Essential Oils of Basil Cultivars Selectively Affect the Activity of Antioxidant Enzymes in Murine Glial Cells

Article ID: e171221199126 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aims: This work aimed to reveal some mechanisms of influence of three basil EO on the microglial cells, as recently, research data stated that these oils have anti-aging and neuroprotective properties, and they are found to be effective against some forms of neurodegeneration.

Background: The microglial cells play a pivotal role as the neuroprotective agents against neuroinflammation. Ocimum subspecies are a rich source of Essential Oils (EO) and used to be applied since antiquity for different purposes, including the prevention and treatment of various diseases.

Objective: In this study, the influence of the essential oils extracted from three basil cultivars (O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. x citriodorum), possessing remarkable antioxidant activity, on the activity of the main antioxidant enzymes in microglial BV-2 Wild Type (WT) and Acetyl-CoA oxidase deficient cell lines (Acox1-/-) was evaluated.

Methods: All manipulations were carried out using murine microglial BV-2 cell lines (BV-2, Acyl- CoA oxidase type 1 (ACOX1) deficient mutants (Acox1-/-), and WT cells).

Results: Data included in the present article state that plant origin substances can play a role in the regulation of enzymatic antioxidant activity of cells. EOs extracted from the Ocimum different cultivars are able to trigger the activity of acetyl-CoA oxidase type 1 (or palmitoyl-CoA oxidase type 1), which can serve as a basis for the regulation of redox deviation in WT cells.

Conclusion: Thus, it can be suggested to apply them for the prevention of some processes, which can influence aging, as the process of ageing is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure, and so on.

Practical Applications: The microglial cells play a pivotal role as the neuroprotective agents against neuroinflammation. Different data included in the present article described that plant origin substances can play a role in regulating the enzymatic antioxidant activity of cells. EOs extracted from different cultivars of Ocimum are able to trigger the activity of acetyl-CoA oxidase type 1 (palmitoyl-CoA oxidase type 1), which can serve as a basis for the regulation of redox deviation in WT cells. Therefore, it can be proposed to apply them as prevention of some processes, which can influence aging, since the process of aging is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure and so on.

Keywords: Ocimum, essential oil, oxygenated monoterpenes, microglia, palmitoyl-CoA oxidase, biological activity.

