vHTS, 3-D Pharmacophore, QSAR and Molecular Docking Studies for the Identification of Phyto-derived ATP-Competitive Inhibitors of the BCR-ABL Kinase Domain

Article ID: e021221198480 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic myelogenous leukaemia (CML) constitutes about 15 % of adult leukaemia and is characterized by the overproduction of immature myeloid cells.

Methods: In this study, a virtual high throughput screening (vHTS) technique was employed to screen a library of phytochemicals of reported plants having anticancer activity. A docking score of -10 kcalmol-1 was used as the cut-off for the selection of phyto-compounds for pharmacophore-based virtual screening. Statistically robust and thoroughly validated QSAR model (R = 0.914, R2 = 0.836, Adjusted R2 = 0.764, LOO-CV= 0.6680) was derived for the inhibition of BCR-ABL kinase domain.

Results: The virtual screening, pharmacophore screening, QSAR model and molecular docking techniques applied herein revealed ellagic acid, a polyphenolic compound, as a potential competitive inhibitor of the BCR-ABL kinase domain. Ellagic acid binds to the inactive ABL state and forms similar interactions with key residues within the BCR-ABL Kinase domain as obtained in ponatinib (having inhibitory effects on the ABL thr-315I mutant). It forms hydrogen bond interaction with thr-315 residue (the gatekeeper residue). It is not likely to be prone to the various mutations associated with nilotinib because of its small size.

Conclusion: The procedure of VHTs, Pharmacophore, QSAR, and molecular docking applied in this study could help in detecting more anti-CML compounds.

Keywords: Virtual high throughput screening, 3-D pharmacophore, D-QSAR, molecular docking, BCR-ABL, chronic myelogenous leukaemia.

