Amylin Pharmacology in Alzheimer’s Disease Pathogenesis and Treatment

Page: [1894 - 1907] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer’s disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer’s disease. The traditional “gain of toxic function” properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.

Keywords: Alzheimer’s disease, amylin, therapy, diabetes, metabolism, amyloid, neuroprotection.

Graphical Abstract

[1]
Alzheimer’s & Dementia | Alzheimer’s Association. [cited 2021 Mar 26]. Available from: https://www.alz.org/alzheimer_s_dementia
[2]
James, B.D.; Leurgans, S.E.; Hebert, L.E.; Scherr, P.A.; Yaffe, K.; Bennett, D.A. Contribution of Alzheimer disease to mortality in the United States. Neurology, 2014, 82(12), 1045-1050.
[http://dx.doi.org/10.1212/WNL.0000000000000240] [PMID: 24598707]
[3]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Iqbal, K.; Liu, F.; Gong, C-X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[5]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[6]
Serpell, L.C. Alzheimer’s amyloid fibrils: structure and assembly. Biochimica et Biophysica Acta (BBA) -. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 16-30.
[http://dx.doi.org/10.1016/S0925-4439(00)00029-6]
[7]
Mandelkow, E.; Mandelkow, E.M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol., 1995, 7(1), 72-81.
[http://dx.doi.org/10.1016/0955-0674(95)80047-6] [PMID: 7755992]
[8]
Dumont, M.; Stack, C.; Elipenahli, C.; Jainuddin, S.; Gerges, M.; Starkova, N.N.; Yang, L.; Starkov, A.A.; Beal, F. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J., 2011, 25(11), 4063-4072.
[http://dx.doi.org/10.1096/fj.11-186650] [PMID: 21825035]
[9]
Desai, M.K.; Sudol, K.L.; Janelsins, M.C.; Mastrangelo, M.A.; Frazer, M.E.; Bowers, W.J. Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia, 2009, 57(1), 54-65.
[http://dx.doi.org/10.1002/glia.20734] [PMID: 18661556]
[10]
Zuo, L.; Hemmelgarn, B.T.; Chuang, C.C.; Best, T.M. The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 604658.
[http://dx.doi.org/10.1155/2015/604658] [PMID: 26543520]
[11]
Braak, H.; Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging, 1997, 18(4), 351-357.
[http://dx.doi.org/10.1016/S0197-4580(97)00056-0] [PMID: 9330961]
[12]
FastStats - Leading Causes of Death. [cited 2021 Mar 26]. Available from: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
[13]
Bertram, L.; Tanzi, R.E. Genome-wide association studies in Alzheimer’s disease. Hum. Mol. Genet., 2009, 18(R2), R137-R145.
[http://dx.doi.org/10.1093/hmg/ddp406] [PMID: 19808789]
[14]
Jellinger, K.A.; Paulus, W.; Wrocklage, C.; Litvan, I. Traumatic brain injury as a risk factor for Alzheimer disease. Comparison of two retrospective autopsy cohorts with evaluation of ApoE genotype. BMC Neurol., 2001, 1, 3.
[http://dx.doi.org/10.1186/1471-2377-1-3] [PMID: 11504565]
[15]
Mayeux, R.; Stern, Y.; Ottman, R.; Tatemichi, T.K.; Tang, M-X.; Maestre, G.; Ngai, C.; Tycko, B.; Ginsberg, H. The apolipoprotein ε 4 allele in patients with Alzheimer’s disease. Ann. Neurol., 1993, 34(5), 752-754.
[http://dx.doi.org/10.1002/ana.410340527] [PMID: 8239575]
[16]
O’Meara, E.S.; Kukull, W.A.; Sheppard, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Pfanschmidt, M.; Thompson, J.D.; Schellenberg, G.D.; Larson, E.B. Head injury and risk of Alzheimer’s disease by apolipoprotein E genotype. Am. J. Epidemiol., 1997, 146(5), 373-384.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009290] [PMID: 9290497]
[17]
Graham, N.S.N.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry, 2019, 90(11), 1221-1233.
