New Synthetic Sulfonamide Chalcone Induced Cell Cycle Arrest and Cell Death in Colorectal Adenocarcinoma Metastatic Cells (SW-620)

Page: [2340 - 2351] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: New chalcones have been developed from the insertion of organic groups, among them sulfonamides, presenting varied biological activity.

Objective: The aim of this work was to determine the antitumor potential of a new synthetic sulfonamide chalcone (SSC185) against a colorectal metastatic lymph node-derived colorectal cancer cell line (SW-620).

Methods: Synthesis and characterization, including crystallography, of SSC185 were performed. SSC185 showed a selective cytotoxic effect against colorectal cancer cell lines. Therefore, the cytotoxic effect of SSC185 against SW- 620 was further investigated. We used optical and fluorescence microscopy, flow cytometry and Western blot to determine the antitumor effects of SSC185.

Results: SSC185 induced cytotoxicity in SW-620 cells in a time and concentration-dependent manner. Cell cycle progression was disrupted, with increased G2/M cell number and consequent cell death, with morphological alterations associated with apoptosis and necrosis. Cell death was associated with the activation and cleavage of PARP, and with reduced expression of the pro-apoptotic Bax protein and caspase 8, depending on the SSC185 concentration tested. Expression of the necroptosis pathway proteins RIP and MLKL was also reduced. These proteins are phosphorylated during the process of necroptosis.

Conclusion: We suggest that the mechanism involved in the cytotoxic effect of SSC185 against SW-620 in vitro may be related to the induction of cell cycle arrest in the G2/M phase and cell death by apoptosis or necroptosis, depending on the concentration used.

Keywords: Synthesis, cytotoxicity, cell death, apoptosis, necroptosis, cancer.

