Application of Collagen and Mesenchymal Stem Cells in Regenerative Dentistry

Page: [606 - 620] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Collagen is an important macromolecule of Extracellular Matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal Stem Cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, Glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues’ ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues like bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via a reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry, including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. The prospects and challenges of collagen-based biomaterials in the craniofacial region are pointd out.

Keywords: Bone, collagen, regeneration, periodontium, temporomandibular joint, mesenchymal stem cells.

Graphical Abstract

[1]
Kim B-S, Park I-K, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 2011; 36(2): 238-68.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.10.001]
[2]
Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr Res 2008; 63(5): 492-6.
[http://dx.doi.org/10.1203/PDR.0b013e31816c5bc3] [PMID: 18427293]
[3]
Aszódi A, Legate KR, Nakchbandi I, Fässler R. What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 2006; 22: 591-621.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104258] [PMID: 16824013]
[4]
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2015; 12(1): 113-29.
[http://dx.doi.org/10.1586/17434440.2014.953058] [PMID: 25487005]
[5]
Alipour M, Ashrafihelan J, Salehi R, et al. In vivo evaluation of biocompatibility and immune modulation potential of poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-gelatin hydrogels enriched with nano-hydroxyapatite in the model of mouse. J Biomater Appl 2021; 35(10): 1253-63.
[http://dx.doi.org/10.1177/0885328221998525] [PMID: 33632003]
[6]
Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J Biol Chem 2006; 281(6): 3494-504.
[http://dx.doi.org/10.1074/jbc.M509333200] [PMID: 16330543]
[7]
Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 2005; 118(Pt 7): 1341-53.
[http://dx.doi.org/10.1242/jcs.01731] [PMID: 15788652]
[8]
Smith K, Rennie MJ. New approaches and recent results concerning human-tissue collagen synthesis. Curr Opin Clin Nutr Metab Care 2007; 10(5): 582-90.
[http://dx.doi.org/10.1097/MCO.0b013e328285d858] [PMID: 17693741]
[9]
Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 2003; 9(5): 967-79.
[http://dx.doi.org/10.1089/107632703322495619] [PMID: 14633381]
[10]
Strupler M, Pena A-M, Hernest M, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 2007; 15(7): 4054-65.
[http://dx.doi.org/10.1364/OE.15.004054] [PMID: 19532649]
[11]
Gelse K, Pöschl E, Aigner T. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 2003; 55(12): 1531-46.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[12]
Burgeson RE, Nimni ME. Collagen types. Molecular structure and tissue distribution. Clin Orthop Relat Res 1992; (282): 250-72.
[PMID: 1516320]
[13]
Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: Applications for tissue engineering and gene therapy. Med Biol Eng Comput 2000; 38(2): 211-8.
[http://dx.doi.org/10.1007/BF02344779] [PMID: 10829416]
[14]
Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Eds. Collagen-based cell migration models in vitro and in vivo. Seminars in Cell & Developmental Biology. Elsevier 2009.
[15]
Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel) 2010; 3(3): 1863-87.
[http://dx.doi.org/10.3390/ma3031863]
[16]
Dong C, Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers 2016; 8(2): 42.
[17]
Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Funct Mater 2019; 29(3): 1804943.
[http://dx.doi.org/10.1002/adfm.201804943]
[18]
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2018; 17(1): 20-6.
[http://dx.doi.org/10.1111/jocd.12450] [PMID: 29144022]
[19]
Sandhu SV, Gupta S, Bansal H, Singla K. Collagen in health and disease. J Orofacial Res 2012; 2(3): 153-9.
[http://dx.doi.org/10.5005/jp-journals-10026-1032]
[20]
Ezquerra-Brauer JM, Uriarte-Montoya MH, Arias-Moscoso JL, Plascencia-Jatomea M. By-products from jumbo squid (Dosidicus gigas): A new source of collagen bio-plasticizer?. IntechOpen 2012. Available from: https://www.intechopen.com/chapters/32868
[21]
Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221(1-2): 1-22.