Graphical Abstract

[1]
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68(21): 8643-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[2]
Sawyers C. Targeted cancer therapy. Nature 2004; 432(7015): 294-7.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[3]
Taverna S, Corrado C. Natural compounds: Molecular weapons against Leukemia’s. J Leuk (Los Angel) 2017; 5: 226.
[http://dx.doi.org/10.4172/2329-6917.1000226]
[4]
Sawyers CL. Chronic myeloid leukemia. N Engl J Med 1999; 340(17): 1330-40.
[http://dx.doi.org/10.1056/NEJM199904293401706] [PMID: 10219069]
[5]
Kantarjian HM, Talpaz M, Giles F, O’Brien S, Cortes J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 2006; 145(12): 913-23.
[http://dx.doi.org/10.7326/0003-4819-145-12-200612190-00008] [PMID: 17179059]
[6]
Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114(5): 937-51.
[http://dx.doi.org/10.1182/blood-2009-03-209262] [PMID: 19357394]
[7]
Goldman JM. How I treat chronic myeloid leukemia in the imatinib era. Blood 2007; 110(8): 2828-37.
[http://dx.doi.org/10.1182/blood-2007-04-038943] [PMID: 17626839]
[8]
Baran Y, Saydam G. Cumulative clinical experience from a decade of use: imatinib as first-line treatment of chronic myeloid leukemia. J Blood Med 2012; 3: 139-50.
[http://dx.doi.org/10.2147/JBM.S29132] [PMID: 23180974]
[9]
Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 2004; 4(3): 285-99.
[http://dx.doi.org/10.2174/1389557043487321] [PMID: 15032675]
[10]
Hochhaus A, La Rosée P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 2004; 18(8): 1321-31.
[http://dx.doi.org/10.1038/sj.leu.2403426] [PMID: 15215876]
[11]
Metibemu DS, Akinloye OA, Akamo AJ, Ojo DA, Okeowo OT, Omotuyi IO. Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. Egypt J Med Hum Genet 2019; 20(1): 1-16.
[12]
Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13(19-20): 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[13]
Metibemu DS, Akinloye OA, Akamo AJ, et al. Carotenoid isolates of Spondias mombin demonstrate anticancer effects in DMBA-induced breast cancer in Wistar rats through X-linked inhibitor of apoptosis protein (XIAP) antagonism and anti-inflammation. J Food Biochem 2020; 44(12)e13523
[http://dx.doi.org/10.1111/jfbc.13523] [PMID: 33084091]
[14]
Metibemu DS, Oyeneyin OE, Omotoyinbo DE, Adeniran OY, Metibemu AO, Oyewale MB, et al. Molecular docking and quantitative structure activity relationship for the identification of novel phyto-inhibitors of matrix metalloproteinase-2. Sci Lett 2020; 8(2): 61-8.
[15]
Akinloye OA, Akinloye DI, Lawal MA, Shittu MT, Metibemu DS. Terpenoids from Azadirachta indica are potent inhibitors of Akt: Validation of the anticancer potentials in hepatocellular carcinoma in male Wistar rats. J Food Biochem 2021; 45(1)e13559
[http://dx.doi.org/10.1111/jfbc.13559] [PMID: 33190241]
[16]
Samuel Metibemu D. vHTS and 3D-QSAR for the identification of novel phyto-inhibitors of Farnesyltransferase: validation of ascorbic acid inhibition of farnesyltransferase in an animal model of breast cancer. Drug Res (Stuttg) 2021; 71(6): 341-7.
[http://dx.doi.org/10.1055/a-1422-1885] [PMID: 33862663]
[17]
Metibemu DS, Akinloye OA, Akamo AJ, et al. VEGFR-2 kinase domain inhibition as a scaffold for anti-angiogenesis: Validation of the anti-angiogenic effects of carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicol Rep 2021; 8: 489-98.
[http://dx.doi.org/10.1016/j.toxrep.2021.02.011] [PMID: 34408968]
[18]
Radich JP. Chronic myeloid leukemia 2010: where are we now and where can we go? Hematology (Am Soc Hematol Educ Program) 2010; 2010: 122-8.
[http://dx.doi.org/10.1182/asheducation-2010.1.122] [PMID: 21239781]
[19]
Ejaz S, Woong LC, Ejas A. Exract of Garlic (Allium sativum) in cancer chemoprevention. Exp Oncol 2003; 25: 93-7.
[20]
El-Shemy HA, Aboul-Soud MAM, Nassr-Allah AA, Aboul-Enein KM, Kabash A, Yagi A. Antitumor properties and modulation of antioxidant enzymes’ activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction. Curr Med Chem 2010; 17(2): 129-38.
[http://dx.doi.org/10.2174/092986710790112620] [PMID: 19941474]