[http://dx.doi.org/10.1136/jnnp-2017-317557] [PMID: 31542723]
[18]
Simon, D.W.; McGeachy, M.J.; Baylr, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. Neuroinflammation in the evolution of secondary injury, repair, and chronic neurodegeneration after traumatic brain injury. Nat. Rev. Neurol., 2017, 13(3), 171-191.
[19]
Martin, W.J. Stealth Adapted Viruses – Possible Drivers of Major Neuropsychiatric Illnesses Including Alzheimer’s Disease. J Neurol Stroke, 2015, 2(3), 00057.
[http://dx.doi.org/10.15406/jnsk.2015.02.00057]
[20]
Wozniak, M.A.; Shipley, S.J.; Combrinck, M.; Wilcock, G.K.; Itzhaki, R.F. Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients. J. Med. Virol., 2005, 75(2), 300-306.
[http://dx.doi.org/10.1002/jmv.20271] [PMID: 15602731]
[21]
Fulop, T.; Witkowski, J.M.; Bourgade, K.; Khalil, A.; Zerif, E.; Larbi, A.; Hirokawa, K.; Pawelec, G.; Bocti, C.; Lacombe, G.; Dupuis, G.; Frost, E.H. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front. Aging Neurosci., 2018, 10, 224.
[http://dx.doi.org/10.3389/fnagi.2018.00224] [PMID: 30087609]
[22]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One, 2010, 5(3), e9505.
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[23]
Gamez, P.; Caballero, A.B. Copper in Alzheimer’s disease: Implications in amyloid aggregation and neurotoxicity. AIP Adv., 2015, 5(9), 92503.
[http://dx.doi.org/10.1063/1.4921314]
[24]
Curtain, C.C.; Ali, F.; Volitakis, I.; Cherny, R.A.; Norton, R.S.; Beyreuther, K.; Barrow, C.J.; Masters, C.L.; Bush, A.I.; Barnham, K.J. Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem., 2001, 276(23), 20466-20473.
[http://dx.doi.org/10.1074/jbc.M100175200] [PMID: 11274207]
[25]
Evans, D.A.; Hebert, L.E.; Beckett, L.A.; Scherr, P.A.; Albert, M.S.; Chown, M.J.; Pilgrim, D.M.; Taylor, J.O. Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch. Neurol., 1997, 54(11), 1399-1405.
[http://dx.doi.org/10.1001/archneur.1997.00550230066019] [PMID: 9362989]
[26]
Whitmer, R.A.; Gunderson, E.P.; Quesenberry, C.P., Jr; Zhou, J.; Yaffe, K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr. Alzheimer Res., 2007, 4(2), 103-109.
[http://dx.doi.org/10.2174/156720507780362047] [PMID: 17430231]
[27]
Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P., Jr; Yaffe, K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ, 2005, 330(7504), 1360.
[http://dx.doi.org/10.1136/bmj.38446.466238.E0] [PMID: 15863436]
[28]
Leibson, C.L.; Rocca, W.A.; Hanson, V.A.; Cha, R.; Kokmen, E.; O’Brien, P.C.; Palumbo, P.J. The risk of dementia among persons with diabetes mellitus: A population-based cohort study. Ann. N. Y. Acad. Sci., 1997, 826, 422-427.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48496.x] [PMID: 9329716]
[29]
Li, X.; Song, D.; Leng, S.X. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging, 2015, 10, 549-560.
[http://dx.doi.org/10.2147/CIA.S74042] [PMID: 25792818]
[30]
Huang, C-C.; Chung, C-M.; Leu, H-B.; Lin, L-Y.; Chiu, C-C.; Hsu, C-Y.; Chiang, C.H.; Huang, P.H.; Chen, T.J.; Lin, S.J.; Chen, J.W.; Chan, W.L. Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One, 2014, 9(1), e87095.
[http://dx.doi.org/10.1371/journal.pone.0087095] [PMID: 24489845]
[31]
Arvanitakis, Z.; Wilson, R.S.; Bienias, J.L.; Evans, D.A.; Bennett, D.A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol., 2004, 61(5), 661-666.
[http://dx.doi.org/10.1001/archneur.61.5.661] [PMID: 15148141]
[32]
Yassine, H.N.; Solomon, V.; Thakral, A.; Sheikh-Bahaei, N.; Chui, H.C.; Braskie, M.N.; Schneider, L.S.; Talbot, K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement., 2021. Online ahead of print
[http://dx.doi.org/10.1002/alz.12474] [PMID: 34647685]
[33]
Więckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev., 2021, 70(Nov), 101397.
