Quorum Sensing Regulation as a Target for Antimicrobial Therapy

Page: [848 - 864] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.

Keywords: Autoinducer, quorum quenching, quorum sensing, bacterial communication, regulation, structural diversity.

Graphical Abstract

[1]
Aliyu, A.B.; Koorbanally, N.A.; Moodley, B.; Singh, P.; Chenia, H.Y. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides. Phytochemistry, 2016, 126, 23-33.
[http://dx.doi.org/10.1016/j.phytochem.2016.02.012] [PMID: 26920717]
[2]
Tay, S.B.; Yew, W.S. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int. J. Mol. Sci., 2013, 14(8), 16570-16599.
[http://dx.doi.org/10.3390/ijms140816570] [PMID: 23939429]
[3]
Welsh, M.A.; Blackwell, H.E. Chemical probes of quorum sensing: From compound development to biological discovery. FEMS Microbiol. Rev., 2016, 40(5), 774-794.
[http://dx.doi.org/10.1093/femsre/fuw009] [PMID: 27268906]
[4]
Scott, S.R.; Hasty, J. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol., 2016, 5(9), 969-977.
[http://dx.doi.org/10.1021/acssynbio.5b00286] [PMID: 27172092]
[5]
Delago, A.; Mandabi, A.; Meijler, M.M. Natural quorum sensing inhibitors-small molecules, big messages. Isr. J. Chem., 2015, 56, 310-320.
[http://dx.doi.org/10.1002/ijch.201500052]
[6]
Hudaiberdiev, S.; Choudhary, K.S.; Vera Alvarez, R.; Gelencsér, Z.; Ligeti, B.; Lamba, D.; Pongor, S. Census of solo LuxR genes in prokaryotic genomes. Front. Cell. Infect. Microbiol., 2015, 5, 20-34.
[http://dx.doi.org/10.3389/fcimb.2015.00020] [PMID: 25815274]
[7]
Gómez, C.M.; Kouznetsov, V.V. Small molecules as regulators of bacterial quorum sensing. New strategy in the development of antimicrobial agents.Antimicrobial Research: Novel Bioknowledge and Educational Programs; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2017, pp. 610-622.
[8]
Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med., 2012, 2(11), a012427.
[9]
de la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol., 2013, 16(5), 580-589.
[http://dx.doi.org/10.1016/j.mib.2013.06.013] [PMID: 23880136]
[10]
Defoirdt, T.; Boon, N.; Bossier, P. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog., 2010, 6(7), e1000989.
[http://dx.doi.org/10.1371/journal.ppat.1000989] [PMID: 20628566]
[11]
Linton, A.; Rumbaugh, K.P. Interspecies and interkingdom signaling via quorum signals. Isr. J. Chem., 2015, 56, 265-272.
[http://dx.doi.org/10.1002/ijch.201400132]
[12]
Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev., 2013, 37(2), 156-181.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00345.x] [PMID: 22712853]
[13]
Diggle, S.P.; Cornelis, P.; Williams, P.; Cámara, M. 4-quinolone signalling in Pseudomonas aeruginosa: Old molecules, new perspectives. Int. J. Med. Microbiol., 2006, 296(2-3), 83-91.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.038] [PMID: 16483840]
[14]
Lee, J.H.; Wood, T.K.; Lee, J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol., 2015, 23(11), 707-718.
[http://dx.doi.org/10.1016/j.tim.2015.08.001] [PMID: 26439294]
[15]
Brachmann, A.O.; Brameyer, S.; Kresovic, D.; Hitkova, I.; Kopp, Y.; Manske, C.; Schubert, K.; Bode, H.B.; Heermann, R. Pyrones as bacterial signaling molecules. Nat. Chem. Biol., 2013, 9(9), 573-578.
[http://dx.doi.org/10.1038/nchembio.1295] [PMID: 23851573]
[16]
Williams, P.; Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. COMICR, 2009, 12(2), 182-191.
[http://dx.doi.org/10.1016/j.mib.2009.01.005] [PMID: 19249239]
[17]
LaSarre, B.; Federle, M.J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev., 2013, 77(1), 73-111.
[http://dx.doi.org/10.1128/MMBR.00046-12] [PMID: 23471618]
[18]
Camilli, A.; Bassler, B.L. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764), 1113-1116.
[http://dx.doi.org/10.1126/science.1121357] [PMID: 16497924]
[19]
Dong, Y.H.; Wang, L.Y.; Zhang, L.H. Quorum-quenching microbial infections: Mechanisms and implications. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1483), 1201-1211.
[http://dx.doi.org/10.1098/rstb.2007.2045] [PMID: 17360274]
[20]
Dou, Y.; Song, F.; Guo, F.; Zhou, Z.; Zhu, C.; Xiang, J.; Huan, J. Acinetobacter baumannii quorum-sensing signalling molecule induces the expression of drug-resistance genes. Mol. Med. Rep., 2017, 15(6), 4061-4068.
[http://dx.doi.org/10.3892/mmr.2017.6528] [PMID: 28487993]
[21]
Drees, S.L.; Fetzner, S. PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol., 2015, 22(5), 611-618.