[21]
Al-Mamun MA, Husna J, Khatun M, et al. Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complement Altern Med 2016; 16: 157.
[http://dx.doi.org/10.1186/s12906-016-1130-0] [PMID: 27246877]
[22]
Velasco G, Sánchez C, Guzmán M. Anticancer mechanisms of cannabinoids. Curr Oncol 2016; 23(2): S23-32.
[http://dx.doi.org/10.3747/co.23.3080] [PMID: 27022311]
[23]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10: 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[24]
Halabi MF, Sheikh BY. Anti-proliferative effect and phytochemical analysis of Cymbopogon citratus extract. BioMed Res Int 2014; 2014906239
[http://dx.doi.org/10.1155/2014/906239] [PMID: 24791006]
[25]
Shabani A. A review of anticancer properties of herbal medicines. J Pharma Care Health Sys 2016; 3: 160.
[http://dx.doi.org/10.4172/2376-0419.1000160]
[26]
Hassan STS, Berchová K, Šudomová M. Antimicrobial, antiparasitic and anticancer properties of Hibiscus sabdariffa (L.) and its phytochemicals: in vitro and in vivo studies. Ceska Slov Farm 2016; 65(1): 10-4.
[PMID: 27118499]
[27]
Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One 2015; 10(8)e0135814
[http://dx.doi.org/10.1371/journal.pone.0135814] [PMID: 26288313]
[28]
Asaad ABA-A, Nadya YA, Twana AM. Cytotoxic and cytogenetic effects of aqueous and methanol crude extracts of Nicotiana tabacum on Rhabdomyosarcoma (RD) and L20B cell lines in vitro. Eur J Exp Biol 2014; 4(2): 164-71.
[29]
Nangia-Makker P, Raz T, Tait L, et al. Ocimum gratissimum retards breast cancer growth and progression and is a natural inhibitor of matrix metalloproteases. Cancer Biol Ther 2013; 14(5): 417-27.
[http://dx.doi.org/10.4161/cbt.23762] [PMID: 23380593]
[30]
Khan F, Khan TJ, Kalamegam G, et al. Anti-cancer effects of Ajwa dates (Phoenix dactylifera L.) in diethylnitrosamine induced hepatocellular carcinoma in Wistar rats. BMC Complement Altern Med 2017; 17(1): 418.
[http://dx.doi.org/10.1186/s12906-017-1926-6] [PMID: 28830415]
[31]
Nascimento AKL, Melo-Silveira RF, Dantas-Santos N, et al. Antioxidant and antiproliferative activities of leaf extractsfrom Plukenetia volubilis Linneo (Euphorbiaceae). Evid Based Complement Alternat Med 2013; 2013950272
[http://dx.doi.org/10.1155/2013/950272] [PMID: 24159355]
[32]
Benson KF, Beaman JL, Ou B, Okubena A, Okubena O, Jensen GS. West African Sorghum bicolor leaf sheaths have anti-inflammatory and immune-modulating properties in vitro. J Med Food 2013; 16(3): 230-8.
[http://dx.doi.org/10.1089/jmf.2012.0214] [PMID: 23289787]
[33]
Iweala EEJ. Preliminary qualitative screening for cancer chemopreventive agents in Telfairia occidentalis Hook.f., Gnetum africanum Welw., Gongronema latifolium Benth. and Ocimum gratissimum L. from Nigeria. J Medicinal Food Plants 2009; 1(2): 58-63.
[34]
Howard CB, Johnson WK, Pervin S, Izevbigie EB. Recent perspectives on the anticancer properties of aqueous extracts of Nigerian Vernonia amygdalina. Botanics 2015; 5: 65-76.
[http://dx.doi.org/10.2147/BTAT.S62984] [PMID: 27226742]
[35]
Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One 2015; 10(5)e0126605
[http://dx.doi.org/10.1371/journal.pone.0126605] [PMID: 25961833]
[36]
Sayeed MA, Jesmin MH, Sarker TC, Rahman MM, Alam MF. Antitumor activity of leaf extracts of Catharanthus roseus (L.). Plant Environ Develop 2014; 3(2): 24-30.
[37]
Mahata S, Maru S, Shukla S, et al. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement Altern Med 2012; 12: 15.
[http://dx.doi.org/10.1186/1472-6882-12-15] [PMID: 22405256]
[38]
Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7(2): 129-41.
[http://dx.doi.org/10.1016/j.ccr.2005.01.007] [PMID: 15710326]
[39]
Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: a webserver for ligand-based pharmacophore detection Nucleic Acids Res 2008; 36(Web Server issue): W223-8.
[http://dx.doi.org/10.1093/nar/gkn187] [PMID: 18424800]
[40]
Inbar Y, Schneidman-Duhovny D, Dror O, Nussinov R, Wolfson HJ. Deterministic pharmacophore detection via multiple exible alignment of drug-like molecules. In: Speed T, Huang H, Eds.Research in Computational Molecular Biology RECOMB Lecture Notes in Computer ScienceBerlin Heidelberg Springer. 2007; p. 4453.
