[1]
Prince JL, Links JM. Medical Imaging Signals and Systems. Upper Saddle River: Pearson Prentice Hall 2006.
[2]
Dhage P, Phegade MR, Shah SK. Watershed segmentation brain tumor detection. 2015 International Conference on Pervasive Computing (ICPC). Pune, India. 2015 January 8; 1-5.
[4]
Kalaiselvi T. Brain Portion Extraction and Brain Abnormality Detection from Magnetic Resonance Imaging of Human Head Scans. South India: Pallavi Publication 2011.
[13]
Anithadevi D, Perumal K. Rough set and multi-thresholds based seeded region growing algorithm for image segmentation.Artificial Intelligence and Evolutionary Computations in Engineering Systems Advances in Intelligent Systems and Computing. Singapore: Springer 2018; pp. 369-79.
[18]
Zanaty EA, Ghoniemy S. Medical image segmentation techniques: An overview. JIMDP 2016; 1(1): 16-37.
[19]
Pei L, Reza SM, Li W, Davatzikos C, Iftekharuddin KM. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI. Proc SPIE Int Soc Opt Eng. 2017; 10134: p. 101342L.
[20]
Shubhangi DC, Hiremath PS. Support Vector Machine (SVM) classifier for brain tumor detection. ICAC3 '09: International Conference on Advances in Computing, Communication and Control. 2009 Jan 23-24; Mumbai, India. 444-8.
[29]
Dong H, Yang G, Liu F, Mo Y, Guo Y. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks.Medical Image Understanding and Analysis Communications in Computer and Information Science. Cham: Springer 2017; pp. 506-17.
[31]
Chen L, Wu Y. MRI tumor segmentation with densely connected 3D CNN. In: Proceedings Volume 10574, Medical Imaging 2018: Image Processing; 105741F (2018); 2018; Houston, Texas, United States; pp. 105741F.
[36]
Kaur T, Saini BS, Gupta S. Optimized multi threshold brain tumor image segmentation using two dimensional minimum cross entropy based on co-occurrence matrix. In: Dey N, Bhateja V, Hassanien AE, Eds. Medical Imaging in Clinical Applications. Cham: Springer 2016; pp. 461-86.
[37]
Wong KP. Medical image segmentation: Methods and applications in functional imaging InHandbook of biomedical image analysis. In: Suri JS, Wilson DL, Laxminarayan S, Eds. Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series. Boston, MA: Springer, 2005; pp. 111-82.
[38]
Mittelhaeusser G, Kruggel F. Fast segmentation of brain magnetic resonance tomograms. In: International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine; 1995 April 3; Berlin, Heidelberg: Springer; pp. 237-41.
[41]
Sato M, Lakare S, Wan M, Kaufman A, Nakajima M. A gradient magnitude based region growing algorithm for accurate segmentation. In: Proceedings 2000 International Conference on Image Processing; 2000 September 10; Vancouver, BC, Canada; pp. 448-51.
[42]
Letteboer M, Niessen W, Willems P, Dam EB, Viergever M. Interactive multi-scale watershed segmentation of tumors in MR brain images. In: Proceedings of the IMIVA Workshop of MICCAI; 2001; Utrecht, Netherlands; pp. 1-6.
[55]
Bishop CM. Pattern Recognition and Machine Learning. 2006.
[56]
Fisher DH, Pazzani MJ, Langley P, Eds. Concept Formation: Knowledge and Experience in Unsupervised Learning. 1st Ed. Burlington, Massachusetts: Morgan Kaufmann 1991.
[57]
Mitchell TM. The discipline of machine learning. Pittsburgh: Carnegie Mellon University, School of Computer Science, Machine Learning Department 2006.
[58]
Duda RO, Hart PE, Stork DG. Pattern classification, ed. W. Interscience. 2001.
[69]
Vapnik V. The Nature of Statistical Learning Theory. Springer science & business media. Berlin, Germany: Springer Science & Business Media 2013.
[81]
Rao BS, Reddy ES. An Efficient Anti-noise Fast FCM clustering for glioblastoma multiforme tumor segmentation. Int J Comput Sci Inf Secur 2016; 14(4): 126.
[85]
Ciresan D, Giusti A, Gambardella L, Schmidhuber J. Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Syst 2012; 25: 2843-51.
[86]
Urban G, Bendszus M, Hamprecht F, Kleesiek J. Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (brain tumor segmentation) challenge. Proceedings, winning contribution; 2014 Sep 14; pp. 31-5.
[87]
Zikic D, Ioannou Y, Brown M, Criminisi A. Segmentation of brain tumor tissues with convolutional neural networks. In: MICCAI workshop on Multimodal Brain Tumor Segmentation Challenge (BRATS); 2014 September; Boston, Massachusetts; pp. 36-9.
[88]
Raju K, Chiplunkar NN. A survey on techniques for cooperative CPU-GPU computing. Sustain Comput Infor 2018; 19: 72-85.
[90]
Dvořák P, Menze B. Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. Medical Computer Vision: Algorithms for Big Data. Cham: Springer 2015; pp. 59-71.
[91]
Rao V, Sarabi MS, Jaiswal A. Brain tumor segmentation with deep learning. In: Proceedings of the Multimodal Brain Tumor Image Segmentation Challenge held in conjunction with MICCAI 2015 (MICCAI-BRATS 2015); 2015 August; Munich; pp. 56-59.
[92]
Bal A, Banerjee M, Sharma P, Chaki R. A multi-class image classifier for assisting in tumor detection of brain using deep convolutional neural network In: Advanced Computing and Systems for Security. Singapore: Springer 2020; pp. 93-111.