[http://dx.doi.org/10.1016/j.chembiol.2015.04.012] [PMID: 25960261]
[22]
Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015, 6(1), 26-41.
[http://dx.doi.org/10.1007/s13238-014-0100-x] [PMID: 25249263]
[23]
Tarighi, S.; Taheri, P. Different aspects of bacterial communication signals. World J. Microbiol. Biotechnol., 2011, 27(6), 1267-1280.
[http://dx.doi.org/10.1007/s11274-010-0575-4] [PMID: 25187126]
[24]
Xavier, K.B.; Bassler, B.L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol., 2005, 187(1), 238-248.
[http://dx.doi.org/10.1128/JB.187.1.238-248.2005] [PMID: 15601708]
[25]
Sturme, M.H.; Kleerebezem, M.; Nakayama, J.; Akkermans, A.D.L.; Vaugha, E.E.; de Vos, W.M. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek, 2002, 81(1-4), 233-243.
[http://dx.doi.org/10.1023/A:1020522919555] [PMID: 12448722]
[26]
Fleitas Martínez, O.; Rigueiras, P.O.; Pires, Á.D.S.; Porto, W.F.; Silva, O.N.; de la Fuente-Nunez, C.; Franco, O.L. Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front. Cell. Infect. Microbiol., 2019, 8, 444-458.
[http://dx.doi.org/10.3389/fcimb.2018.00444] [PMID: 30805311]
[27]
Verbeke, F.; De Craemer, S.; Debunne, N.; Janssens, Y.; Wynendaele, E.; Van de Wiele, C.; De Spiegeleer, B. Peptides as quorum sensing molecules: Measurement techniques and obtained levels in vitro and in vivo. Front. Neurosci., 2017, 11, 183-193.
[http://dx.doi.org/10.3389/fnins.2017.00183] [PMID: 28446863]
[28]
Clarke, M.B.; Sperandio, V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol. Microbiol., 2005, 58(2), 441-455.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04819.x] [PMID: 16194231]
[29]
Rémy, B.; Plener, L.; Elias, M.; Daudé, D.; Chabrière, E. Enzymes for disrupting bacterial communication, an alternative to antibiotics? Ann. Pharm. Fr., 2016, 74(6), 413-420.
[PMID: 27475310]
[30]
Rader, B.A.; Campagna, S.R.; Semmelhack, M.F.; Bassler, B.L.; Guillemin, K. The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J. Bacteriol., 2007, 189(17), 6109-6117.
[http://dx.doi.org/10.1128/JB.00246-07] [PMID: 17586631]
[31]
Bansal, T.; Englert, D.; Lee, J.; Hegde, M.; Wood, T.K.; Jayaraman, A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun., 2007, 75(9), 4597-4607.
[http://dx.doi.org/10.1128/IAI.00630-07] [PMID: 17591798]
[32]
Diggle, S.P.; Williams, P. Quorum Sensing.In: Brenner’s encyclopedia of genetics, 2nd Ed.; Maloy, S.; Hughes, K., Eds.; Academic Press: Cambridge , 2013; pp. 392-393.
[33]
Toyofuku, M.; Nomura, N.; Kuno, E.; Tashiro, Y.; Nakajima, T.; Uchiyama, H. Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J. Bacteriol., 2008, 190(24), 7947-7956.
[http://dx.doi.org/10.1128/JB.00968-08] [PMID: 18931133]
[34]
Clough, S.J.; Flavier, A.B.; Schell, M.A.; Denny, T.P. Differential expression of virulence genes and motility in Ralstonia (Pseudomonas) solanacearum during exponential. Appl. Environ. Microbiol., 1997, 63(3), 844-850.
[http://dx.doi.org/10.1128/aem.63.3.844-850.1997] [PMID: 16535550]
[35]
Clough, S.J.; Lee, K.E.; Schell, M.A.; Denny, T.P. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J. Bacteriol., 1997, 179(11), 3639-3648.
[http://dx.doi.org/10.1128/jb.179.11.3639-3648.1997] [PMID: 9171411]
[36]
Lee, S.W.; Jeong, K.S.; Han, S.W.; Lee, S.E.; Phee, B.K.; Hahn, T.R.; Ronald, P. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J. Bacteriol., 2008, 190(6), 2183-2197.
[http://dx.doi.org/10.1128/JB.01406-07] [PMID: 18203830]
[37]
Gudesblat, G.E.; Torres, P.S.; Vojnov, A.A. Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol., 2009, 149(2), 1017-1027.
[http://dx.doi.org/10.1104/pp.108.126870] [PMID: 19091877]
[38]
Zhang, J.L.; Wang, D.; Liang, Y.W.; Zhong, W.Y.; Ming, Z.H.; Tang, D.J.; Tang, J.L. The Gram-negative phytopathogen Xanthomonas campestris pv. campestris employs a 5'UTR as a feedback controller to regulate methionine biosynthesis. Microbiology, 2018, 164(9), 1146-1155.
[http://dx.doi.org/10.1099/mic.0.000690] [PMID: 30024369]
[39]
Valentini, M.; Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem., 2016, 291(24), 12547-12555.