Graphical Abstract

[1]
American Cancer Society. 2020. Available from: https://www.cancer.org/treatment/treatments-and-sideeffects/treatment-types.html (Accessed Jan 20, 2021).
[2]
Bortner, C.D.; Cidlowski, J.A. Ion channels and apoptosis in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638), 20130104.
[http://dx.doi.org/10.1098/rstb.2013.0104] [PMID: 24493752]
[3]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[4]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[5]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives: Role in anticancer therapy. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[6]
Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568.
[PMID: 28979310]
[7]
Bahekar, S.P.; Hande, S.V.; Agrawal, N.R.; Chandak, H.S.; Bhoj, P.S.; Goswami, K.; Reddy, M.V.R. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur. J. Med. Chem., 2016, 124, 262-269.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.042] [PMID: 27592395]
[8]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60(4), 307-311.
[http://dx.doi.org/10.1016/j.farmac.2005.01.005] [PMID: 15848205]
[9]
Tang, Y.L.; Li, Y.K.; Li, M.X.; Gao, H.; Yang, X.B.; Mao, Z.W. Synthesis of new piperazine substituted chalcone sulphonamides as antibacterial agents. Curr. Org. Synth., 2020, 17(2), 136-143.
[http://dx.doi.org/10.2174/1570179417666191227115207] [PMID: 32418516]
[10]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013] [PMID: 31096118]
[11]
de Castro, M.R.C.; Aragão, A.Q.; da Silva, C.C.; Perez, C.N.; Queiroz, D.P.K.; Queiroz Júnior, L.H.K.; Barreto, S.; de Moraes, M.O.; Martins, F.T. Conformational variability in sulfonamide chalcone hybrids: Crystal structure and cytotoxicity. J. Braz. Chem. Soc., 2016, 27(5), 884-898.
[http://dx.doi.org/10.5935/0103-5053.20150341]
[12]
Custodio, J.M.F.; Michelini, L.J.; de Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.V.L.; Barreto, F.S.; Moraes Filho, M.O.; Perez, C.N.; Napolitano, H.B. Structural insights into a novel anticancer sulfonamide chalcone. NJC, 2018, 5, 1-9.
[http://dx.doi.org/10.1039/C7NJ03523C]
[13]
D’Oliveira, G.D.C.; Moura, A.F.; Moraes, M.O.; Perez, C.N.; Lião, L.M. Synthesis, characterization and evaluation of in vitro antitumor activities of novel chalcone-quinolinone hybrid compounds. J. Braz. Chem. Soc., 2018, 29(11), 2308-2325.
[http://dx.doi.org/10.21577/0103-5053.20180108]
[14]
Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568.
[PMID: 28979310]
[15]
Seo, W.D.; Kim, J.H.; Kang, J.E.; Ryu, H.W.; Curtis-Long, M.J.; Lee, H.S.; Yang, M.S.; Park, K.H. Sulfonamide chalcone as a new class of alpha-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(24), 5514-5516.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.087] [PMID: 16202584]
[16]
Kang, J.E.; Cho, J.K.; Curtis-Long, M.J.; Ryu, H.W.; Kim, J.H.; Kim, H.J.; Yuk, H.J.; Kim, D.W.; Park, K.H. Inhibitory evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules, 2012, 18(1), 140-153.
[http://dx.doi.org/10.3390/molecules18010140] [PMID: 23344193]
[17]
Arslan, T.; Türkoğlu, E.A.; Şentürk, M.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of novel chalcone substituted benzenesulfonamides. Bioorg. Med. Chem. Lett., 2016, 26(24), 5867-5870.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.017] [PMID: 27884694]
[18]
Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem., 2018, 155, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.034] [PMID: 29852328]
[19]
Singh, P.; Swain, B.; Thacker, P.S.; Sigalapalli, D.K.; Purnachander Yadav, P.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg. Chem., 2020, 99, 103839.
[http://dx.doi.org/10.1016/j.bioorg.2020.103839] [PMID: 32289586]
[20]
Ejaz, S.A.; Saeed, A.; Siddique, M.N.; Nisa, Z.U.; Khan, S.; Lecka, J.; Sévigny, J.; Iqbal, J. Synthesis, characterization and biological evaluation of novel chalcone sulfonamide hybrids as potent intestinal alkaline phosphatase inhibitors. Bioorg. Chem., 2017, 70, 229-236.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.003] [PMID: 28110961]
[21]
Custodio, J.M.F.; Moura, A.F.; Moraes, M.O.; Perez, C.N.; Napolitano, H.B. On the in silico and in vitro anticancer activity of sulfonamide chalcones: Potential JNKK3 inhibitors. New J. Chem., 2020, 44(8), 3294-3309.
[http://dx.doi.org/10.1039/C9NJ05612B]
[22]