[http://dx.doi.org/10.1016/S0378-5173(01)00691-3] [PMID: 11397563]
[22]
Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C 2019; 99: 1509-22.
[http://dx.doi.org/10.1016/j.msec.2019.02.070] [PMID: 30889687]
[23]
Lo S, Fauzi MB. Current update of collagen nanomaterials-fabrication, characterisation and its applications: A review. Pharmaceutics 2021; 13(3): 316.
[http://dx.doi.org/10.3390/pharmaceutics13030316] [PMID: 33670973]
[24]
Qiu Z-Y, Cui Y, Tao C-S, et al. Mineralized collagen: Rationale, current status, and clinical applications. Materials (Basel) 2015; 8(8): 4733-50.
[http://dx.doi.org/10.3390/ma8084733] [PMID: 28793468]
[25]
Felician FF, Xia C, Qi W, Xu H. Collagen from marine biological sources and medical applications. Chem Biodivers 2018; 15(5): e1700557.
[http://dx.doi.org/10.1002/cbdv.201700557] [PMID: 29521032]
[26]
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol 2019; 37(5): 464-91.
[http://dx.doi.org/10.1016/j.tibtech.2018.10.007] [PMID: 30447877]
[27]
Lim Y-S, Ok Y-J, Hwang S-Y, Kwak J-Y, Yoon S. Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 2019; 17(8): 467.
[http://dx.doi.org/10.3390/md17080467] [PMID: 31405173]
[28]
Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176(1): 57-66.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7] [PMID: 9618145]
[29]
Wescoe KE, Schugar RC, Chu CR, Deasy BM. The role of the biochemical and biophysical environment in chondrogenic stem cell differentiation assays and cartilage tissue engineering. Cell Biochem Biophys 2008; 52(2): 85-102.
[http://dx.doi.org/10.1007/s12013-008-9029-0] [PMID: 18841496]
[30]
Silachev DN, Goryunov KV, Shpilyuk MA, et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells 2019; 8(3): 258.
[http://dx.doi.org/10.3390/cells8030258] [PMID: 30893822]
[31]
Caplan AI. MSCs: the sentinel and safe-guards of injury. J Cell Physiol 2016; 231(7): 1413-6.
[http://dx.doi.org/10.1002/jcp.25255] [PMID: 26565391]
[32]
Ahmadian S, Mahdipour M, Pazhang M, et al. Effectiveness of stem cell therapy in the treatment of ovarian disorders and female infertility: A systematic review. Curr Stem Cell Res Ther 2020; 15(2): 173-86.
[http://dx.doi.org/10.2174/1574888X14666191119122159] [PMID: 31746298]
[33]
Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74.
[http://dx.doi.org/10.4252/wjsc.v11.i6.347] [PMID: 31293717]
[34]
Rajasekaran R, Seesala VS, Sunka KC, et al. Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. Mater Sci Eng C 2020; 107: 110218.
[http://dx.doi.org/10.1016/j.msec.2019.110218] [PMID: 31761204]
[35]
Abdeen AA, Weiss JB, Lee J, Kilian KA. Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells. Tissue Eng Part A 2014; 20(19-20): 2737-45.
[http://dx.doi.org/10.1089/ten.tea.2013.0661] [PMID: 24701989]
[36]
Smeriglio P, Lee J, Bhutani N. Soluble Collagen VI treatment enhances mesenchymal stem cells expansion for engineering cartilage. Bioeng Transl Med 2017; 2(3): 278-84.
[http://dx.doi.org/10.1002/btm2.10078] [PMID: 29313037]
[37]
Hamidi A, Sharifi S, Davaran S, Ghasemi S, Omidi Y, Rashidi M-R. Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. Bioimpacts 2012; 2(2): 97-103.
[PMID: 23678447]
[38]
Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J Drug Target 2019; 27(3): 292-9.
[http://dx.doi.org/10.1080/1061186X.2018.1491978] [PMID: 29929413]
[39]
Eftekhari A, Maleki Dizaj S, Sharifi S, et al. The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int J Mol Sci 2020; 21(2): 536.
