemic outbreak.

Keywords: Indian medicinal plants, COVID-19, clinical evidence, immunity booster, antiviral activity, infectious disease.

Graphical Abstract

[1]
Katta M, Rapaka S, Adireddi R, Emandi JR. A preliminary review on novel coronavirus disease: COVID-19. Coronaviruses 2020; 1(1): 90-7.
[http://dx.doi.org/10.2174/2666796701999200615155630]
[2]
COVID-19 situation update worldwide as of 16 June 2021. Available at: https://www.worldometers.info/coronavirus
[3]
Barupal T, Tak PK, Meena M. COVID-19: Morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario. Coronaviruses 2020; 1(1): 82-9.
[http://dx.doi.org/10.2174/2666796701999200617161348]
[4]
Doshi GM, Ved HS, Thakkar AP. Critical insight into the attributes of emerging novel coronavirus (COVID-19) in India and across the world. Coronaviruses 2020; 1(1): 49-56.
[http://dx.doi.org/10.2174/2666796701999200623172631]
[5]
Varala R, Bollikolla H. nCovid-19 in 2020: From despair to hope. Coronaviruses 2020; 1(1): 9-12.
[http://dx.doi.org/10.2174/2666796701999200621202839]
[6]
Banday AH, Shah SA, Ajaz SJ. Potential Immunotherapy against SARS-CoV-2: Strategy and status. Coronaviruses 2020; 1(1): 23-31.
[http://dx.doi.org/10.2174/2666796701999200625212040]
[7]
Sivaraman D, Pradeep PS, Manoharan SS, Bhat CR, Leela KV, Venugopal V. Revealing potential binding affinity of FDA approved therapeutics targeting main protease (3CLpro) in impairing novel coronavirus (SARSCoV- 2) replication that causes COVID-19. Coronaviruses 2020; 1(1): 98-107.
[http://dx.doi.org/10.2174/2666796701999200701122817]
[8]
Naqvi IH, Rizvi SNZ. The Comprehensive appraisal of COVID-19: Its’ clinical panorama from virology till management and beyond. Coronaviruses 2020; 1(1): 57-72.
[http://dx.doi.org/10.2174/2666796701999200701132336]
[9]
Raj S, Chandel V, Rathi B, Kumar D. Understanding the molecular mechanism(s) of SARS-CoV2 infection and propagation in human to discover potential preventive and therapeutic approach. Coronaviruses 2020; 1(1): 73-81.
[http://dx.doi.org/10.2174/2666796701999200617155013]
[10]
Kebede T, Kumar D, Sharma PK. Potential drug options for treatment of COVID-19: A review. Coronaviruses 2020; 1(1): 42-8.
[http://dx.doi.org/10.2174/2666796701999200701131604]
[11]
Stawicki S, Jeanmonod R, Miller A, et al. The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A joint American College of Academic International Medicine-World Academic Council of emergency medicine multidisciplinary COVID-19 working group consensus paper. J Glob Infect Dis 2020; 12(2): 47-93.
[http://dx.doi.org/10.4103/jgid.jgid_86_20] [PMID: 32773996]
[12]
Amawi H. COVID-19 pandemic: An overview of epidemiology, parthenogenesis, diagnostics and potential vaccines and therapeutics. Ther Deliv 2020; 11(4): 245-68.
[13]
Dhama K, Sharun K, Tiwari R, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020; 33: pp. (4)e00028-0.
[14]
Chan KW, Wong VT, Tang SCW. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese–Western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med 2020; 48(3): 737-62.
[http://dx.doi.org/10.1142/S0192415X20500378] [PMID: 32164424]
[15]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 1-4.
[16]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 183(6): 1735.
[http://dx.doi.org/10.1016/j.cell.2020.11.032]
[17]
Demogines A, Farzan M, Sawyer SL. Evidence for ACE2-utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. J Virol 2012; 86(11): 6350-3.
[http://dx.doi.org/10.1128/JVI.00311-12] [PMID: 22438550]
[18]
Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4): 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[19]
Prasad N, Gopalakrishnan N, Sahay M, Gupta A, Agarwal SK. Epidemiology, genomic structure, the molecular mechanism of injury, diagnosis and clinical manifestations of coronavirus infection: An overview. Indian J Nephrol 2020; 30(3): 143-54.
[20]
Xiaolu T, Changcheng W, Xiang L, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7(6): 1012-3.
[21]
Saeed M, Zaher T, Khorshed S, et al. The SARS-COV2 (COVID-19) pandemic: What clinicians should knew. AJIED 2020; 10(2): 65-92.
[http://dx.doi.org/10.21608/aeji.2020.93424]
[22]
Sikkema RS, Farag EA, Islam M, et al. Global status of Middle East respiratory syndrome coronavirus in dromedary camels: A systematic review. Epidemiol Infect 2019; 147: e84.