[http://dx.doi.org/10.1016/j.arr.2021.101397] [PMID: 34214643]
[34]
Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.K.O.; Nguyen, T.T.D.; Giau, V.V. Type 3 diabetes and its role implications in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(9), E3165.
[http://dx.doi.org/10.3390/ijms21093165] [PMID: 32365816]
[35]
Cortes-Canteli, M.; Iadecola, C. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol., 2020, 75(8), 942-951.
[http://dx.doi.org/10.1016/j.jacc.2019.10.062] [PMID: 32130930]
[36]
Poor, S.R.; Ettcheto, M.; Cano, A.; Sanchez-Lopez, E.; Manzine, P.R.; Olloquequi, J.; Camins, A.; Javan, M. Metformin a potential pharmacological strategy in late onset Alzheimer’s disease treatment. Pharmaceuticals (Basel), 2021, 14(9), 890.
[http://dx.doi.org/10.3390/ph14090890] [PMID: 34577590]
[37]
Grizzanti, J.; Lee, H.G.; Camins, A.; Pallas, M.; Casadesus, G. The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer’s disease. Nutr. Res., 2016, 36(12), 1305-1315.
[http://dx.doi.org/10.1016/j.nutres.2016.11.002] [PMID: 27923524]
[38]
Taylor, R. Insulin resistance and type 2 diabetes. Diabetes, 2012, 61(4), 778-779.
[http://dx.doi.org/10.2337/db12-0073] [PMID: 22442298]
[39]
Kaneto, H.; Katakami, N.; Matsuhisa, M.; Matsuoka, T.A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm., 2010, 2010, 453892.
[http://dx.doi.org/10.1155/2010/453892] [PMID: 20182627]
[40]
Back, S.H.; Kaufman, R.J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem., 2012, 81, 767-793.
[http://dx.doi.org/10.1146/annurev-biochem-072909-095555] [PMID: 22443930]
[41]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 2003, 52(1), 1-8.
[http://dx.doi.org/10.2337/diabetes.52.1.1] [PMID: 12502486]
[42]
Schwartz, R.S. Exercise training in treatment of diabetes mellitus in elderly patients. Diabetes Care, 1990, 13(Suppl. 2), 77-85.
[http://dx.doi.org/10.2337/diacare.13.2.S77]
[43]
Moran, C.; Beare, R.; Phan, T.G.; Bruce, D.G.; Callisaya, M.L.; Srikanth, V. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology, 2015, 85(13), 1123-1130.
[http://dx.doi.org/10.1212/WNL.0000000000001982] [PMID: 26333802]
[44]
Pérez-González, R.; Alvira-Botero, M.X.; Robayo, O.; Antequera, D.; Garzón, M.; Martín-Moreno, A.M.; Brera, B.; de Ceballos, M.L.; Carro, E. Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther., 2014, 21(3), 298-308.
[http://dx.doi.org/10.1038/gt.2013.85] [PMID: 24430238]
[45]
Wennberg, A.M.V.; Spira, A.P.; Pettigrew, C.; Soldan, A.; Zipunnikov, V.; Rebok, G.W.; Roses, A.D.; Lutz, M.W.; Miller, M.M.; Thambisetty, M.; Albert, M.S. Blood glucose levels and cortical thinning in cognitively normal, middle-aged adults. J. Neurol. Sci., 2016, 365, 89-95.
[http://dx.doi.org/10.1016/j.jns.2016.04.017] [PMID: 27206882]
[46]
Dash, S.K. Cognitive impairment and diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7(2), 155-165.
[http://dx.doi.org/10.2174/1872214811307020009] [PMID: 23489242]
[47]
Biessels, G.J.; Strachan, M.W.J.; Visseren, F.L.J.; Kappelle, L.J.; Whitmer, R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol., 2014, 2(3), 246-255.
[http://dx.doi.org/10.1016/S2213-8587(13)70088-3] [PMID: 24622755]
[48]
Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes, 2002, 51(10), 2944-2950.