[http://dx.doi.org/10.1007/978-3-540-71681-5_29]
[41]
Willighagen EL, Mayfield JW, Alvarsson J, et al. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 2017; 9(1): 33.
[http://dx.doi.org/10.1186/s13321-017-0220-4] [PMID: 29086040]
[42]
Martin TM, Harten P, Young DM, et al. Does rational selection of training and test sets improve the outcome of QSAR modeling? J Chem Inf Model 2012; 52(10): 2570-8.
[http://dx.doi.org/10.1021/ci300338w] [PMID: 23030316]
[44]
Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969; 11: 137-48.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[45]
Roy K. On some aspects of validation of predictive QSAR models. Expert Opin Drug Discov 2007; 2: 1567-7.
[http://dx.doi.org/10.1517/17460441.2.12.1567] [PMID: 23488901]
[46]
Stein C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proceedings of the 6th berkeley symposium on mathematical statistics and probability. April 9-12; Berkeley: University of California 1972; pp. 583-602.
[47]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[48]
Chen HJ, Lin CM, Lee CY, et al. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep 2013; 30(2): 925-32.
[http://dx.doi.org/10.3892/or.2013.2490] [PMID: 23708932]
[49]
Lee J, Kim JH. Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 2016; 11(5)e0155264
[http://dx.doi.org/10.1371/journal.pone.0155264] [PMID: 27175782]
[50]
Pan Q, Pan H, Lou H, Xu Y, Tian L. Inhibition of the angiogenesis and growth of Aloin in human colorectal cancer in vitro and in vivo. Cancer Cell Int 2013; 13(1): 69.
[http://dx.doi.org/10.1186/1475-2867-13-69] [PMID: 23848964]
[51]
Pan H, Hu Q, Wang J, et al. Myricetin is a novel inhibitor of human inosine 5¢-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun 2016; 477(4): 915-22.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.158] [PMID: 27378425]
[52]
Sudan S, Rupasinghe HPV. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells. Anticancer Res 2014; 34(4): 1691-9.
[PMID: 24692698]
[53]
Zhu YY, Huang HY, Wu YL. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol Med Rep 2015; 12(4): 5012-8.
[http://dx.doi.org/10.3892/mmr.2015.4033] [PMID: 26151733]
[54]
Okazaki K. Two cases lung cancer successfully treated with 4-hydroxybenzaldehyde after surgical operations. J Lung Cancer Diagn Treat 2017; 2: 117.
[55]
Powles T, te Poele R, Shamash J, et al. Cannabis-induced cytotoxicity in leukemic cell lines: the role of the cannabinoid receptors and the MAPK pathway. Blood 2005; 105(3): 1214-21.
[http://dx.doi.org/10.1182/blood-2004-03-1182] [PMID: 15454482]
[56]
Jia W, Hegde VL, Singh NP, et al. Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Mol Cancer Res 2006; 4(8): 549-62.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0193] [PMID: 16908594]
[57]
Machado Rocha FC, Stéfano SC, De Cássia Haiek R, Rosa Oliveira LM, Da Silveira DX. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl) 2008; 17(5): 431-43.
[http://dx.doi.org/10.1111/j.1365-2354.2008.00917.x] [PMID: 18625004]
[58]
Boly R, Gras T, Lamkami T, et al. Quercetin inhibits a large panel of kinases implicated in cancer cell biology. Int J Oncol 2011; 38(3): 833-42.
[PMID: 21206969]
[59]
Chang S, Yin SL, Wang J, Jing YK, Dong JH. Design and synthesis of novel 2-phenylaminopyrimidine (PAP) derivatives and their antiproliferative effects in human chronic myeloid leukemia cells. Molecules 2009; 14(10): 4166-79.
[http://dx.doi.org/10.3390/molecules14104166] [PMID: 19924055]
[60]
Chen HS, Bai MH, Zhang T, Li GD, Liu M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol 2015; 46(4): 1730-8.
[http://dx.doi.org/10.3892/ijo.2015.2870] [PMID: 25647396]
[61]
Ho JWS, Cheung MWM. Combination of phytochemicals as adjuvants for cancer therapy. Recent Patents Anticancer Drug Discov 2014; 9(3): 297-302.
[http://dx.doi.org/10.2174/1574892809666140619154838] [PMID: 24942759]
[62]
Zaidi A, Lai M, Cavenagh J. Long-term stabilisation of myeloma with curcumin. BMJ Case 2017.
[http://dx.doi.org/10.1136/bcr-2016-218148]