[23]
Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, Sridhar VS. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections. Front Microbiol 2019; 10: 569.
[http://dx.doi.org/10.3389/fmicb.2019.00569] [PMID: 30984127]
[24]
Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses. Virol J 2015; 12(1): 221.
[http://dx.doi.org/10.1186/s12985-015-0422-1] [PMID: 26689940]
[25]
Gedle D, Endris M, Tessema B, Eshetie S, Ewunetu T. Middle east respiratory syndrome coronavirus: Current status and future implications. J Med Microbiol Diagn 2015; 4(4): 2161-0703.
[http://dx.doi.org/10.4172/2161-0703.1000200]
[26]
Mohd HA, Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus(MERS-CoV) origin and animal reservoir. Virol J 2016; 13(1): 87.
[http://dx.doi.org/10.1186/s12985-016-0544-0] [PMID: 27255185]
[27]
Meo SA, Alhowikan AM, Al-Khlaiwi T, et al. Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci 2020; 24(4): 2012-9.
[PMID: 32141570]
[28]
Jahan F, Al Maqbali AA. The Middle East Respiratory Syndrome Coronavirus (MERS - COV). Middle East J Fam Med 2015; 13(1): 27-30.
[http://dx.doi.org/10.5742/MEWFM.2015.92625]
[29]
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect Dis 2013; 13(9): 752-61.
[http://dx.doi.org/10.1016/S1473-3099(13)70204-4] [PMID: 23891402]
[30]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[31]
Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 2020; 94: 44-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.004] [PMID: 32171952]
[32]
Al-Tawfiq JA. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med Infect Dis 2020; 35: 101608.
[http://dx.doi.org/10.1016/j.tmaid.2020.101608] [PMID: 32114075]
[33]
Kapikian AZ. Coronaviruses Diagnostic Procedures for Viral and Rickettsial Infections. 1977.
[34]
Risku M, Lappalainen S, Räsänen S, Vesikari T. Detection of human coronaviruses in children with acute gastroenteritis. J Clin Virol 2010; 48(1): 27-30.
[http://dx.doi.org/10.1016/j.jcv.2010.02.013] [PMID: 20233673]
[35]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[36]
González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 2003; 148(11): 2207-35.
[http://dx.doi.org/10.1007/s00705-003-0162-1] [PMID: 14579179]
[37]
Gorbalenya AE, Baker SC, Baric R, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. BioRxiv 2020.
[38]
Mycroft-West CJ, Su D, Elli S, et al. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. BioRxiv 2020.
[39]
DeBroff B. COVID-19: Ocular manifestations, ocular secretions, and ocular portal of entry. Adv Ophthalmol Vis Syst 2020; 10(2): 48-9.
[40]
Sizun J, Soupre D, Legrand MC, et al. Neonatal nosocomial respiratory infection with coronavirus: A prospective study in a neonatal intensive care unit. Acta Paediatr 1995; 84(6): 617-20.
[http://dx.doi.org/10.1111/j.1651-2227.1995.tb13710.x] [PMID: 7670241]
[41]
Stadler K, Masignani V, Eickmann M, et al. SARS-beginning to understand a new virus. Nat Rev Microbiol 2003; 1(3): 209-18.
[http://dx.doi.org/10.1038/nrmicro775] [PMID: 15035025]
[42]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[43]
Morein B, Simons K. Subunit vaccines against enveloped viruses: virosomes, micelles and other protein complexes. Vaccine 1985; 3(2): 83-93.
[http://dx.doi.org/10.1016/0264-410X(85)90055-6] [PMID: 3898625]
[44]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[45]
Tseng YT, Wang SM, Huang KJ, Lee AIR, Chiang CC, Wang CT. Self-assembly of severe acute respiratory syndrome coronavirus membrane protein. J Biol Chem 2010; 285(17): 12862-72.
[http://dx.doi.org/10.1074/jbc.M109.030270] [PMID: 20154085]
[46]
Cortellis, 2020. Disease briefing: Coronaviruses. A Clarivate Analytics Solution www.clarivate.com/cortellis2020.
[47]
Knudsen TB, Kledal TN, Andersen O, Eugen-Olsen J, Kristiansen TB. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon’s lair. Scand J Immunol 2003; 58(3): 277-84.
[http://dx.doi.org/10.1046/j.1365-3083.2003.01302.x] [PMID: 12950672]
[48]
Etaware PM. Medicinal plants, synthetic drugs or clinical therapy: the safest option against the pandemic CoVid-19 coronavirus.
[49]
Auslander N, Gussow AB, Wolf YI, Koonin EV. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. bioRxiv 2020.
[50]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[51]
Tengs T, Jonassen C. Distribution and evolutionary history of the mobile genetic element s2m in coronaviruses. Diseases 2016; 4(4): 27.
[http://dx.doi.org/10.3390/diseases4030027] [PMID: 28933407]
[52]
Kilianski A, Mielech AM, Deng X, Baker SC. Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J Virol 2013; 87(21): 11955-62.