[http://dx.doi.org/10.2337/diabetes.51.10.2944] [PMID: 12351431]
[49]
Mootha, V.K.; Lindgren, C.M.; Eriksson, K-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; Houstis, N.; Daly, M.J.; Patterson, N.; Mesirov, J.P.; Golub, T.R.; Tamayo, P.; Spiegelman, B.; Lander, E.S.; Hirschhorn, J.N.; Altshuler, D.; Groop, L.C. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 2003, 34(3), 267-273.
[http://dx.doi.org/10.1038/ng1180] [PMID: 12808457]
[50]
Patti, M.E.; Butte, A.J.; Crunkhorn, S.; Cusi, K.; Berria, R.; Kashyap, S.; Miyazaki, Y.; Kohane, I.; Costello, M.; Saccone, R.; Landaker, E.J.; Goldfine, A.B.; Mun, E.; DeFronzo, R.; Finlayson, J.; Kahn, C.R.; Mandarino, L.J. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8466-8471.
[http://dx.doi.org/10.1073/pnas.1032913100] [PMID: 12832613]
[51]
Wieser, V.; Moschen, A.R.; Tilg, H. Inflammation, cytokines and insulin resistance: A clinical perspective. Arch. Immunol. Ther. Exp. (Warsz.), 2013, 61(2), 119-125.
[http://dx.doi.org/10.1007/s00005-012-0210-1] [PMID: 23307037]
[52]
Burgos-Morón, E.; Abad-Jiménez, Z.; Marañón, A.M.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; Solá, E.; Rocha, M.; Víctor, V.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med., 2019, 8(9), 1385.
[http://dx.doi.org/10.3390/jcm8091385] [PMID: 31487953]
[53]
Hasnain, M.; Vieweg, W.V.R.; Hollett, B. Weight gain and glucose dysregulation with second-generation antipsychotics and antidepressants: a review for primary care physicians. Postgrad. Med., 2012, 124(4), 154-167.
[http://dx.doi.org/10.3810/pgm.2012.07.2577] [PMID: 22913904]
[54]
Eizirik, D.L.; Miani, M.; Cardozo, A.K. Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia, 2013, 56(2), 234-241.
[http://dx.doi.org/10.1007/s00125-012-2762-3] [PMID: 23132339]
[55]
Mousa, Y.M.; Abdallah, I.M.; Hwang, M.; Martin, D.R.; Kaddoumi, A. Amylin and pramlintide modulate γ-secretase level and APP processing in lipid rafts. Sci. Rep., 2020, 10(1), 3751.
[http://dx.doi.org/10.1038/s41598-020-60664-5] [PMID: 32111883]
[56]
Soudy, R.; Kimura, R.; Patel, A.; Fu, W.; Kaur, K.; Westaway, D.; Yang, J.; Jhamandas, J. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer’s disease mouse model. Sci. Rep., 2019, 9(1), 10942.
[http://dx.doi.org/10.1038/s41598-019-47255-9] [PMID: 31358858]
[57]
Archbold, J.K.; Flanagan, J.U.; Watkins, H.A.; Gingell, J.J.; Hay, D.L. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol. Sci., 2011, 32(10), 591-600.
[http://dx.doi.org/10.1016/j.tips.2011.05.007] [PMID: 21722971]
[58]
Hay, D.L.; Christopoulos, G.; Christopoulos, A.; Sexton, P.M. Amylin receptors: molecular composition and pharmacology. Biochem. Soc. Trans., 2004, 32(Pt 5), 865-867.
[http://dx.doi.org/10.1042/BST0320865] [PMID: 15494035]
[59]
Sexton, P.M.; Paxinos, G.; Kenney, M.A.; Wookey, P.J.; Beaumont, K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience, 1994, 62(2), 553-567.
[http://dx.doi.org/10.1016/0306-4522(94)90388-3] [PMID: 7830897]
[60]
Naot, D.; Cornish, J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone, 2008, 43(5), 813-818.
[http://dx.doi.org/10.1016/j.bone.2008.07.003] [PMID: 18687416]
[61]
Westermark, P.; Wernstedt, C.; Wilander, E.; Sletten, K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun., 1986, 140(3), 827-831.