[http://dx.doi.org/10.3390/ijms21020536] [PMID: 31947685]
[40]
Cui F-Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng Rep 2007; 57(1-6): 1-27.
[http://dx.doi.org/10.1016/j.mser.2007.04.001]
[41]
Taylor D. Fracture and repair of bone: A multiscale problem. J Mater Sci 2007; 42(21): 8911-8.
[http://dx.doi.org/10.1007/s10853-007-1698-3]
[42]
Buehler MJ, Ackbarow T. Fracture mechanics of protein materials. Mater Today 2007; 10(9): 46-58.
[http://dx.doi.org/10.1016/S1369-7021(07)70208-0]
[43]
Johns DE, Athanasiou KA. Design characteristics for temporomandibular joint disc tissue engineering: Learning from tendon and articular cartilage. Proc Inst Mech Eng H 2007; 221(5): 509-26.
[http://dx.doi.org/10.1243/09544119JEIM158] [PMID: 17822153]
[44]
Muir H, Bullough P, Maroudas A. The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 1970; 52(3): 554-63.
[http://dx.doi.org/10.1302/0301-620X.52B3.554] [PMID: 4247851]
[45]
Naumann A, Dennis JE, Awadallah A, et al. Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 2002; 50(8): 1049-58.
[http://dx.doi.org/10.1177/002215540205000807] [PMID: 12133908]
[46]
Parry DA, Flint MH, Gillard GC, Craig AS. A role for glycosaminoglycans in the development of collagen fibrils. FEBS Lett 1982; 149(1): 1-7.
[http://dx.doi.org/10.1016/0014-5793(82)81060-0] [PMID: 6759170]
[47]
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98: 1-22.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.018] [PMID: 27177218]
[48]
Zhong J, Guo B, Xie J, et al. Crosstalk between adipose-derived stem cells and chondrocytes: When growth factors matter. Bone Res 2016; 4: 15036.
[http://dx.doi.org/10.1038/boneres.2015.36] [PMID: 26848404]
[49]
Fu N, Liao J, Lin S, et al. PCL-PEG-PCL film promotes cartilage regeneration in vivo. Cell Prolif 2016; 49(6): 729-39.
[http://dx.doi.org/10.1111/cpr.12295] [PMID: 27647680]
[50]
Shao X, Lin S, Peng Q, et al. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 2017; 13(12): 1602770.
[http://dx.doi.org/10.1002/smll.201602770] [PMID: 28112870]
[51]
Chen J-P, Su C-H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 2011; 7(1): 234-43.
[http://dx.doi.org/10.1016/j.actbio.2010.08.015] [PMID: 20728584]
[52]
He X, Fu W, Feng B, et al. Electrospun collagen-poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering. Regen Med 2013; 8(4): 425-36.
[http://dx.doi.org/10.2217/rme.13.29] [PMID: 23826697]
[53]
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65: 1-20.
[http://dx.doi.org/10.1016/j.actbio.2017.11.021] [PMID: 29128537]
[54]
Acri TM, Shin K, Seol D, et al. Tissue engineering for the temporomandibular joint. Adv Healthc Mater 2019; 8(2): e1801236.
[http://dx.doi.org/10.1002/adhm.201801236] [PMID: 30556348]
[55]
Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 2018; 83: 195-201.
[http://dx.doi.org/10.1016/j.msec.2017.09.002] [PMID: 29208279]
[56]
Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting using stem cells. Pediatr Res 2018; 83(1-2): 223-31.
[http://dx.doi.org/10.1038/pr.2017.252] [PMID: 28985202]
[57]
Loai SKB, Wang Z, Philpott DN, Tao M, Cheng HL. Clinical perspectives on 3D bioprinting paradigms for regenerative medicine. Regenerative Medicine Frontiers 2019; 1(1): e190004.