[http://dx.doi.org/10.1128/JVI.02105-13] [PMID: 23986593]
[53]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[54]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[55]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[56]
Luo H, Tang Q, Shang Y, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[57]
Divya M, Vijayakumar S, Chen J, Vaseeharan B, Durán-Lara EF. A review of South Indian medicinal plant has the ability to combat against deadly viruses along with COVID-19? Microb Pathog 2020; 148: 104277.
[http://dx.doi.org/10.1016/j.micpath.2020.104277] [PMID: 32473390]
[58]
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020; 395(10226): 809-15.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[59]
Fowler RA, Lapinsky SE, Hallett D, et al. Critically ill patients with severe acute respiratory syndrome. JAMA 2003; 290(3): 367-73.
[http://dx.doi.org/10.1001/jama.290.3.367] [PMID: 12865378]
[60]
Seddiq N, Al-Qahtani M, Al-Tawfiq JA, Bukamal N. First confirmed case of middle east respiratory syndrome coronavirus infection in the Kingdom of Bahrain: In a Saudi gentleman after cardiac bypass surgery. Case Rep Infect Dis 2017; 2017: 1-4.
[http://dx.doi.org/10.1155/2017/1262838] [PMID: 28948054]
[61]
Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020; 80(4): 388-93.
[http://dx.doi.org/10.1016/j.jinf.2020.02.016] [PMID: 32112884]
[62]
Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115(5): 766-73.
[http://dx.doi.org/10.14309/ajg.0000000000000620] [PMID: 32287140]
[63]
Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir Med 2020; 8(5): 506-17.
[http://dx.doi.org/10.1016/S2213-2600(20)30161-2] [PMID: 32272080]
[64]
World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance World Health Organization. 2020.
[65]
Peiris JM, Poon LL. Detection of SARS coronavirus in humans and animals by conventional and quantitative (real time) reverse transcription polymerase chain reactions. Methods Mol Biol. 2008; 454: pp. 61-72.
[66]
Emery SL, Erdman DD, Bowen MD, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg Infect Dis 2004; 10(2): 311-6.
[http://dx.doi.org/10.3201/eid1002.030759] [PMID: 15030703]
[67]
Bhatnagar PK, Das D, Suresh MR. Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). J Pharm Pharm Sci 2008; 11(2): 1s-13s.
[68]
Banik GR, Khandaker G, Rashid H. Middle East respiratory syndrome coronavirus "MERS-CoV": Current knowledge gaps. Paediatr Respir Rev 2015; 16(3): 197-202.
[PMID: 26002405]
[69]
Cheng MP, Yansouni CP, Basta NE, et al. Serodiagnostics for severe acute respiratory syndrome-related Coronavirus 2. Ann Intern Med 2020; 173(6): 450-60.
[http://dx.doi.org/10.7326/M20-2854] [PMID: 32496919]
[70]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[71]
Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. AJR Am J Roentgenol 2020; 215(1): 87-93.
[http://dx.doi.org/10.2214/AJR.20.23034] [PMID: 32174129]
[72]
Yang J, Wu M, Liu X, et al. Cytotoxicity evaluation of chloroquine and hydroxychloroquine in multiple cell lines and tissues by dynamic imaging system and PBPK model. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.22.056762]
[73]
Interventions for Community Containment. https://www.cdc.gov/sars/guidance/dquarantine/app1.html2020.
[74]
Heymann DL, Shindo N. COVID-19: What is next for public health? The Lancet 2020; 395(10224): 542-.
[75]
del Rio C, Malani PN. 2019 novel coronavirus-important information for clinicians. JAMA 2020; 323(11): 1039-40.
[http://dx.doi.org/10.1001/jama.2020.1490] [PMID: 32022836]
[76]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[77]
Zhaori G. Antiviral treatment of SARS: can we draw any conclusions? CMAJ 2003; 169(11): 1165-6.
[PMID: 14638651]
[78]
Knowles SR, Phillips EJ, Dresser L, Matukas L. Common adverse events associated with the use of ribavirin for severe acute respiratory syndrome in Canada. Clin Infect Dis 2003; 37(8): 1139-42.
[http://dx.doi.org/10.1086/378304] [PMID: 14523782]
[79]
Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[80]
Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006; 3(9): e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[81]
Li H, Yang S, Gu L, et al. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respir Viruses 2017; 11(4): 345-54.
[http://dx.doi.org/10.1111/irv.12456] [PMID: 28464462]
[82]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[83]
Clinical management of severe acute respiratory infection when novel coronavirus ( nCoV) infection is suspected: interim guidance. World Health Organization 2020.
[84]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[85]
Marano G, Vaglio S, Pupella S, et al. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus 2016; 14(2): 152-7.