Graphical Abstract

[1]
Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods - a review. Czech J. Food Sci., 2016, 34, 377-390.
[http://dx.doi.org/10.17221/504/2015-CJFS]
[2]
Uritu, C.M.; Mihai, C.T.; Stanciu, G.D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.M.; Stefanescu, R.; Bild, V.; Melnic, S.; Tamba, B.I. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manag., 2018, 2018, 7801543.
[http://dx.doi.org/10.1155/2018/7801543] [PMID: 29854039]
[3]
Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement. Altern. Med., 2017, 17(1), 60.
[http://dx.doi.org/10.1186/s12906-017-1587-5] [PMID: 28103929]
[4]
Joshi, R.K. Chemical Composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum Gratissimum, O. Sanctum and their major constituents. Indian J. Pharm. Sci., 2013, 75(4), 457-462.
[http://dx.doi.org/10.4103/0250-474X.119834] [PMID: 24302801]
[5]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[6]
Cohen, M.M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[7]
Lawrence, B.M. A further examination of the variation of Ocimum basilicum. In: Flavors and fragrances: A world perspective; Lawrence, B.M.; Mookerjee, B.D.; Willis, B.J., Eds.; Elsevier Sci. Publ. B.V: Amsterdam, 1988, pp. 161-170.
[8]
Tsasi, G.; Mailis, T.; Daskalaki, A.; Sakadani, E.; Razis, P.; Samaras, Y.; Skaltsa, H. The effect of harvesting on the composition of essential oils from five varieties of Ocimum basilicum L. Cultivated in the Island of Kefalonia, Greece. Plants, 2017, 6(3), 41.
[http://dx.doi.org/10.3390/plants6030041] [PMID: 28927018]
[9]
Sahakyan, N.; Petrosyan, M.; Koss-Mikołajczyk, I.; Bartoszek, A.; Gabour Sad, T.; Nasim, M.J.; Vanidze, M.; Kalandia, A.; Jacob, C.; Trchounian, A. The Caucasian flora: A still-to-be-discovered rich source of antioxidants. Free Rad. Res., 2019, 53(sup1), 1153-1162.
[http://dx.doi.org/10.1080/10715762.2019.1648799]
[10]
Kruger, H.; Wetzel, S.B.; Zeiger, B. The chemical variability of Ocimum species. J. Herbs Spices Med. Plants, 2002, 9, 335-344.
[http://dx.doi.org/10.1300/J044v09n04_11]
[11]
Klimankova, E.; Holadova, K.; Hajslova, J.C; ajka, T. ; Poustka, J.; Koudela, M. Aroma profile of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem., 2008, 107, 464-472.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.062]
[12]
Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life, 2014, 33(3), 151-156.
[http://dx.doi.org/10.4103/0257-7941.144618] [PMID: 25538349]
[13]
Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front. Aging Neurosci., 2017, 9, 168.
[http://dx.doi.org/10.3389/fnagi.2017.00168] [PMID: 28611658]
[14]
Zuo, A.R.; Dong, H.H.; Yu, Y.Y.; Shu, Q.L.; Zheng, L.X.; Yu, X.Y.; Cao, S.W. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chin. Med., 2018, 13, 51.
[http://dx.doi.org/10.1186/s13020-018-0206-9] [PMID: 30364385]
[15]
Hindle, J.V. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing, 2010, 39(2), 156-161.
[http://dx.doi.org/10.1093/ageing/afp223] [PMID: 20051606]
[16]
Rubio-Perez, J.M.; Morillas-Ruiz, J.M. A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J.,, 2012, 2012, 756357.
[http://dx.doi.org/10.1100/2012/756357] [PMID: 22566778]
[17]
Migliore, L.; Coppedè, F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. Genet Toxicol Environ Mutagen., 2009, 674(1-2), 73-84.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.013]
[18]
Sahakyan, N.; Andreoletti, P.; Cherkaoui-Malki, M.; Petrosyan, M.; Trchounian, A. Artemisia dracunculus L. essential oil phytochemical components trigger the activity of cellular antioxidant enzymes. J. Food Biochem., 2021, 45(4), e13691.
[http://dx.doi.org/10.1111/jfbc.13691] [PMID: 33694172]
[19]
Johnson, I.P. Age-related neurodegenerative disease research needs aging models. Front. Aging Neurosci., 2015, 7(7), 168.
[http://dx.doi.org/10.3389/fnagi.2015.00168] [PMID: 26388766]
[20]
Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr., 2007, 137(6)(Suppl. 1), 1539S-1547S.
[http://dx.doi.org/10.1093/jn/137.6.1539S] [PMID: 17513421]
[21]