[http://dx.doi.org/10.1074/jbc.R115.711507] [PMID: 27129226]
[40]
Brameyer, S.; Kresovic, D.; Bode, H.B.; Heermann, R. Dialkylresorcinols as bacterial signaling molecules. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 572-577.
[http://dx.doi.org/10.1073/pnas.1417685112] [PMID: 25550519]
[41]
Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K. Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnol. Adv., 2019, 37(1), 68-90.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.006] [PMID: 30471318]
[42]
Zhou, L.; Zhang, L.H.; Cámara, M.; He, Y.W. The DSF family of quorum sensing signals: Diversity, biosynthesis and turnover. Trends Microbiol., 2017, 25(4), 293-303.
[http://dx.doi.org/10.1016/j.tim.2016.11.013] [PMID: 27979499]
[43]
Torres, P.S.; Malamud, F.; Rigano, L.A.; Russo, D.M.; Marano, M.R.; Castagnaro, A.P.; Zorreguieta, A.; Bouarab, K.; Dow, J.M.; Vojnov, A.A. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol., 2007, 9(8), 2101-2109.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01332.x] [PMID: 17635553]
[44]
Churchill, M.E.; Chen, L. Structural basis of acyl-homoserine lactone-dependent signaling. Chem. Rev., 2011, 111(1), 68-85.
[http://dx.doi.org/10.1021/cr1000817] [PMID: 21125993]
[45]
Whitehead, N.A.; Barnard, A.M.; Slater, H.; Simpson, N.J.; Salmond, G.P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 2001, 25(4), 365-404.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00583.x] [PMID: 11524130]
[46]
Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin, S.; Steinberg, P.D.; Kjelleberg, S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol., 1996, 178(22), 6618-6622.
[http://dx.doi.org/10.1128/jb.178.22.6618-6622.1996] [PMID: 8932319]
[47]
Boursier, M.E.; Combs, J.B.; Blackwell, H.E. N-acyl l-homocysteine thiolactones are potent and stable synthetic modulators of the RhlR quorum sensing receptor in Pseudomonas aeruginosa. ACS Chem. Biol., 2019, 14(2), 186-191.
[http://dx.doi.org/10.1021/acschembio.8b01079] [PMID: 30668907]
[48]
Glik, J.; Kawecki, M.; Gaździk, T.; Nowak, M. The impact of the types of microorganisms isolated from blood and wounds on the results of treatment in burn patients with sepsis. Pol. J. Surg., 2012, 84(1), 6-16.
[http://dx.doi.org/10.2478/v10035-012-0002-7] [PMID: 22472489]
[49]
Gui, M.; Wu, R.; Liu, L.; Wang, S.; Zhang, L.; Li, P. Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii LP-11. ACS Chem. Biol., 2017, 252, 61-68.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.04.005] [PMID: 28482205]
[50]
Das, M.C.; Sandhu, P.; Gupta, P.; Rudrapaul, P.; De, U.C.; Tribedi, P.; Akhter, Y.; Bhattacharjee, S. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin. Sci. Rep., 2016, 6, 23347.
[http://dx.doi.org/10.1038/srep23347] [PMID: 27000525]
[51]
Husni, R.N.; Goldstein, L.S.; Arroliga, A.C.; Hall, G.S.; Fatica, C.; Stoller, J.K.; Gordon, S.M. Risk factors for an outbreak of multi-drug-resistant Acinetobacter nosocomial pneumonia among intubated patients. Chest, 1999, 115(5), 1378-1382.
[http://dx.doi.org/10.1378/chest.115.5.1378] [PMID: 10334156]
[52]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[53]
Amara, N.; Krom, B.P.; Kaufmann, G.F.; Meijler, M.M. Macromolecular inhibition of quorum sensing: Enzymes, antibodies, and beyond. Chem. Rev., 2011, 111(1), 195-208.
[http://dx.doi.org/10.1021/cr100101c] [PMID: 21087050]
[54]
Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv., 2013, 31(2), 224-245.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.004] [PMID: 23142623]
[55]
Kesarwani, M.; Hazan, R.; He, J.; Que, Y.A.; Apidianakis, Y.; Lesic, B.; Xiao, G.; Dekimpe, V.; Milot, S.; Deziel, E.; Lépine, F.; Rahme, L.G. A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes. PLoS Pathog., 2011, 7(8), e1002192.
[http://dx.doi.org/10.1371/journal.ppat.1002192] [PMID: 21829370]
[56]
Haque, S.; Ahmad, F.; Dar, S.A.; Jawed, A.; Mandal, R.K.; Wahid, M.; Lohani, M.; Khan, S.; Singh, V.; Akhter, N. Developments in strategies for quorum sensing virulence factor inhibition to combat bacterial drug resistance. Microb. Pathog., 2018, 121, 293-302.
[http://dx.doi.org/10.1016/j.micpath.2018.05.046] [PMID: 29857121]
[57]
Malone, C.L.; Boles, B.R.; Horswill, A.R. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the synechocystis DnaB mini-intein. Appl. Environ. Microbiol., 2007, 73(19), 6036-6044.