[109]
Somasundaram K, Kalaiselvi T. Automatic detection of brain tumor from MRI scans using maxima transform. National Conference on Image Processing. vol. 1: 136-41.
[110]
Kalaiselvi T, Somasundaram K, Vijayalakshmi S. A Novel Self Initiating Brain Tumor Boundary Detection for MRI International Conference on Mathematical Modeling and Scientific Computation – ICMMSC12, CCIS 283. 464-70.
[112]
Kalaiselvi T, Somasundaram K. A novel technique for finding the boundary between the cerebral hemispheres from MR axial head scans. In: 4th Indian International Conference on Artificial Intelligence; IICAI-2009 December 16-18; Tumkur, Karnataka, India; pp. 1486-502.
[113]
Sarkar S, Maindai A. Comparison of some classical edge detection techniques with their suitability analysis for medical images processing. Int J Comput Sci Eng 2015; 3(1): 81-7.
[114]
Mei X, Zheng Z, Wu B, Guo L. The edge detection of brain tumor. In: 2009 International Conference on Communications, Circuits and Systems; 2009 July 23-25; Milpitas, CA, USA; pp. 477-9.
[118]
Halder A, Chatterjee N, Kar Arindam, Pal S, Pramanik S. Edge detection: A statistical approach. In: 2011 3rd International Conference on Electronics Computer Technology; 2011 April 8; Kanyakumari, India; pp. 306-9. 2011; vol. 2: 306-9.
[120]
Mohammad A, Al-Azawi N. Image thresholding using histogram fuzzy approximation. Int J Comput Appl 2013; 83(9): 36-40.
[121]
Kalaiselvi T, Sriramakrishnan P, Vasanthi R. Brain tumor boundary detection from MRI brain scans using edge indication map. In: Proceedings of National Conferences on New Horizons in Computational Intelligence and Information Systems; 2015 December 17; Dindigul, India, pp. 154-5.
[124]
Wang G, Li W, Ourselin S, Vercauteren T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M, Eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, Cham, 2018; pp. 178-90.
[130]
Qurat-Ul-Ain GL, Kazmi SB, Jaffar MA, Mirza AM. Classification and segmentation of brain tumor using texture analysis. In: AIKED'10: Proceedings of the 9th WSEAS international conference on Artificial intelligence, knowledge engineering and data bases Recent advances in artificial intelligence, knowledge engineering and data bases; 2010 February 20; pp. 147-55.
[132]
Roffo G, Melzi S, Cristani M. Infinite feature selection. In: 2015 IEEE International Conference on Computer Vision (ICCV); 2015 December 7-13; Santiago, Chile; pp. 4202-10.
[134]
Gonzalez RC. Digital Image Processing. Boston: Addison–Wesely Publishing Company 1992.
[137]
Bauer S, Tessier J, Krieter O, Nolte LP, Reyes M. Integrated spatio-temporal segmentation of longitudinal brain tumor imaging studies. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Tu Z, Eds. Medical Computer Vision. Large Data in Medical Imaging. Lecture Notes in Computer Science, vol. 8331. Cham: Springer, 2013, pp.74-83.
[138]
Buendia P, Taylor T, Ryan M, John N. A grouping artificial immune network for segmentation of tumor images. In: MICCAI Challenge on Multimodal Brain Tumor Segmentation, 2013 September 22, Nagoya, Japan; pp. 1-5.
[139]
Cordier N, Menze B, Delingette H, Ayache N. Patch based segmentation of brain tissues. In: MICCAI Challenge on Multimodal Brain Tumor Segmentation, 2013 September 22, Nagoya, Japan; pp. 6-17.
[141]
Doyle S, Vasseur F, Dojat M, Forbes F. Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM. In: NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. Proceedings of NCI-MICCAI BRATS 2013; 2013 September 22; Nagoya, Japan; pp. 18-22.
[142]
Pereira S, Festa J, Mariz JA, Sousa N, Silva CA. Automatic brain tissue segmentation of multi-sequence MR images using random decision forests. In: Proceedings of the MICCAI Grand Challenge on MR Brain Image Segmentation (MRBrainS’13); 2013 January 1.
[143]
Geremia E, Menze B H, Ayache N. Spatial decision forests for glioma segmentation in multi-channel MR images. In: MICCAI Challenge on Multimodal Brain Tumor Segmentation; 2012; Nice, France.
[144]
Guo X, Schwartz L, Zhao B. Semi-automatic segmentation of multimodal brain tumor using active contours. In: NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. Proceedings of NCI-MICCAI BRATS 2013; 2013 September 22; Nagoya, Japan; pp. 27-30.
[146]
Meier R, Bauer S, Slotboom J, Wiest R, Reyes M. Appearance-and context-sensitive features for brain tumor segmentation. In: Proceedings of MICCAI BRATS Challenge; 2014.
[147]
Reza S, Iftekharuddin KM. Multi-class abnormal brain tissue segmentation using texture. In: Multimodal Brain Tumor Segmentation; 2013 September 22; Nagoya, Japan. pp. 38.
[151]
Taylor T, John N, Buendia P, Ryan M. Map-reduce enabled hidden Markov models for high throughput multimodal brain tumor segmentation. In: NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. Proceedings of NCI-MICCAI BRATS 2013; 2013 September 22; Nagoya, Japan; pp. 43.
[159]
Angulakshmi M, Deepa M. A review on deep learning architecture and methods for MRI brain tumour segmentation. Curr Med Imaging 2021; 17(6): 695-706.