De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996; 93(7): 2735-40. [http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[6]
De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997; 243(1-2): 518-26. [http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
Levin NMB, Pintro VO, de Avila MB, de Mattos BB, De Azevedo WF Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. new pieces in the molecular puzzle. Curr Drug Targets 2017; 18(9): 1104-11. [http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[9]
Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF. Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 2019; 20(7): 716-26. [http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[10]
Veit-Acosta M, de Azevedo Junior WF. The impact of crystallographic data for the development of machine learning models to predict protein-ligand binding affinity. Curr Med Chem 2021; 28(34): 7002-6. [http://dx.doi.org/10.2174/0929867328666210210121320] [PMID: 33568025]
[11]
Brylinski M. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. J Chem Inf Model 2013; 53(11): 3097-112. [http://dx.doi.org/10.1021/ci400510e] [PMID: 24171431]
[12]
de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 2017; 494(1-2): 305-10. [http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[13]
Levin NMB, Pintro VO, Bitencourt-Ferreira G, de Mattos BB, de Castro Silvério A, de Azevedo WF Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 2018; 235: 1-8. [http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[14]
Bitencourt-Ferreira G, Duarte da Silva A, Filgueira de Azevedo W Jr. Application of machine learning techniques to predict binding affinity for drug targets: a study of cyclin-dependent kinase 2. Curr Med Chem 2021; 28(2): 253-65. [http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[15]
Veit-Acosta M, de Azevedo Junior WF. Computational prediction of binding affinity for cdk2-ligand complexes. a protein target for cancer drug discovery. Curr Med Chem 2021. [http://dx.doi.org/10.2174/0929867328666210806105810] [PMID: 34365938]