[PMID: 26674811]
[86]
Wahedi HM, Ahmad S, Abbasi SW. Stilbene-based natural compounds as promising drug candidates against COVID-19. J Biomol Struct Dyn 2021; 39(9): 3225-34.
[87]
Khalili JS, Zhu H, Mak A, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol 2020; 92(7): 740-6.
[88]
Sayad B, Sobhani M, Khodarahmi R. Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch Med Res 2020; 51(6): 577-81.
[89]
Cao Y, Deng Q, Dai S. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[90]
Gautre P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Anitmicrob Agents 2020; 56(1): 105949.
[91]
Aly O. Molecular docking reveals the potential of aliskiren, dipyridamole, mopidamol, rosuvastatin, rolitetracycline and metamizole to inhibit COVID-19 virus main protease. Chemrxiv 2020.
[92]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2). Rev Perspect (Cochambamba). Int J Biol Sci 2020; 16(10): 1708-17.
[93]
Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Smadja NP. Type 1 interferons as a potential treatment against COVID-19. Antivir Res 2020; 178: 104791.
[94]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020; 178: 104787.
[95]
Ganjhu RK, Mudgal PP, Maity H, et al. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease 2015; 26(4): 225-36.
[http://dx.doi.org/10.1007/s13337-015-0276-6] [PMID: 26645032]
[96]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[97]
Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res 2008; 131(2): 111-20.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[98]
Campbell-Yesufu OT, Gandhi RT. Update on human immunodeficiency virus (HIV)-2 infection. Clin Infect Dis 2011; 52(6): 780-7.
[http://dx.doi.org/10.1093/cid/ciq248] [PMID: 21367732]
[99]
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[100]
Shams-Ghahfarokhi M, Shokoohamiri MR, Amirrajab N, et al. In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia 2006; 77(4): 321-3.
[http://dx.doi.org/10.1016/j.fitote.2006.03.014] [PMID: 16690223]
[101]
Weber N, Andersen D, North J, Murray B, Lawson L, Hughes B. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med 1992; 58(5): 417-23.
[http://dx.doi.org/10.1055/s-2006-961504] [PMID: 1470664]
[102]
Dutta S, Bhattacharyya D. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J Ethnopharmacol 2013; 150(2): 451-7.
[http://dx.doi.org/10.1016/j.jep.2013.08.024] [PMID: 24076462]
[103]
Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anticancer Agents 2005; 5(2): 149-56.
[http://dx.doi.org/10.2174/1568011053174828] [PMID: 15777222]
[104]
Vijayan P, Raghu C, Ashok G, Dhanaraj SA, Suresh B. Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 2004; 120(1): 24-9.
[105]
Srivastava SK, Rawat AK. Pharmacognostic evaluation of the roots of Berberistinctoria Lesch. Nat Prod Sci 2007; 13(1): 27-32.
[106]
Katoch M, Singh G, Sharma S, Gupta N, Sangwan PL, Saxena AK. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC Complement Altern Med 2014; 14: 52.
[107]
Moghadamtousi SZ, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014; 2014: 186864.
[108]
Vimalanathan S, Ignacimuthu S, Hudson JB. Medicinal plants of Tamil Nadu ( Southern India ) are a rich source of antiviral activities. Pharm Biol 2009; 47(5): 422-9.
[109]
Rastogi RP, Dhawan BN. Anticancer and antiviral activities in Indian medicinal plants: A review. Drug Dev Res 1990; 19(1): 1-12.
[110]
Gupta GK, Chahal J. Bhatia. M. Clitoriaternatea (L.): Old and new aspects. J Pharm Res 2010; 3(11): 2610-4.
[111]
Castro JP, Ocampo YC, Franco LA. In vivo and in vitro anti-inflammatory activity of Cryptostegia grandiflora Roxb. ex R. Br. leaves. Biol Res 2014; 47(1): 32.
[http://dx.doi.org/10.1186/0717-6287-47-32] [PMID: 25204016]
[112]
Luchakivskaya Y, Kishchenko O, Gerasymenko I, et al. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant Cell Rep 2011; 30(3): 407-15.
[http://dx.doi.org/10.1007/s00299-010-0942-5] [PMID: 21046110]
[113]
Telekone RS, Khan M. Antiinflammatory and antioxidant activity of extracts and isolated compounds from Derris brevipes Benth (Baker). J Phytopharmacol 2014; 3(3): 180-92.
[http://dx.doi.org/10.31254/phyto.2014.3305]
[114]
Kaur R, Kaur H, Dhindsa AS. Glycyrrhizaglabra: A phytopharmacological review. Int J Pharm Sci Res 2013; 4(7): 2470.
[115]
Samuel AJSJ, Mohan S, Chellappan DK, Kalusalingam A, Ariamuthu S. Hibiscus vitifolius (Linn.) root extracts shows potent protective action against anti-tubercular drug induced hepatotoxicity. J Ethnopharmacol 2012; 141(1): 396-402.