[http://dx.doi.org/10.1128/AEM.00912-07] [PMID: 17693565]
[58]
Okada, M.; Sugita, T.; Abe, I. Posttranslational isoprenylation of tryptophan in bacteria. Beilstein J. Org. Chem., 2017, 13, 338-346.
[http://dx.doi.org/10.3762/bjoc.13.37] [PMID: 28326143]
[59]
Hazan, R.; Que, Y.A.; Maura, D.; Strobel, B.; Majcherczyk, P.A.; Hopper, L.R.; Wilbur, D.J.; Hreha, T.N.; Barquera, B.; Rahme, L.G. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr. Biol., 2016, 26(2), 195-206.
[http://dx.doi.org/10.1016/j.cub.2015.11.056] [PMID: 26776731]
[60]
He, X.; Lu, F.; Yuan, F.; Jiang, D.; Zhao, P.; Zhu, J.; Cheng, H.; Cao, J.; Lu, G. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob. Agents Chemother., 2015, 59(8), 4817-4825.
[http://dx.doi.org/10.1128/AAC.00877-15] [PMID: 26033730]
[61]
Heurlier, K.; Dénervaud, V.; Haas, D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int. J. Med. Microbiol., 2006, 296(2-3), 93-102.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.043] [PMID: 16503417]
[62]
Bai, A.J.; Rai, V.R. Bacterial quorum sensing and food industry. Compr. Rev. Food Sci. Food Saf., 2011, 10, 183-193.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00150.x]
[63]
Eberl, L.; Riedel, K. Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics, 2011, 11(15), 3070-3085.
[http://dx.doi.org/10.1002/pmic.201000814] [PMID: 21548094]
[64]
Kalia, V.C.; Purohit, H.J. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit. Rev. Microbiol., 2011, 37(2), 121-140.
[http://dx.doi.org/10.3109/1040841X.2010.532479] [PMID: 21271798]
[65]
Möker, N.; Dean, C.R.; Tao, J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol., 2010, 192(7), 1946-1955.
[http://dx.doi.org/10.1128/JB.01231-09] [PMID: 20097861]
[66]
Clean Care is Safer Care: Background to Clean Care is Safer Care. World Health Organization,. 1955.
[67]
Clean Care is Safer Care: The Burden of Health Care-Associated Infection Worldwide. World Health Organization,. 2015.
[68]
Cao, H.; Krishnan, G.; Goumnerov, B.; Tsongalis, J.; Tompkins, R.; Rahme, L.G. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14613-14618.
[http://dx.doi.org/10.1073/pnas.251465298] [PMID: 11724939]
[69]
Chan, X.Y.; How, K.Y.; Yin, W.F.; Chan, K.G. N-acyl homoserine lactone-mediated quorum sensing in Aeromonas veronii biovar sobria strain 159: Identification of LuxRI homologs. Front. Cell. Infect. Microbiol., 2016, 6, 7-21.
[http://dx.doi.org/10.3389/fcimb.2016.00007] [PMID: 26909339]
[70]
Lang, J.; Faure, D. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front. Plant Sci., 2014, 5, 14.
[http://dx.doi.org/10.3389/fpls.2014.00014] [PMID: 24550924]
[71]
Kalamara, M.; Spacapan, M.; Mandic-Mulec, I.; Stanley-Wall, N.R. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol. Microbiol., 2018, 110(6), 863-878.
[http://dx.doi.org/10.1111/mmi.14127] [PMID: 30218468]
[72]
Slamti, L.; Perchat, S.; Huillet, E.; Lereclus, D. Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel), 2014, 6(8), 2239-2255.
[http://dx.doi.org/10.3390/toxins6082239] [PMID: 25089349]
[73]
Pettinati, I.; Brem, J.; Lee, S.Y.; McHugh, P.J.; Schofield, C.J. The chemical biology of human metallo-β-Lactamase fold proteins. Trends Biochem. Sci., 2016, 41(4), 338-355.
[http://dx.doi.org/10.1016/j.tibs.2015.12.007] [PMID: 26805042]
[74]
Li, J.; Attila, C.; Wang, L.; Wood, T.K.; Valdes, J.J.; Bentley, W.E. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: Effects on small RNA and biofilm architecture. J. Bacteriol., 2007, 189(16), 6011-6020.
[http://dx.doi.org/10.1128/JB.00014-07] [PMID: 17557827]
[75]
Ahmer, B.M.M. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol. Microbiol., 2004, 52(4), 933-945.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04054.x] [PMID: 15130116]
[76]
Vadakkan, K.; Choudhury, A.A.; Gunasekaran, R.; Hemapriya, J.; Vijayanand, S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol., 2018, 16(2), 239-252.
[http://dx.doi.org/10.1016/j.jgeb.2018.07.001] [PMID: 30733731]
[77]
Chan, K.G.; Liu, Y.C.; Chang, C.Y. Inhibiting N-acyl-homoserine lactone synthesis and quenching pseudomonas quinolone quorum sensing to attenuate virulence. Mini-Rev. Front. Microbiol., 2015, 6, 1-7.