[http://dx.doi.org/10.1016/0006-291X(86)90708-4] [PMID: 3535798]
[62]
Sanke, T.; Hanabusa, T.; Nakano, Y.; Oki, C.; Okai, K.; Nishimura, S. Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1991, 34(2), 129-132.
[http://dx.doi.org/10.1007/BF00500385] [PMID: 2065848]
[63]
Young, A.; Pittner, R.; Gedulin, B.; Vine, W.; Rink, T. Amylin regulation of carbohydrate metabolism. Biochem. Soc. Trans., 1995, 23(2), 325-331.
[http://dx.doi.org/10.1042/bst0230325] [PMID: 7672355]
[64]
Young, A. Inhibition of food intake. Adv. Pharmacol., 2005, 52, 79-98.
[http://dx.doi.org/10.1016/S1054-3589(05)52005-2] [PMID: 16492542]
[65]
Gedulin, B.R.; Rink, T.J.; Young, A.A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism, 1997, 46(1), 67-70.
[http://dx.doi.org/10.1016/S0026-0495(97)90170-0] [PMID: 9005972]
[66]
Reidelberger, R.D.; Kelsey, L.; Heimann, D. Effects of amylin-related peptides on food intake, meal patterns, and gastric emptying in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(5), R1395-R1404.
[http://dx.doi.org/10.1152/ajpregu.00597.2001] [PMID: 11959682]
[67]
Wang, Z-L.; Bennet, W.M.; Ghatei, M.A.; Byfield, P.G.H.; Smith, D.M.; Bloom, S.R. Influence of islet amyloid polypeptide and the 8-37 fragment of islet amyloid polypeptide on insulin release from perifused rat islets. Diabetes, 1993, 42(2), 330-335.
[http://dx.doi.org/10.2337/diab.42.2.330] [PMID: 8425669]
[68]
Chance, W.T.; Balasubramaniam, A.; Zhang, F.S.; Wimalawansa, S.J.; Fischer, J.E. Anorexia following the intrahypothalamic administration of amylin. Brain Res., 1991, 539(2), 352-354.
[http://dx.doi.org/10.1016/0006-8993(91)91644-G] [PMID: 1675913]
[69]
Mesaros, A.; Koralov, S.B.; Rother, E.; Wunderlich, F.T.; Ernst, M.B.; Barsh, G.S.; Rajewsky, K.; Brüning, J.C. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab., 2008, 7(3), 236-248.
[http://dx.doi.org/10.1016/j.cmet.2008.01.007] [PMID: 18316029]
[70]
Turek, V.F.; Trevaskis, J.L.; Levin, B.E.; Dunn-Meynell, A.A.; Irani, B.; Gu, G.; Wittmer, C.; Griffin, P.S.; Vu, C.; Parkes, D.G.; Roth, J.D. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology, 2010, 151(1), 143-152.
[http://dx.doi.org/10.1210/en.2009-0546] [PMID: 19875640]
[71]
Olsson, M.; Herrington, M.K.; Reidelberger, R.D.; Permert, J.; Arnelo, U. Comparison of the effects of chronic central administration and chronic peripheral administration of islet amyloid polypeptide on food intake and meal pattern in the rat. Peptides, 2007, 28(7), 1416-1423.
[http://dx.doi.org/10.1016/j.peptides.2007.06.011] [PMID: 17614161]
[72]
Mollet, A.; Meier, S.; Riediger, T.; Lutz, T.A. Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides, 2003, 24(1), 155-158.
[http://dx.doi.org/10.1016/S0196-9781(02)00288-7] [PMID: 12576097]
[73]
Gebre-Medhin, S.; Mulder, H.; Pekny, M.; Westermark, G.; Törnell, J.; Westermark, P.; Sundler, F.; Ahrén, B.; Betsholtz, C. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem. Biophys. Res. Commun., 1998, 250(2), 271-277.
[http://dx.doi.org/10.1006/bbrc.1998.9308] [PMID: 9753619]
[74]
Christopoulos, G.; Perry, K.J.; Morfis, M.; Tilakaratne, N.; Gao, Y.; Fraser, N.J.; Main, M.J.; Foord, S.M.; Sexton, P.M. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol., 1999, 56(1), 235-242.