[http://dx.doi.org/10.1016/j.jep.2012.02.051] [PMID: 22421378]
[116]
Samaga PV, Rai VR, Rai KML. Production of an antimicrobial cytochalasan by an endophytic Chaetomium globosum HYML55 from Hypericum mysorense and its RNA secondary structure analysis. Chem Ecol 2014; 30(6): 566-78.
[http://dx.doi.org/10.1080/02757540.2013.878335]
[117]
Angamuthu D, Purushothaman I, Kothandan S, Swaminathan R. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to Human Herpes Virus-3. Eur J Integr Med 2019; 28: 98-108.
[http://dx.doi.org/10.1016/j.eujim.2019.04.008]
[118]
Gupta AD, Bansal VK, Babu V, Maithil N. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol 2013; 11(1): 25-31.
[http://dx.doi.org/10.1016/j.jgeb.2012.12.001]
[119]
Hussain AZ, Kumaresan S. GC-MS analysis and antimicrobial evaluation of Oldenlandiacorymbosa. J Environ Nanotechnol 2014; 3(2): 161-7.
[http://dx.doi.org/10.13074/jent.2014.03.143081]
[120]
Khushbu C, Roshni S, Anar P, Carol M, Mayuree P. Phytochemical and therapeutic potential of Piper longum Linn a review. Int J Res Ayurveda Pharm 2011; 2(1): 157-61.
[121]
Mpiana PT, Ngbolua K, Tshibangu DST, Kilembe JT, Gbolo BZ, Mwanangombo DT. Aloe vera ( L.) Burm.F.as a potential Anti-COVID-19 plant : A mini-review of its antiviral activity. Eur J Med Plants 2020; 31(8): 86-93.
[122]
Nagle V, Limited RI, Pawar Y, Limited RI, Dasgupta S, Limited RI. Reconsidering traditional medicinal plants to combat COVID-19. AIJR Preprints 2020.
[123]
Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: A review. Int J Pharma Sci 2019; 10: 494-04.
[124]
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 367-82.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015]
[125]
Sharma P, Kumar P, Sharma R, Gupta G, Chaudhary A. Immunomodulators: Role of medicinal plants in immune system. Natl J Physiol Pharm Pharmacol 2017; 7(6): 1.
[http://dx.doi.org/10.5455/njppp.2017.7.0203808032017]
[126]
Pant M, Ambwani T, Umapathi V. Antiviral activity of Ashwagandha extract on infectious bursal disease virus replication. Indian J Sci Technol 2012; 5(5): 1-2.
[http://dx.doi.org/10.17485/ijst/2012/v5i5.20]
[127]
Kurokawa M, Nagasaka K, Hirabayashi T, et al. Efficacy of traditional herbal medicines in combination with acyclovir against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral Res 1995; 27(1-2): 19-37.
[http://dx.doi.org/10.1016/0166-3542(94)00076-K] [PMID: 7486956]
[128]
Jassim SAA, Naji MA. Novel antiviral agents: A medicinal plant perspective. J Appl Microbiol 2003; 95(3): 412-27.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[129]
Cohen MR. Herbal and complementary and alternative medicine therapies for liver disease. A focus on Chinese traditional medicine in hepatitis C virus. Clin Liver Dis 2001; 5(2): 461-478, vii.
[http://dx.doi.org/10.1016/S1089-3261(05)70174-4] [PMID: 11385972]
[130]
Schuppan D, Jia JD, Brinkhaus B, Hahn EG. Herbal products for liver diseases: A therapeutic challenge for the new millennium. Hepatology 1999; 30(4): 1099-104.
[http://dx.doi.org/10.1002/hep.510300437] [PMID: 10498665]
[131]
Law AH, Yang CL, Lau AS, Chan GC. Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. J Ethnopharmacol 2017; 209: 236-47.
[132]
Zhang W, Tao J, Yang X, et al. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem Biophys Res Commun 2014; 449(3): 307-12.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.019] [PMID: 24845570]
[133]
Zhang CJ, Li W, Li HY, et al. In vivo and in vitro antiviral activity of five Tibetan medicinal plant extracts against herpes simplex virus type 2 infection. Pharm Biol 2009; 47(7): 598-607.
[http://dx.doi.org/10.1080/13880200902905904]
[134]
Liu J. The use of herbal medicines in early drug development for the treatment of HIV infections and AIDS. Expert Opin Investig Drugs 2007; 16(9): 1355-64.
[http://dx.doi.org/10.1517/13543784.16.9.1355] [PMID: 17714022]
[135]
Kim EH, Pascua PNQ, Song MS, et al. Immunomodulaton and attenuation of lethal influenza A virus infection by oral administration with KIOM-C. Antiviral Res 2013; 98(3): 386-93.
[http://dx.doi.org/10.1016/j.antiviral.2013.04.006] [PMID: 23588232]
[136]
Seeff LB, Bonkovsky HL, Navarro VJ, Wang G. Herbal products and the liver: A review of adverse effects and mechanisms. Gastroenterology 2015; 148(3): 517-532.e3.