[http://dx.doi.org/10.20900/rmf20190004]
[58]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[59]
Howlader D, Vignesh U, Bhutia DP, et al. Hydroxyapatite collagen scaffold with autologous bone marrow aspirate for mandibular condylar reconstruction. J Craniomaxillofac Surg 2017; 45(9): 1566-72.
[http://dx.doi.org/10.1016/j.jcms.2017.06.022] [PMID: 28750725]
[60]
Legemate K, Tarafder S, Jun Y, Lee CH. Engineering human TMJ discs with protein-releasing 3D-printed scaffolds. J Dent Res 2016; 95(7): 800-7.
[http://dx.doi.org/10.1177/0022034516642404] [PMID: 27053116]
[61]
d’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18(7): 75-83.
[http://dx.doi.org/10.22203/eCM.v018a07] [PMID: 19908196]
[62]
La Noce M, Paino F, Spina A, et al. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J Dent 2014; 42(7): 761-8.
[http://dx.doi.org/10.1016/j.jdent.2014.02.018] [PMID: 24589847]
[63]
Jung C, Kim S, Sun T, Cho Y-B, Song M. Pulp-dentin regeneration: Current approaches and challenges. J Tissue Eng 2019; 10: 2041731418819263.
[http://dx.doi.org/10.1177/2041731418819263] [PMID: 30728935]
[64]
Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: A review of current status and a call for action. J Endod 2007; 33(4): 377-90.
[http://dx.doi.org/10.1016/j.joen.2006.09.013] [PMID: 17368324]
[65]
Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother 2018; 108: 443-7.
[http://dx.doi.org/10.1016/j.biopha.2018.09.026] [PMID: 30241047]
[66]
Garcia-Godoy F, Murray PE. Status and potential commercial impact of stem cell-based treatments on dental and craniofacial regeneration. Stem Cells Dev 2006; 15(6): 881-7.
[http://dx.doi.org/10.1089/scd.2006.15.881] [PMID: 17253950]
[67]
Ahmadian E, Eftekhari A, Dizaj SM, et al. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. Int J Biol Macromol 2019; 140: 245-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.119] [PMID: 31419560]
[68]
Dunn A, Marcinczyk M, Talovic M, Patel K, Haas G, Garg K. Role of stem cells and extracellular matrix in the regeneration of skeletal muscle. Intechopen 2018. Available from: https://www.intechopen.com/chapters/60874
[http://dx.doi.org/10.5772/intechopen.75828]
[69]
Niklason LE. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell 2018; 22(3): 302-5.
[http://dx.doi.org/10.1016/j.stem.2018.02.001] [PMID: 29499149]
[70]
Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 2010; 31(14): 3976-85.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.131] [PMID: 20170955]
[71]
Hassanzadeh A, Ashrafihelan J, Salehi R, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application. Artif Cells Nanomed Biotechnol 2021; 49(1): 136-46.
[http://dx.doi.org/10.1080/21691401.2021.1877153] [PMID: 33507104]
[72]
Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A 2010; 95(2): 465-75.
[http://dx.doi.org/10.1002/jbm.a.32869] [PMID: 20648541]
[73]
Casper CL, Yang W, Farach-Carson MC, Rabolt JF. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 2007; 8(4): 1116-23.
[http://dx.doi.org/10.1021/bm061003s] [PMID: 17326680]
[74]
Ciardelli G, Gentile P, Chiono V, et al. Enzymatically crosslinked porous composite matrices for bone tissue regeneration. J Biomed Mater Res A 2010; 92(1): 137-51.
[http://dx.doi.org/10.1002/jbm.a.32344] [PMID: 19165785]
[75]
Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 2019; 13(1): 58-75.
[PMID: 30376696]
[76]
Soares DG, Rosseto HL, Scheffel DS, et al. Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 2017; 21(9): 2827-39.
[http://dx.doi.org/10.1007/s00784-017-2085-3] [PMID: 28281011]
[77]
Ravichandran R, Ng CCh, Liao S, et al. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed Mater 2012; 7(1): 015001.