[http://dx.doi.org/10.1124/mol.56.1.235] [PMID: 10385705]
[75]
Barwell, J.; Wootten, D.; Simms, J.; Hay, D.L.; Poyner, D.R. RAMPs and CGRP receptors. Adv. Exp. Med. Biol., 2012, 744, 13-24.
[http://dx.doi.org/10.1007/978-1-4614-2364-5_2] [PMID: 22434104]
[76]
Muff, R.; Bühlmann, N.; Fischer, J.A.; Born, W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology, 1999, 140(6), 2924-2927.
[http://dx.doi.org/10.1210/endo.140.6.6930] [PMID: 10342886]
[77]
Leuthäuser, K.; Gujer, R.; Aldecoa, A.; McKinney, R.A.; Muff, R.; Fischer, J.A.; Born, W. Receptor-activity-modifying protein 1 forms heterodimers with two G-protein-coupled receptors to define ligand recognition. Biochem. J., 2000, 351(Pt 2), 347-351.
[PMID: 11023820]
[78]
Hay, D.L.; Christopoulos, G.; Christopoulos, A.; Sexton, P.M. Determinants of BIBN4096BS affinity for CGRP and amylin receptors; the role of RAMP1; Mol. Pharmacol. Fast Forward, 2006.
[http://dx.doi.org/10.1124/mol.106.027953]
[79]
Beaumont, K.; Kenney, M.A.; Young, A.A.; Rink, T.J. High affinity amylin binding sites in rat brain. Mol. Pharmacol., 1993, 44(3), 493-497.
[PMID: 8396712]
[80]
Hilton, J.M.; Chai, S.Y.; Sexton, P.M. In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience, 1995, 69(4), 1223-1237.
[http://dx.doi.org/10.1016/0306-4522(95)00322-A] [PMID: 8848109]
[81]
Poyner, D.R.; Sexton, P.M.; Marshall, I.; Smith, D.M.; Quirion, R.; Born, W.; Muff, R.; Fischer, J.A.; Foord, S.M. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev., 2002, 54(2), 233-246.
[http://dx.doi.org/10.1124/pr.54.2.233] [PMID: 12037140]
[82]
Husmann, K.; Sexton, P.M.; Fischer, J.A.; Born, W. Mouse receptor-activity-modifying proteins 1, -2 and -3: amino acid sequence, expression and function. Mol. Cell. Endocrinol., 2000, 162(1-2), 35-43.
[http://dx.doi.org/10.1016/S0303-7207(00)00212-4] [PMID: 10854696]
[83]
Christopoulos, G.; Paxinos, G.; Huang, X.F.; Beaumont, K.; Toga, A.W.; Sexton, P.M. Comparative distribution of receptors for amylin and the related peptides calcitonin gene related peptide and calcitonin in rat and monkey brain. Can. J. Physiol. Pharmacol., 1995, 73(7), 1037-1041.
[http://dx.doi.org/10.1139/y95-146] [PMID: 8846397]
[84]
Flahaut, M.; Rossier, B.C.; Firsov, D. Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J. Biol. Chem., 2002, 277(17), 14731-14737.
[http://dx.doi.org/10.1074/jbc.M112084200] [PMID: 11854283]
[85]
Bhogal, R.; Smith, D.M.; Bloom, S.R. Investigation and characterization of binding sites for islet amyloid polypeptide in rat membranes. Endocrinology, 1992, 130(2), 906-913.
[PMID: 1310282]
[86]
Olgiati, V.R.; Guidobono, F.; Netti, C.; Pecile, A. Localization of calcitonin binding sites in rat central nervous system: evidence of its neuroactivity. Brain Res., 1983, 265(2), 209-215.
[http://dx.doi.org/10.1016/0006-8993(83)90334-7] [PMID: 6850324]
[87]
Nakamoto, H.; Suzuki, N.; Roy, S.K. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett., 2000, 483(2-3), 169-174.
[http://dx.doi.org/10.1016/S0014-5793(00)02097-4] [PMID: 11042275]
[88]
Ueda, T.; Ugawa, S.; Saishin, Y.; Shimada, S. Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res. Mol. Brain Res., 2001, 93(1), 36-45.