[http://dx.doi.org/10.1053/j.gastro.2014.12.004] [PMID: 25500423]
[137]
Liu C, Hu Y, Xu L, Liu C, Liu P. Effect of Fuzheng Huayu formula and its actions against liver fibrosis. Chin Med 2009; 4(1): 12.
[http://dx.doi.org/10.1186/1749-8546-4-12] [PMID: 19558726]
[138]
Chaman S, Khan FZ, Khokhar R, et al. Cytotoxic and antiviral potentials of Euphorbia milii var. splendens leaf against Peste des petits ruminant virus. Trop J Pharm Res 2021; 18(7): 1507-11.
[http://dx.doi.org/10.4314/tjpr.v18i7.21]
[139]
Allahverdiyev A, Duran N, Ozguven M, Koltas S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine 2004; 11(7-8): 657-61.
[http://dx.doi.org/10.1016/j.phymed.2003.07.014] [PMID: 15636181]
[140]
Glatthaar-Saalmüller B, Sacher F, Esperester A. Antiviral activity of an extract derived from roots of Eleutherococcus senticosus. Antiviral Res 2001; 50(3): 223-8.
[http://dx.doi.org/10.1016/S0166-3542(01)00143-7] [PMID: 11397509]
[141]
Wang M, Yu Y, Brad K, Xie W, Zhang XY. The screening and evaluation of herbs and identification of herbal combinations with anti-viral effects on Newcastle disease virus. Br Poult Sci 2016; 57(1): 34-43.
[http://dx.doi.org/10.1080/00071668.2015.1119245] [PMID: 26927474]
[142]
Liao Q, Qian Z, Liu R, An L, Chen X. Germacrone inhibits early stages of influenza virus infection. Antiviral Res 2013; 100(3): 578-88.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.021] [PMID: 24095670]
[143]
Zuo G, Li Z, Chen L, Xu X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res 2007; 76(1): 86-92.
[http://dx.doi.org/10.1016/j.antiviral.2007.06.001] [PMID: 17624450]
[144]
Jang E, Kim BJ, Lee KT, Inn KS, Lee JH. A survey of therapeutic effects of Artemisia capillaris in liver diseases. Evid Based Complement Alternat Med 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/728137] [PMID: 26366183]
[145]
Yarnell E, Abascal K. Herbs for treating herpes simplex infections. Altern Complement Ther 2005; 11(2): 83-8.
[http://dx.doi.org/10.1089/act.2005.11.83]
[146]
Panda AK, Dixit AK, Rout S, Mishra B, Purad UV, Kar S. Ayurveda practitioners consensus to develop strategies for prevention and treatment of Corona virus disease (COVID-19). J Ayurveda Integr Med Sci 2020; 5(1): 98-106.
[147]
Kim HY, Eo EY, Park H, et al. Medicinal herbal extracts of Sophorae radix Acanthopanacis cortex Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther 2010; 15(5): 697-709.
[http://dx.doi.org/10.3851/IMP1615] [PMID: 20710051]
[148]
Bano N, Ahmed A, Tanveer M, Khan GM, Ansari MT. Pharmacological evaluation of Ocimum sanctum. J Bioequivalence Bioavailab 2017; 9(3): 387-92.
[149]
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[150]
Miladi S, Abid N, Debarnôt C, et al. In vitro antiviral activities of extracts derived from Daucus maritimus seeds. Nat Prod Res 2012; 26(11): 1027-32.
[http://dx.doi.org/10.1080/14786419.2010.550263] [PMID: 21895456]
[151]
Altaf I, Imran S, Omer MO, AlMalki WH, Shahid I, Khuram S. Comparative study to evaluate the anti-viral efficacy of Glycyrrhiza glabra extract and ribavirin against the Newcastle disease virus. Pharmacognosy Res 2014; 6(1): 6-11.
[http://dx.doi.org/10.4103/0974-8490.122911] [PMID: 24497736]
[152]
Lee JB, Miyake S, Umetsu R, Hayashi K, Chijimatsu T, Hayashi T. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem 2012; 134(4): 2164-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.016] [PMID: 23442670]
[153]
Konowalchuk J, Speirs JI. Antiviral effect of commercial juices and beverages. Appl Environ Microbiol 1978; 35(6): 1219-20.
[http://dx.doi.org/10.1128/aem.35.6.1219-1220.1978] [PMID: 209736]
[154]
Fiore C, Eisenhut M, Krausse R, Ragazzi E. Antiviral effects of Glycyrrhiza species. Phytother Res 2008; 22(2): 141-8.
[155]
Nassiri M, Hosseinzadeh H. Review of antiviral effects of Glycyrrhiza glabra L. and its active component, Glycyrrhizin. Faslnamah-i Giyahan-i Daruyi 2007; 2(22): 1-2.