[http://dx.doi.org/10.3389/fmicb.2015.01173]
[78]
Romero, M.; Diggle, S.P.; Heeb, S.; Cámara, M.; Otero, A. Quorum quenching activity in Anabaena sp. PCC 7120: Identification of AiiC, a novel AHL-acylase. FEMS Microbiol. Lett., 2008, 280(1), 73-80.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01046.x] [PMID: 18194337]
[79]
Lundgren, B.R.; Sarwar, Z.; Feldman, K.S.; Shoytush, J.M.; Nomura, C.T. SfnR2 regulates dimethyl sulfide-related utilization in Pseudomonas aeruginosa PAO1. J. Bacteriol., 2019, 201(4), e00606-e00618.
[http://dx.doi.org/10.1128/JB.00606-18] [PMID: 30478084]
[80]
Amrutha, R.N.; Bramhachari, P.V.; Prakasham, R.S. Quorumsensing mechanism in Rhizobium sp. revealing complexity in a molecular dialogue. Implication of Quorum Sensing System in Biofilm Formation and Virulence; Springer: Singapur, , 2019; pp. 249-258.
[81]
Ng, F.S.W.; Wright, D.M.; Seah, S.Y.K. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl. Environ. Microbiol., 2011, 77(4), 1181-1186.
[http://dx.doi.org/10.1128/AEM.01642-10] [PMID: 21183649]
[82]
Ramírez, A.; Fernández, I.J.; Núñez, K.J.; Xiqui, M.L.; Baca, B.E. Signaling networks in the production of biofilms in bacteria: Quorum sensing, di-cGMP and nitric oxide. Rev. Argent. Microbiol., 2014, 46, 242-255.
[http://dx.doi.org/10.1016/S0325-7541(14)70079-3]
[83]
Rampioni, G.; Leoni, L.; Williams, P. The art of antibacterial warfare: Deception through interference with quorum sensing-mediated communication. Bioorg. Chem., 2014, 55, 60-68.
[http://dx.doi.org/10.1016/j.bioorg.2014.04.005] [PMID: 24823895]
[84]
Ikeda, T.; Morohoshi, T. Prevention of biofilm formation basing on quorum sensing inhibition. Quorum Sensing. Environ. Biotechnol., 2010, 10, 15-18.
[85]
Furiga, A.; Lajoie, B.; El Hage, S.; Baziard, G.; Roques, C. Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrob. Agents Chemother., 2015, 60(3), 1676-1686.
[http://dx.doi.org/10.1128/AAC.02533-15] [PMID: 26711774]
[86]
Maeda, T.; García-Contreras, R.; Pu, M.; Sheng, L.; Garcia, L.R.; Tomás, M.; Wood, T.K. Quorum quenching quandary: Resistance to antivirulence compounds. ISME J., 2012, 6(3), 493-501.
[http://dx.doi.org/10.1038/ismej.2011.122] [PMID: 21918575]
[87]
Olson, M.E.; Ceri, H.; Morck, D.W.; Buret, A.G.R.; Read, R.R. Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can. J. Vet. Res., 2002, 66(2), 86-92.
[PMID: 11989739]
[88]
Chen, R.; Zhou, Z.; Cao, Y.; Bai, Y.; Yao, B. High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb. Cell Fact., 2010, 9, 39.
[http://dx.doi.org/10.1186/1475-2859-9-39] [PMID: 20492673]
[89]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296(2-3), 149-161.
[http://dx.doi.org/10.1016/j.ijmm.2006.02.005] [PMID: 16503194]
[90]
Reading, N.C.; Sperandio, V. Quorum sensing: The many languages of bacteria. FEMS Microbiol. Lett., 2006, 254(1), 1-11.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00001.x] [PMID: 16451172]
[91]
Rémy, B.; Mion, S.; Plener, L.; Elias, M.; Chabrière, E.; Daudé, D. Interference in bacterial quorum sensing: A biopharmaceutical perspective. Front. Pharmacol., 2018, 9, 203.
[http://dx.doi.org/10.3389/fphar.2018.00203] [PMID: 29563876]
[92]
Schuster, M.; Greenberg, E.P. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol., 2006, 296(2-3), 73-81.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.036] [PMID: 16476569]
[93]
Sieniawski, K.; Kaczka, K.; Rucińska, M.; Gagis, L.; Pomorski, L. Acinetobacter baumannii nosocomial infections. Pol. J. Sur., 2013, 85(9), 483-490.
[http://dx.doi.org/10.2478/pjs-2013-0075] [PMID: 24133105]
[94]
Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol., 2006, 42(6), 637-641.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01928.x] [PMID: 16706905]
[95]
WorldCat. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Available from:. https://www.worldcat.org/title/microbial-pathogens-and-strategies-for-combating-them-science-technology-and-education/oclc/875524533 (Accessed June 10, 2020)
[96]
Teplitski, M.; Robinson, J.B.; Bauer, W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact., 2000, 13(6), 637-648.
[http://dx.doi.org/10.1094/MPMI.2000.13.6.637] [PMID: 10830263]
[97]
Dwivedi, D.; Singh, V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med., 2015, 6(1), 57-61.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.025] [PMID: 26870681]
[98]
Kang, J.E.; Han, J.W.; Jeon, B.J.; Kim, B.S. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol. Res., 2016, 184, 32-41.