[http://dx.doi.org/10.1088/1748-6041/7/1/015001] [PMID: 22156014]
[78]
Kim JY, Xin X, Moioli EK, et al. Regeneration of dental-pulp- like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 2010; 16(10): 3023-31.
[http://dx.doi.org/10.1089/ten.tea.2010.0181] [PMID: 20486799]
[79]
Won J-E, Yun Y-R, Jang J-H, et al. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials 2015; 56: 46-57.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.022] [PMID: 25934278]
[80]
Ciocca L, Donati D, Lesci I, Dozza B, Duchi S, Mezini O. Custom-made novel biomimetic composite scaffolds for the bone regenerative medicine. Mater Lett 2014; 136: 393-6.
[http://dx.doi.org/10.1016/j.matlet.2014.08.097]
[81]
Hao W, Hu Y-Y, Wei Y-Y, et al. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-β-TCP scaffold. Cells Tissues Organs 2008; 187(2): 89-102.
[http://dx.doi.org/10.1159/000109946] [PMID: 17938566]
[82]
Toosi S, Naderi-Meshkin H, Kalalinia F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med 2019; 30(3): 33.
[http://dx.doi.org/10.1007/s10856-019-6235-9] [PMID: 30840143]
[83]
Zhang B, Luo Q, Deng B, Morita Y, Ju Y, Song G. Construction of tendon replacement tissue based on collagen sponge and mesenchymal stem cells by coupled mechano-chemical induction and evaluation of its tendon repair abilities. Acta Biomater 2018; 74: 247-59.
[http://dx.doi.org/10.1016/j.actbio.2018.04.047] [PMID: 29702290]
[84]
Lim S, Lyu H-Z, Lee J-R, Han SH, Lee JH, Kim B-S. Umbilical cord mesenchymal stem cell-derived nanovesicles potentiate the bone-formation efficacy of bone morphogenetic protein 2. Int J Mol Sci 2020; 21(17): 6425.
[http://dx.doi.org/10.3390/ijms21176425] [PMID: 32899307]
[85]
Ramseier CA, Rasperini G, Batia S, Giannobile WV. Advanced reconstructive technologies for periodontal tissue repair. Periodontol 2000 2012; 59(1): 185-202.
[http://dx.doi.org/10.1111/j.1600-0757.2011.00432.x] [PMID: 22507066]
[86]
Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, Memar MY, Maleki Dizaj S, Sharifi S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep 2020; 10(1): 18200.
[http://dx.doi.org/10.1038/s41598-020-75454-2] [PMID: 33097790]
[87]
Chen F-M, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 2010; 16(2): 219-55.
[http://dx.doi.org/10.1089/ten.teb.2009.0562] [PMID: 19860551]
[88]
Nakahara T, Nakamura T, Kobayashi E, et al. In situ tissue engineering of periodontal tissues by seeding with periodontal ligament-derived cells. Tissue Eng 2004; 10(3-4): 537-44.
[http://dx.doi.org/10.1089/107632704323061898] [PMID: 15165470]
[89]
Kobayashi E, Fujioka-Kobayashi M, Sculean A, et al. Effects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour. BMC Oral Health 2017; 17(1): 91.
[http://dx.doi.org/10.1186/s12903-017-0381-6] [PMID: 28578703]
[90]
Guo J, Wang Y, Cao C, Dziak R, Preston B, Guan G. Human periodontal ligament cells reaction on a novel hydroxyapatite-collagen scaffold. Dent Traumatol 2013; 29(2): 103-9.
[http://dx.doi.org/10.1111/j.1600-9657.2012.01152.x] [PMID: 22681634]
[91]
Ning L, Malmström H, Ren Y-F. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. J Oral Implantol 2015; 41(1): 45-9.
[http://dx.doi.org/10.1563/AAID-JOI-D-12-00298] [PMID: 23574526]
[92]
Yang C, Lee J-S, Jung U-W, Seo Y-K, Park J-K, Choi S-H. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs. J Periodontal Implant Sci 2013; 43(6): 315-22.