[156]
Anagha K, Manasi D, Priya L, Meera M. Scope of Glycyrrhiza glabra (Yashtimadhu) as an Antiviral agent: A Review. Int J Curr Microbiol Appl Sci 2014; 3(12): 657-65.
[157]
Ulasli M, Gurses SA, Bayraktar R, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep 2014; 41(3): 1703-11.
[http://dx.doi.org/10.1007/s11033-014-3019-7] [PMID: 24413991]
[158]
Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[159]
Li S, Chen C, Zhang H, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[160]
Kim HY, Shin HS, Park H, et al. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J Clin Virol 2008; 41(2): 122-8.
[http://dx.doi.org/10.1016/j.jcv.2007.10.011] [PMID: 18036887]
[161]
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006; 33(7): 612-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[162]
Chen CN, Lin CPC, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[163]
Khanal P, Duyu T, Dey YN, Patil BM, Pasha I. Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19. J Ayurveda Integr Med 2022; 13(1): 100374.
[164]
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020; 10(2): 102-8.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[165]
Doss M. Treatment of COVID-19 with individualized immune boosting interventions. Preprints 2020.
[http://dx.doi.org/10.31219/osf.io/6zy9u]
[166]
Wimalawansa SJ. Global epidemic of CoronavirusCovid-19: What can we do to minimize risks. European Journal of Biomedical 2020; 7(3): 432-8.
[167]
Shi Y, Wang Y, Sha C, et al. COVID-19 infection: The perspectives on immune responses. Cell Death Differ 2020; 27(5): 1451-4.
[168]
Doss M. Your custom roadmap for potentially preventing and curing cancer. 2019.
[169]
Srivastava KC, Mustafa T. Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses 1989; 29(1): 25-8.
[http://dx.doi.org/10.1016/0306-9877(89)90162-X] [PMID: 2501634]
[170]
Kumar S, Saxena K, Uday N. Singh, Ravi.; Anti-inflammatory action of ginger: A critical review in anemia of inflammation and its future aspects. Int J Herb Med 2013; 1: 1-6.
[171]
Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45(5): 683-90.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[172]
Butt MS, Sultan MT. Ginger and its health claims: Molecular aspects. Crit Rev Food Sci Nutr 2011; 51(5): 383-93.
[http://dx.doi.org/10.1080/10408391003624848] [PMID: 21491265]
[173]
Ahui MLB, Champy P, Ramadan A, et al. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int Immunopharmacol 2008; 8(12): 1626-32.
[http://dx.doi.org/10.1016/j.intimp.2008.07.009] [PMID: 18692598]
[174]
Hudson EA, Fox LH, Luckett JCA, Manson MM. Ex vivo cancer chemoprevention research possibilities. Environ Toxicol Pharmacol 2006; 21(2): 204-14.
[http://dx.doi.org/10.1016/j.etap.2005.07.011] [PMID: 21783659]
[175]
Cohen M. Tulsi - Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med 2014; 5(4): 251-9.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[176]
Balasubramanian G, Sarathi M, Kumar SR, Hameed ASS. Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp. Aquaculture 2007; 263(1-4): 15-9.
[http://dx.doi.org/10.1016/j.aquaculture.2006.09.037]
[177]
Mediratta PK, Sharma KK, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 2002; 80(1): 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[178]
Puri HS. Ayurvedic Herbs for Longevity and Rejuvenation London: CRC Press 2002; 272-80.
[179]
Rios JL, Recio MC, Villar A. Screening methods for natural products with antimicrobial activity: A review of the literature. J Ethnopharmacol. 1988; 23: pp. (2-3)127-49.
[http://dx.doi.org/10.1016/0378-8741(88)90001-3] [PMID: 3057288]
[180]
Thawani VR, Varadpande UK, Sontakke SD, Singh RP, Khiyani RK, Kalikar MV. Immunomodulatory effect of <i>Tinospora cordifolia</i> extract in human immuno-deficiency virus positive patients. Indian J Pharmacol 2008; 40(3): 107-10.
[http://dx.doi.org/10.4103/0253-7613.42302] [PMID: 20040936]
[181]
Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol 2012; 141(3): 918-26.
[http://dx.doi.org/10.1016/j.jep.2012.03.027] [PMID: 22472109]
[182]
Juliet L, Meenakumari R, Kudineer AYUSH. An immune boosting herbal health drink for COVID-19. J Siddha 2020; 4(1): 48-57.
[183]
Mogoşanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE. Natural Products Used for Food Preservation. In: Grumezescu AM, Ed. Food Preservation . Amsterdam: Elsevier 2017; pp. 365-411.
[184]
Kanagarla NA, Kuppast IJ, Veerashekar T, Reddy CL. A review on benefits and uses of Vitis vinifera (Grape). RRBS 2013; 7(5): 175-80.