[http://dx.doi.org/10.1016/j.micres.2015.12.005] [PMID: 26856451]
[99]
Chong, Y.M.; Yin, W.F.; Ho, C.Y.; Mustafa, M.R.; Hadi, A.H.; Awang, K.; Narrima, P.; Koh, C.L.; Appleton, D.R.; Chan, K.G. Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity. J. Nat. Prod., 2011, 74(10), 2261-2264.
[http://dx.doi.org/10.1021/np100872k] [PMID: 21910441]
[100]
Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P.; Zeng, Z.; Qian, L.; Cao, L.; Tan, H. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361), 295-298.
[http://dx.doi.org/10.1126/science.280.5361.295] [PMID: 9535661]
[101]
Zeng, Z.; Qian, L.; Cao, L.; Tan, H.; Huang, Y.; Xue, X.; Shen, Y.; Zhou, S. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2008, 79(1), 119-126.
[http://dx.doi.org/10.1007/s00253-008-1406-5] [PMID: 18330563]
[102]
Vandeputte, O.M.; Kiendrebeogo, M.; Rasamiravaka, T.; Stévigny, C.; Duez, P.; Rajaonson, S.; Diallo, B.; Mol, A.; Baucher, M.; El Jaziri, M. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology, 2011, 157(Pt 7), 2120-2132.
[http://dx.doi.org/10.1099/mic.0.049338-0] [PMID: 21546585]
[103]
Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol., 2016, 120(4), 966-974.
[http://dx.doi.org/10.1111/jam.13073] [PMID: 26808465]
[104]
Gopu, V.; Shetty, P.H. Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen. J. Food Sci. Technol., 2016, 53(2), 968-976.
[http://dx.doi.org/10.1007/s13197-015-2031-9] [PMID: 27162376]
[105]
Pejin, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Sokovic, M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res., 2015, 29(4), 374-377.
[http://dx.doi.org/10.1080/14786419.2014.945088] [PMID: 25103916]
[106]
Guglielmi, P.; Pontecorvi, V.; Rotondi, G. Natural compounds and extracts as novel antimicrobial agents. Expert Opin. Ther. Pat., 2020, 30(12), 949-962.
[http://dx.doi.org/10.1080/13543776.2020.1853101] [PMID: 33203288]
[107]
Carradori, S.; Di Giacomo, N.; Lobefalo, M.; Luisi, G.; Campestre, C.; Sisto, F. Biofilm and quorum sensing inhibitors: The road so far. Expert Opin. Ther. Pat., 2020, 30(12), 917-930.
[http://dx.doi.org/10.1080/13543776.2020.1830059] [PMID: 32985271]
[108]
Oinonen, C.; Rouvinen, J. Structural comparison of Ntn-hydrolases. Protein Sci., 2000, 9(12), 2329-2337.
[http://dx.doi.org/10.1110/ps.9.12.2329] [PMID: 11206054]
[109]
Geske, G.D.; O’Neill, J.C.; Miller, D.M.; Mattmann, M.E.; Blackwell, H.E. Modulation of bacterial quorum sensing with synthetic ligands: Systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J. Am. Chem. Soc., 2007, 129(44), 13613-13625.
[http://dx.doi.org/10.1021/ja074135h] [PMID: 17927181]
[110]
Pomianek, M.E.; Semmelhack, M.F. Making bacteria behave: New agonists and antagonists of quorum sensing. ACS Chem. Biol., 2007, 2(5), 293-295.
[http://dx.doi.org/10.1021/cb700098c] [PMID: 17518429]
[111]
Sio, C.F.; Otten, L.G.; Cool, R.H.; Diggle, S.P.; Braun, P.G.; Bos, R.; Daykin, M.; Cámara, M.; Williams, P.; Quax, W.J. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun., 2006, 74(3), 1673-1682.
[http://dx.doi.org/10.1128/IAI.74.3.1673-1682.2006] [PMID: 16495538]
[112]
Miller, S.T.; Xavier, K.B.; Campagna, S.R.; Taga, M.E.; Semmelhack, M.F.; Bassler, B.L.; Hughson, F.M. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell, 2004, 15(5), 677-687.
[http://dx.doi.org/10.1016/j.molcel.2004.07.020] [PMID: 15350213]
[113]
Geske, G.D.; O’Neill, J.C.; Blackwell, H.E. Expanding dialogues: From natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem. Soc. Rev., 2008, 37(7), 1432-1447.
[http://dx.doi.org/10.1039/b703021p] [PMID: 18568169]
[114]
Zhang, L.; Murphy, P.J.; Kerr, A.; Tate, M.E. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature, 1993, 362(6419), 446-448.
[http://dx.doi.org/10.1038/362446a0] [PMID: 8464475]
[115]
Scoffone, V.C.; Chiarelli, L.R.; Makarov, V.; Brackman, G.; Israyilova, A.; Azzalin, A.; Forneris, F.; Riabova, O.; Savina, S.; Coenye, T.; Riccardi, G.; Buroni, S. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo. Sci. Rep., 2016, 6, 32487.