[http://dx.doi.org/10.5051/jpis.2013.43.6.315] [PMID: 24455445]
[93]
Park J-Y, Yang C, Jung I-H, et al. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds. Biomater Res 2015; 19(1): 7.
[http://dx.doi.org/10.1186/s40824-015-0027-1] [PMID: 26331078]
[94]
Yang T, Xie P, Wu Z, et al. The injectable woven bone-like hydrogel to perform alveolar ridge preservation with adapted remodeling performance after tooth extraction. Front Bioeng Biotechnol 2020; 8: 119.
[http://dx.doi.org/10.3389/fbioe.2020.00119] [PMID: 32154241]
[95]
Han X, Wu X, Liu H, Wang D, E L, Zhou W. Ectopic osteogenesis of an injectable nHAC/CSH loaded with blood-acquired mesenchymal progenitor cells in a nude mice model. J Mater Sci Mater Med 2015; 26(1): 5338.
[http://dx.doi.org/10.1007/s10856-014-5338-6] [PMID: 25577218]
[96]
Su J, Xu H, Sun J, Gong X, Zhao H. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int J Mol Sci 2013; 14(6): 12714-28.
[http://dx.doi.org/10.3390/ijms140612714] [PMID: 23778088]
[97]
Wang C, Wang Y, Meng H, Wang X, Zhu Y, Yu K. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. Int J Polym Mater Polym Biomater 2016; 65(12): 601-10.
[http://dx.doi.org/10.1080/00914037.2016.1149849]
[98]
El-Fiqi A, Kim J-H, Kim H-W. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. Mater Sci Eng C 2020; 110: 110660.
[http://dx.doi.org/10.1016/j.msec.2020.110660] [PMID: 32204088]
[99]
Zhou J, Guo X, Zheng Q, Wu Y, Cui F, Wu B. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Colloids Surf B Biointerfaces 2017; 152: 124-32.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.041] [PMID: 28103529]
[100]
Wang Y-F, Wang C-Y, Wan P, Wang S-G, Wang X-M. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen Biomater 2016; 3(1): 33-40.
[http://dx.doi.org/10.1093/rb/rbv025] [PMID: 26816654]
[101]
Venkatesan J, Kim S-K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering-a review. J Biomed Nanotechnol 2014; 10(10): 3124-40.
[http://dx.doi.org/10.1166/jbn.2014.1893] [PMID: 25992432]
[102]
Zhang Y, Cheng X, Wang J, et al. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 2006; 344(1): 362-9.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.106] [PMID: 16600180]
[103]
Peng L, Zhuo R-X. Biological evaluation of porous chitosan/collagen scaffolds for periodontal tissue engineering. 2nd International Conference on Bioinformatics and Biomedical Engineering. 16-18 May 2008; Shanghai, China; IEEE; 2008.
[104]
Ogawa K, Miyaji H, Kato A, et al. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J Periodontal Res 2016; 51(6): 758-67.
[http://dx.doi.org/10.1111/jre.12352] [PMID: 27870141]
[105]
Yamauchi N, Yamauchi S, Nagaoka H, et al. Tissue engineering strategies for immature teeth with apical periodontitis. J Endod 2011; 37(3): 390-7.
[http://dx.doi.org/10.1016/j.joen.2010.11.010] [PMID: 21329828]
[106]
Conte R, Di Salle A, Riccitiello F, Petillo O, Peluso G, Calarco A. Biodegradable polymers in dental tissue engineering and regeneration. AIMS Mater Sci 2018; 5(6): 1073.
[http://dx.doi.org/10.3934/matersci.2018.6.1073]
[107]
Gurumurthy B, Bierdeman PC, Janorkar AV. Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 2016; 32(10): 1270-80.
[http://dx.doi.org/10.1016/j.dental.2016.07.009] [PMID: 27524229]
[108]
Amruthwar SS, Janorkar AV. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent Mater 2013; 29(2): 211-20.
[http://dx.doi.org/10.1016/j.dental.2012.10.003] [PMID: 23127995]