Lee, B.; Kang, W.; Shon, J.; Park, K.H.; Song, K-S.; Liu, K-H. Potential of 4′-(p-toluene sulfonamide)-4-hydroxychalcone to inhibit the human cytochrome p450 2j2 isoform. Appl. Biol. Chem, 2014, 57(1), 31-34.
[23]
Lee, S-A.; Lee, M-S.; Ryu, H.W.; Kwak, T.K.; Kim, H.; Kang, M.; Jung, O.; Kim, H.J.; Park, K.H.; Lee, J.W. Differential inhibition of transmembrane 4 L six family member 5 (TM4SF5)-mediated tumorigenesis by TSAHC and sorafenib. Cancer Biol. Ther., 2011, 11(3), 330-336.
[http://dx.doi.org/10.4161/cbt.11.3.14099] [PMID: 21099346]
[24]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; Zahran, S.S. Synthesis, anticancer and radiosensitizing evaluation of some novel sulfonamide derivatives. Eur. J. Med. Chem., 2015, 92, 682-692.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.036] [PMID: 25618015]
[25]
APEX2. Bruker AXS Inc; Madison, Wisconsin, USA, 2009.
[26]
Burla, M.C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2004: An improved tool for crystal structure determination and refinement. J. Appl. Cryst., 2005, 38, 381-388.
[http://dx.doi.org/10.1107/S002188980403225X]
[27]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C, 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[28]
Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Cryst., 2008, 41, 466-470.
[http://dx.doi.org/10.1107/S0021889807067908]
[29]
Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst., 2012, 45, 849-854.
[http://dx.doi.org/10.1107/S0021889812029111]
[30]
Moura, A.F.; Lima, K.S.B.; Sousa, T.S.; Marinho-Filho, J.D.B.; Pessoa, C.; Silveira, E.R.; Pessoa, O.D.L.; Costa-Lotufo, L.V.; Moraes, M.O.; Araújo, A.J. In vitro antitumor effect of a lignan isolated from Combretum fruticosum, trachelogenin, in HCT-116 human colon cancer cells. Toxicol. In Vitro, 2018, 47, 129-136.
[http://dx.doi.org/10.1016/j.tiv.2017.11.014] [PMID: 29174024]
[31]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[32]
Darzynkiewicz, Z.; Bruno, S.; Del Bino, G.; Gorczyca, W.; Hotz, M.A.; Lassota, P.; Traganos, F. Features of apoptotic cells measured by flow cytometry. Cytometry, 1992, 13(8), 795-808.
[http://dx.doi.org/10.1002/cyto.990130802] [PMID: 1333943]
[33]
Cury-Boaventura, M.F.; Pompéia, C.; Curi, R. Comparative toxicity of oleic acid and linoleic acid on Jurkat cells. Clin. Nutr., 2004, 23(4), 721-732.
[http://dx.doi.org/10.1016/j.clnu.2003.12.004] [PMID: 15297111]
[34]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9(7), 671-675.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[35]
De Castro, M.R.C.; Naves, R.F.; Bernardes, A.; Silva, C.C.; Perez, C.N.; Moura, A.F.; Moraes, M.O.; Martins, F.T. Tandem chalcone-sulfonamide hybridization, cyclization and further Claisen–Schmidt condensation: Tuning molecular diversity through reaction time and order and catalyst. Arab. J. Chem., 2020, 13(1), 1345-1354.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.005]
[36]
Custodio, J.M.F.; Vaz, W.F.; de Castro, M.R.C.; Bernardes, A.; Naves, L.F.N.; Moura, A.F.; Moraes, M.O.; Silva, C.C.; Martins, F.T.; Perez, C.N.; Napolitano, H.B. Solvent-driven structural adaptation in a novel anticancer sulfonamide chalcone. J. Mol. Struct., 2019, 1175, 389-397.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.059]
[37]
Michelini, L.J.; Castro, M.R.C.; Custodio, J.M.F.; Naves, L.F.N.; Vaz, W.F.; Lobón, G.S.; Martins, F.T.; Perez, C.N.; Napolitano, H.B. A novel potential anticancer chalcone: Synthesis, crystal structure and cytotoxic assay. J. Mol. Struct., 2018, 1168, 309-315.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.010]
[38]
WHO. World Health Organization, 2018. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cancer/ (Accessed Apr 2, 2020).
[39]
Kello, M.; Drutovic, D.; Pilatova, M.B.; Tischlerova, V.; Perjesi, P.; Mojzis, J. Chalcone derivatives cause accumulation of colon cancer cells in the G2/M phase and induce apoptosis. Life Sci., 2016, 150, 32-38.
[http://dx.doi.org/10.1016/j.lfs.2016.02.073] [PMID: 26916824]
[40]
Amado, N.G.; Predes, D.; Moreno, M.M.; Carvalho, I.O.; Mendes, F.A.; Abreu, J.G. Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int. J. Mol. Sci., 2014, 15(7), 12094-12106.
[http://dx.doi.org/10.3390/ijms150712094] [PMID: 25007066]
[41]
Fonseca, B.F.; Predes, D.; Cerqueira, D.M.; Reis, A.H.; Amado, N.G.; Cayres, M.C.; Kuster, R.M.; Oliveira, F.L.; Mendes, F.A.; Abreu, J.G. Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro. PLoS One, 2015, 10(3), e0120919.