[http://dx.doi.org/10.1038/srep32487] [PMID: 27580679]
[116]
Durán, N.; Justo, G.Z.; Durán, M.; Brocchi, M.; Cordi, L.; Tasic, L.; Castro, G.R.; Nakazato, G. Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review. Biotechnol. Adv., 2016, 34(5), 1030-1045.
[http://dx.doi.org/10.1016/j.biotechadv.2016.06.003] [PMID: 27288924]
[117]
Welch, M.; Todd, D.E.; Whitehead, N.A.; McGowan, S.J.; Bycroft, B.W.; Salmond, G.P.C. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J., 2000, 19(4), 631-641.
[http://dx.doi.org/10.1093/emboj/19.4.631] [PMID: 10675332]
[118]
Ramos, A.N.; Sesto Cabral, M.E.; Arena, M.E.; Arrighi, C.F.; Arroyo Aguilar, A.A.; Valdéz, J.C. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds. Pharm. Biol., 2015, 53(3), 350-358.
[http://dx.doi.org/10.3109/13880209.2014.920037] [PMID: 25347359]
[119]
Shah, M.D.; Kharkar, P.S.; Sahu, N.U.; Peerzada, Z.; Desai, K.B. Potassium 2-methoxy-4-vinylphenolate: A novel hit exhibiting quorum-sensing inhibition in Pseudomonas aeruginosa via LasIR/RhlIR circuitry. RSC Advances, 2019, 9, 40228-40239.
[http://dx.doi.org/10.1039/C9RA06612H]
[120]
Koch, B.; Liljefors, T.; Persson, T.; Nielsen, J.; Kjelleberg, S.; Givskov, M. The LuxR receptor: The sites of interaction with quorum-sensing signals and inhibitors. Microbiology, 2005, 151(Pt 11), 3589-3602.
[http://dx.doi.org/10.1099/mic.0.27954-0] [PMID: 16272381]
[121]
Kosai, K.; Kaku, N.; Uno, N.; Saijo, T.; Morinaga, Y.; Imamura, Y.; Hasegawa, H.; Miyazaki, T.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Risk factors for acquisition of fluoroquinolone or aminoglycoside resistance in addition to carbapenem resistance in Pseudomonas aeruginosa. Open Microbiol. J., 2017, 11, 92-97.
[http://dx.doi.org/10.2174/1874285801711010092] [PMID: 28694882]
[122]
Liang, H.; Deng, X.; Li, X.; Ye, Y.; Wu, M. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res., 2014, 42(16), 10307-10320.
[http://dx.doi.org/10.1093/nar/gku586] [PMID: 25034696]
[123]
Lu, C.; Kirsch, B.; Zimmer, C.; de Jong, J.C.; Henn, C.; Maurer, C.K.; Müsken, M.; Häussler, S.; Steinbach, A.; Hartmann, R.W. Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem. Biol., 2012, 19(3), 381-390.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.015] [PMID: 22444593]
[124]
García-Contreras, R.; Maeda, T.; Wood, T.K. Can resistance against quorum-sensing interference be selected? ISME J., 2016, 10(1), 4-10.
[http://dx.doi.org/10.1038/ismej.2015.84] [PMID: 26023871]
[125]
Maura, D.; Hazan, R.; Kitao, T.; Ballok, A.E.; Rahme, L.G. Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator. MvfR. Sci. Rep., 2016, 6, 34083.
[http://dx.doi.org/10.1038/srep34083] [PMID: 27678057]
[126]
Geske, G.D.; Wezeman, R.J.; Siegel, A.P.; Blackwell, H.E. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J. Am. Chem. Soc., 2005, 127(37), 12762-12763.
[http://dx.doi.org/10.1021/ja0530321] [PMID: 16159245]
[127]
Castang, S.; Chantegrel, B.; Deshayes, C.; Dolmazon, R.; Gouet, P.; Haser, R.; Reverchon, S.; Nasser, W.; Hugouvieux-Cotte-Pattat, N.; Doutheau, A. N-sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg. Med. Chem. Lett., 2004, 14(20), 5145-5149.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.088] [PMID: 15380216]
[128]
Geske, G.D.; O’Neill, J.C.; Blackwell, H.E. N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem. Biol., 2007, 2(5), 315-319.
[http://dx.doi.org/10.1021/cb700036x] [PMID: 17480049]
[129]
Stacy, D.M.; Welsh, M.A.; Rather, P.N.; Blackwell, H.E. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem. Biol., 2012, 7(10), 1719-1728.
[http://dx.doi.org/10.1021/cb300351x] [PMID: 22853441]
[130]
Welsh, M.A.; Eibergen, N.R.; Moore, J.D.; Blackwell, H.E. Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J. Am. Chem. Soc., 2015, 137(4), 1510-1519.
[http://dx.doi.org/10.1021/ja5110798] [PMID: 25574853]
[131]
Eibergen, N.R.; Moore, J.D.; Mattmann, M.E.; Blackwell, H.E. Potent and selective modulation of the RhlR quorum sensing receptor by using non-native ligands: An emerging target for virulence control in Pseudomonas aeruginosa. ChemBioChem, 2015, 16(16), 2348-2356.