Rizvi, T.A.; Huang, Y.; Sidani, A.; Atit, R.; Largaespada, D.A.; Boissy, R.E.; Ratner, N. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J. Neurosci., 2002, 22(22), 9831-9840.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09831.2002] [PMID: 12427839]
[22]
Elufioye, T.O.; Berida, T.I.; Habtemariam, S. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms. Evid. Based Complement. Alternat. Med., 2017, 2017, 3574012.
[http://dx.doi.org/10.1155/2017/3574012] [PMID: 28904554]
[23]
Abdel-Naim, A.B.; Alghamdi, A.A.; Algandaby, M.M.; Al-Abbasi, F.A.; Al-Abd, A.M.; Abdallah, H.M.; El-Halawany, A.M.; Hattori, M. Phenolics isolated from Aframomum meleguta enhance proliferation and ossification markers in bone cells. Molecules, 2017, 22(9), 1467.
[http://dx.doi.org/10.3390/molecules22091467] [PMID: 28869564]
[24]
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150(1), 76-85.
[http://dx.doi.org/10.1016/0003-2697(85)90442-7] [PMID: 3843705]
[25]
Cherkaoui Malki, M.; Bardot, O.; Lhuguenot, J.C.; Latruffe, N. Expression of liver peroxisomal proteins as compared to other organelle marker enzymes in rats treated with hypolipidemic agents. Biol. Cell, 1990, 69(2), 83-92.
[http://dx.doi.org/10.1111/j.1768-322X.1990.tb00002.x] [PMID: 2271901]
[26]
Oaxaca-Castillo, D.; Andreoletti, P.; Vluggens, A.; Yu, S.; van Veldhoven, P.P.; Reddy, J.K.; Cherkaoui-Malki, M. Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. Biochem. Biophys. Res. Commun., 2007, 360(2), 314-319.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.059] [PMID: 17603022]
[27]
Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 1971, 44(1), 276-287.
[http://dx.doi.org/10.1016/0003-2697(71)90370-8] [PMID: 4943714]
[28]
Saih, F.E.; Andreoletti, P.; Mandard, S.; Latruffe, N.; El Kebbaj, M.S.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Protective effect of Cactus cladode extracts on peroxisomal functions in microglial BV-2 cells activated by different lipopolysaccharides. Molecules, 2017, 22(1), 102.
[http://dx.doi.org/10.3390/molecules22010102] [PMID: 28067864]
[29]
Karapetyan, T.D.; Mirzoyan, V.S.; Hanisyan, R.M.; Sahakyan, N. In vitro antimicrobial activity of dried and fresh leaf extracts of old and young apricot trees (Prunus armeniaca). New Armen. Med. J., 2011, 5(4), 44-49.
[30]
Zhao, Y.; Wu, Y.; Wang, M. Bioactive Substances of Plant Origin. In: Handbook of Food Chemistry; Cheung, P.; Mehta, B., Eds.; Springer: Berlin, Heidelberg, 2015, pp. 967-1008.
[http://dx.doi.org/10.1007/978-3-642-36605-5_13]
[31]
Sahakyan, N.; Petrosyan, M.; Trchounian, A. The activity of alkanna species in vitro culture and intact plant extracts against antibiotic resistant bacteria. Curr. Pharm. Des., 2019, 25(16), 1861-1865.
[http://dx.doi.org/10.2174/1381612825666190716112510] [PMID: 31333091]
[32]
Sahakyan, N.; Bartoszek, A.; Jacob, C.; Petrosyan, M.; Trchounian, A. Bioavailability of tannins and other oligomeric polyphenols: A still to be studied phenomenon. Curr. Pharmacol. Rep., 2020, 6, 131-136.
[http://dx.doi.org/10.1007/s40495-020-00217-6]
[33]
Orzechowski, A.; Ostaszewski, P.; Jank, M.; Berwid, S.J. Bioactive substances of plant origin in food-impact on genomics. Reprod. Nutr. Dev., 2002, 42(5), 461-477.
[http://dx.doi.org/10.1051/rnd:2002037] [PMID: 12537256]
[34]
Moghrovyan, A.; Sahakyan, N.; Babayan, A.; Chichoyan, N.; Petrosyan, M.; Trchounian, A. Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Curr. Pharm. Des., 2019, 25(16), 1809-1816.
[http://dx.doi.org/10.2174/1381612825666190702095612] [PMID: 31267860]
[35]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-Present status and future perspectives. Medicines (Basel), 2017, 4(3), 58.
[http://dx.doi.org/10.3390/medicines4030058]
[36]
Bezmaternykh, K.V.; Shirshova, T.I.; Beshley, I.V.; Beshlei, I.; Matistov, N.; Smirnova, G.; Oktyabr’skii, O.; Volodin, V. Antioxidant activity of extracts from Allium schoenoprasum L. and Rubus chamaemorus L. growing in the Komi Republic. Pharm. Chem. J., 2014, 51(3), 200-204.
[http://dx.doi.org/10.1007/s11094-017-1582-7]