[185]
AlSaidy HA, Alhasan DA, Ali AA. Reviews on plants gum and mucilage I: The composition and pharmacological significance of turmeric (Curcuma longa) rhizomes polysaccharides and mucilage/their aqueous extracts commercial products. Univ Thi-Qar J Sci 2021; 8(1): 14-25.
[186]
Lohar AV, Wankhade AM, Faisal M, Jagtap A. A review on Glycyrrhiza Glabra Linn (LIQUORICE)-An excellent medicinal plant. Eur J Biomed 2020; 7(7): 330-4.
[187]
Shrirangasami SR, Murugaragavan R, Rakesh SS, Ramesh PT. Chemistry behind in neem (Azadirachta indica) as medicinal value to living forms-A review. J Pharmacogn Phytochem 2020; 9(6): 467-9.
[188]
Parwe SD, Nisargandha MA, Morey DT. Role of Ashwagandha (WithaniaSomnifera) as Immunomodulator in Coronavirus in a pandemic–A systemic review. Int J Res Pharm Sci 2020; 11: 1649-54.
[189]
Batiha GES, Beshbishy MA, Wasef LG, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020; 12(3): 872.
[190]
Aja PM, Nwachukwu N, Ibiam UA, Igwenyi IO, Offor CE, Orji UO. Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am J Phytomed Clin Ther 2014; 2(3): 310-21.
[191]
Chhikara N, Kaur A, Mann S, Garg MK, Sofi SA, Panghal A. Bioactive compounds, associated health benefits and safety considerations of Moringa oleifera L.: An updated review. Nutr Food Sci 2021; 51(2): 255-77.
[192]
Kulyar MF, Li R, Mehmood K, Waqas M, Li K, Li J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. Phytomedicine 2020; 153: 277.
[PMID: 32773257]
[193]
Namdeo P. A review on herbal immunity booster and nutrition–to fight against COVID-19. J Pharm Adv Res 2021; 4: 1226-37.
[194]
Bhagat DS, Nimbalkar RK, Shejul SK, Gurnule WB, Gunjal AB, Bumbrah GS. An insight into Ayurveda and Yogic practices sustain physical and mental health in COVID-19 pandemic. Lett Appl NanoBioScience 2021; 10(4): 2918-32.
[195]
Lee WS, Rhee DK. Corona-Cov-2 (COVID-19) and ginseng: Comparison of possible use in COVID-19 and influenza. J Ginseng Res 2021; 45(4): 535-7.
[196]
Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of Indian traditional medicine in combating corona virus (SARS-CoV 2), a mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19.
[http://dx.doi.org/10.2174/1389201021666200807111359] [PMID: 32767920]
[197]
Nagoor Meeran MF, Javed H, Sharma C, et al. Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon 2021; 7(2): e05990.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05990] [PMID: 33585706]
[198]
Yepes-Perez AF, Herrera-Calderón O, Oliveros CA, et al. The hydroalcoholic extract of uncaria tomentosa (Cat’s Claw) Inhibits the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Evid Based Complement Alternat Med. 2021; 2021: p. 6679761.
[199]
Mpiana PT, Ngbolua KN, Tshibangu DST, et al. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem Phys Lett 2020; 754: 137751.
[http://dx.doi.org/10.1016/j.cplett.2020.137751] [PMID: 33518775]
[200]
Senthil Kumar KJ, Gokila Vani M, Wang C-S. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants 2020; 9(6): 770.
[http://dx.doi.org/10.3390/plants9060770]
[201]
Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol 2020; 11: 585354.
[http://dx.doi.org/10.3389/fimmu.2020.585354] [PMID: 33163000]
[202]
Bennet BM, Wolf J, Laureano R, Sellers RS. Review of current vaccine development strategies to prevent coronavirus disease 2019 (COVID-19). Toxicol Pathol 2020; 48(7): 800-9.
[http://dx.doi.org/10.1177/0192623320959090] [PMID: 32926660]
[203]
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci 2021; 7(4): 512-33.
[http://dx.doi.org/10.1021/acscentsci.1c00120] [PMID: 34056083]
[204]
Sallam M. COVID-19 vaccine hesitancy worldwide: A concise systematic review of vaccine acceptance rates. Vaccines (Basel) 2021; 9(2): 160.
[http://dx.doi.org/10.3390/vaccines9020160] [PMID: 33669441]
[205]
Belete TM. A review on promising vaccine development progress for COVID-19 disease. Vacunas 2020; 21(2): 121-8.
[http://dx.doi.org/10.1016/j.vacun.2020.05.002] [PMID: 32837460]
[206]
Anand U, Jakhmola S, Indari O, et al. Potential therapeutic targets and vaccine development for COVID-19 management: A review on the recent update. Front Immunol 2021; 12: 2454.
[http://dx.doi.org/10.3389/fimmu.2021.658519] [PMID: 34276652]
[207]
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2020; 108: 634.
[PMID: 33217545]