[http://dx.doi.org/10.1002/cbic.201500357] [PMID: 26460240]
[132]
Reverchon, S.; Chantegrel, B.; Deshayes, C.; Doutheau, A.; Cotte-Pattat, N. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg. Med. Chem. Lett., 2002, 12(8), 1153-1157.
[http://dx.doi.org/10.1016/S0960-894X(02)00124-5] [PMID: 11934577]
[133]
Mattmann, M.E.; Blackwell, H.E. Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J. Org. Chem., 2010, 75(20), 6737-6746.
[http://dx.doi.org/10.1021/jo101237e] [PMID: 20672805]
[134]
Mattmann, M.E.; Shipway, P.M.; Heth, N.J.; Blackwell, H.E. Potent and selective synthetic modulators of a quorum sensing repressor in Pseudomonas aeruginosa identified from second-generation libraries of N-acylated L-homoserine lactones. ChemBioChem, 2011, 12(6), 942-949.
[http://dx.doi.org/10.1002/cbic.201000708] [PMID: 21365734]
[135]
Palmer, A.G.; Streng, E.; Jewell, K.A.; Blackwell, H.E. Quorum sensing in bacterial species that use degenerate autoinducers can be tuned by using structurally identical non-native ligands. ChemBioChem, 2011, 12(1), 138-147.
[http://dx.doi.org/10.1002/cbic.201000551] [PMID: 21154995]
[136]
McInnis, C.E.; Blackwell, H.E. Design, synthesis, and biological evaluation of abiotic, non-lactone modulators of LuxR-type quorum sensing. Bioorg. Med. Chem., 2011, 19(16), 4812-4819.
[http://dx.doi.org/10.1016/j.bmc.2011.06.072] [PMID: 21798749]
[137]
Smith, K.M.; Bu, Y.; Suga, H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol., 2003, 10(1), 81-89.
[http://dx.doi.org/10.1016/S1074-5521(03)00002-4] [PMID: 12573701]
[138]
McInnis, C.E.; Blackwell, H.E. Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg. Med. Chem., 2011, 19(16), 4820-4828.
[http://dx.doi.org/10.1016/j.bmc.2011.06.071] [PMID: 21798746]
[139]
O’Reilly, M.C.; Dong, S.H.; Rossi, F.M.; Karlen, K.M.; Kumar, R.S.; Nair, S.K.; Blackwell, H.E. Structural and biochemical studies of non-native agonists of the LasR quorum-sensing receptor reveal an L3 Loop “Out” Conformation for LasR. Cell Chem. Biol., 2018, 25(9), 1128-1139.e3.
[http://dx.doi.org/10.1016/j.chembiol.2018.06.007] [PMID: 30033130]
[140]
Moore, J.D.; Rossi, F.M.; Welsh, M.A.; Nyffeler, K.E.; Blackwell, H.E. A comparative analysis of synthetic quorum sensing modulators in pseudomonas aeruginosa: new insights into mechanism, active efflux susceptibility, phenotypic response, and next-generation ligand design. J. Am. Chem. Soc., 2015, 137(46), 14626-14639.
[http://dx.doi.org/10.1021/jacs.5b06728] [PMID: 26491787]
[141]
Zou, Y.; Nair, S.K. Molecular basis for the recognition of structurally distinct autoinducer mimics by the Pseudomonas aeruginosa LasR quorum-sensing signaling receptor. Chem. Biol., 2009, 16(9), 961-970.
[http://dx.doi.org/10.1016/j.chembiol.2009.09.001] [PMID: 19778724]
[142]
O’Reilly, M.C.; Blackwell, H.E. Structure-based design and biological evaluation of triphenyl scaff old-based hybrid compounds as hydrolytically stable modulators of a LuxR-type Quorum Sensing receptor. ACS Infect. Dis., 2016, 2(1), 32-38.
[http://dx.doi.org/10.1021/acsinfecdis.5b00112] [PMID: 26807436]
[143]
Müh, U.; Schuster, M.; Heim, R.; Singh, A.; Olson, E.R.; Greenberg, E.P. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother., 2006, 50(11), 3674-3679.
[http://dx.doi.org/10.1128/AAC.00665-06] [PMID: 16966394]
[144]
Welsh, M.A.; Blackwell, H.E. Chemical genetics reveals environment-specific roles for quorum sensing circuits in Pseudomonas aeruginosa. Cell Chem. Biol., 2016, 23(3), 361-369.
[http://dx.doi.org/10.1016/j.chembiol.2016.01.006] [PMID: 26905657]
[145]
Manson, D.E.; O’Reilly, M.C.; Nyffeler, K.E.; Blackwell, H.E. Design, synthesis, and biochemical characterization of non-native antagonists of the Pseudomonas aeruginosa quorum sensing receptor LasR with nanomolar IC50 values. ACS Infect. Dis., 2020, 6(4), 649-661.
[http://dx.doi.org/10.1021/acsinfecdis.9b00518] [PMID: 32037806]