[http://dx.doi.org/10.1371/journal.pone.0120919] [PMID: 25775405]
[42]
Pericleous, M.; Mandair, D.; Caplin, M.E. Diet and supplements and their impact on colorectal cancer. J. Gastrointest. Oncol., 2013, 4(4), 409-423.
[http://dx.doi.org/10.3978/j.issn.2078-6891.2013.003] [PMID: 24294513]
[43]
Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res., 2018, 28(1), 9-21.
[http://dx.doi.org/10.1038/cr.2017.133] [PMID: 29076500]
[44]
Drutovic, D.; Chripkova, M.; Pilatova, M.; Kruzliak, P.; Perjesi, P.; Sarissky, M.; Lupi, M.; Damia, G.; Broggini, M.; Mojzis, J. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumour Biol., 2014, 35(10), 9967-9975.
[http://dx.doi.org/10.1007/s13277-014-2289-y] [PMID: 25008568]
[45]
Kim, Y.J.; Kang, K.S.; Choi, K.C.; Ko, H. Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells. Bioorg. Med. Chem. Lett., 2015, 25(12), 2559-2564.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.054] [PMID: 25959811]
[46]
de Vasconcelos, A.; Campos, V.F.; Nedel, F.; Seixas, F.K.; Dellagostin, O.A.; Smith, K.R.; de Pereira, C.M.; Stefanello, F.M.; Collares, T.; Barschak, A.G. Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell Biochem. Funct., 2013, 31(4), 289-297.
[http://dx.doi.org/10.1002/cbf.2897] [PMID: 22987398]
[47]
Dong, N.; Liu, X.; Zhao, T.; Wang, L.; Li, H.; Zhang, S.; Li, X.; Bai, X.; Zhang, Y.; Yang, B. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells. Biomed. Pharmacother., 2018, 105, 195-203.
[http://dx.doi.org/10.1016/j.biopha.2018.05.126] [PMID: 29857299]
[48]
Dos Santos, M.B.; Bertholin Anselmo, D.; de Oliveira, J.G.; Jardim-Perassi, B.V.; Alves Monteiro, D.; Silva, G.; Gomes, E.; Lucia Fachin, A.; Marins, M.; de Campos Zuccari, D.A.P.; Octavio Regasini, L. Antiproliferative activity and p53 upregulation effects of chalcones on human breast cancer cells. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1093-1099.
[http://dx.doi.org/10.1080/14756366.2019.1615485] [PMID: 31117836]
[49]
Mielcke, T.R.; Muradás, T.C.; Filippi-Chiela, E.C.; Amaral, M.E.A.; Kist, L.W.; Bogo, M.R.; Mascarello, A.; Neuenfeldt, P.D.; Nunes, R.J.; Campos, M.M. Mechanisms underlying the antiproliferative effects of a series of quinoxaline-derived chalcones. Sci. Rep., 2017, 7(1), 15850.
[http://dx.doi.org/10.1038/s41598-017-16199-3] [PMID: 29158524]
[50]
Zhang, S.; Li, T.; Zhang, L.; Wang, X.; Dong, H.; Li, L.; Fu, D.; Li, Y.; Zi, X.; Liu, H.M.; Zhang, Y.; Xu, H.; Jin, C.Y. A novel chalcone derivative S17 induces apoptosis through ROS dependent DR5 up-regulation in gastric cancer cells. Sci. Rep., 2017, 7(1), 9873.
[http://dx.doi.org/10.1038/s41598-017-10400-3] [PMID: 28852176]
[51]
Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature, 2015, 517(7534), 311-320.
[http://dx.doi.org/10.1038/nature14191] [PMID: 25592536]
[52]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[53]
Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100.
[http://dx.doi.org/10.1186/s12943-019-1029-8] [PMID: 31122251]
[54]
Su, Z.; Yang, Z.; Xie, L.; DeWitt, J.P.; Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ., 2016, 23(5), 748-756.
[http://dx.doi.org/10.1038/cdd.2016.8] [PMID: 26915291]
[55]
Cao, M.; Chen, F.; Xie, N.; Cao, M.Y.; Chen, P.; Lou, Q.; Zhao, Y.; He, C.; Zhang, S.; Song, X.; Sun, Y.; Zhu, W.; Mou, L.; Luan, S.; Gao, H. c-Jun N-terminal kinases differentially regulate TNF- and TLRs-mediated necroptosis through their kinase-dependent and -independent activities. Cell Death Dis., 2018, 9(12), 1140.
[http://dx.doi.org/10.1038/s41419-018-1189-2] [PMID: 30442927]
[56]
Holler, N.; Zaru, R.; Micheau, O.; Thome, M.; Attinger, A.; Valitutti, S.; Bodmer, J.L.; Schneider, P.; Seed, B.; Tschopp, J. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol., 2000, 1(6), 489-495.
[http://dx.doi.org/10.1038/82732] [PMID: 11101870]
[57]
Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 2013, 38(2), 209-223.
[http://dx.doi.org/10.1016/j.immuni.2013.02.003] [PMID: 23438821]
[58]
Aleem, E.; Arceci, R.J. Targeting cell cycle regulators in hematologic malignancies. Front. Cell Dev. Biol., 2015, 3(16), 16.
[http://dx.doi.org/10.3389/fcell.2015.00016] [PMID: 25914884]
[59]
Sherr, C.J.; Bartek, J. Cell cycle – Targeted cancer therapies. Annu. Rev. Cancer Biol., 2017, 1, 41-57.
[http://dx.doi.org/10.1146/annurev-cancerbio-040716-075628]