[http://dx.doi.org/10.1016/S0169-328X(01)00179-6] [PMID: 11532336]
[89]
Stachniak, T.J.E.; Krukoff, T.L. Receptor activity modifying protein 2 distribution in the rat central nervous system and regulation by changes in blood pressure. J. Neuroendocrinol., 2003, 15(9), 840-850.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01064.x] [PMID: 12899678]
[90]
Barth, S.W.; Riediger, T.; Lutz, T.A.; Rechkemmer, G. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res., 2004, 997(1), 97-102.
[http://dx.doi.org/10.1016/j.brainres.2003.10.040] [PMID: 14715154]
[91]
Becskei, C.; Riediger, T.; Zünd, D.; Wookey, P.; Lutz, T.A. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res., 2004, 1030(2), 221-233.
[http://dx.doi.org/10.1016/j.brainres.2004.10.012] [PMID: 15571671]
[92]
Banks, W.A.; Kastin, A.J.; Maness, L.M.; Huang, W.; Jaspan, J.B. Permeability of the blood-brain barrier to amylin. Life Sci., 1995, 57(22), 1993-2001.
[http://dx.doi.org/10.1016/0024-3205(95)02197-Q] [PMID: 7475950]
[93]
Le Foll, C.; Johnson, M.D.; Dunn-Meynell, A.A.; Boyle, C.N.; Lutz, T.A.; Levin, B.E. Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes, 2015, 64(5), 1621-1631.
[http://dx.doi.org/10.2337/db14-0645] [PMID: 25409701]
[94]
Mietlicki-Baase, E.G.; Rupprecht, L.E.; Olivos, D.R.; Zimmer, D.J.; Alter, M.D.; Pierce, R.C.; Schmidt, H.D.; Hayes, M.R. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology, 2013, 38(9), 1685-1697.
[http://dx.doi.org/10.1038/npp.2013.66] [PMID: 23474592]
[95]
Bower, R.L.; Hay, D.L. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br. J. Pharmacol., 2016, 173(12), 1883-1898.
[http://dx.doi.org/10.1111/bph.13496] [PMID: 27061187]
[96]
Christopoulos, A.; Christopoulos, G.; Morfis, M.; Udawela, M.; Laburthe, M.; Couvineau, A.; Kuwasako, K.; Tilakaratne, N.; Sexton, P.M. Novel receptor partners and function of receptor activity-modifying proteins. J. Biol. Chem., 2003, 278(5), 3293-3297.
[http://dx.doi.org/10.1074/jbc.C200629200] [PMID: 12446722]
[97]
Bailey, R.J.; Bradley, J.W.I.; Poyner, D.R.; Rathbone, D.L.; Hay, D.L. Functional characterization of two human receptor activity-modifying protein 3 variants. Peptides, 2010, 31(4), 579-584.
[http://dx.doi.org/10.1016/j.peptides.2009.12.016] [PMID: 20034525]
[98]
Potes, C.S.; Boyle, C.N.; Wookey, P.J.; Riediger, T.; Lutz, T.A. Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin’s eating inhibitory effect. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, 302(3), R340-R351.
[http://dx.doi.org/10.1152/ajpregu.00380.2011] [PMID: 22129618]
[99]
Coester, B.; Pence, S.W.; Arrigoni, S.; Boyle, C.N.; Le Foll, C.; Lutz, T.A. RAMP1 and RAMP3 differentially control amylin’s effects on food intake, glucose and energy balance in male and female mice. Neuroscience, 2020, 447, 74-93.
[http://dx.doi.org/10.1016/j.neuroscience.2019.11.036] [PMID: 31881259]
[100]
Morfis, M.; Tilakaratne, N.; Furness, S.G.B.; Christopoulos, G.; Werry, T.D.; Christopoulos, A.; Sexton, P.M. Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology, 2008, 149(11), 5423-5431.
[http://dx.doi.org/10.1210/en.2007-1735] [PMID: 18599553]
[101]
Dacquin, R.; Davey, R.A.; Laplace, C.; Levasseur, R.; Morris, H.A.; Goldring, S.R.; Gebre-Medhin, S.; Galson, D.L.; Zajac, J.D.; Karsenty, G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo . J. Cell Biol., 2004, 164(4), 509-514.
[http://dx.doi.org/10.1083/jcb.200312135] [PMID: 14970190]
[102]
Qi, R.; Luo, Y.; Ma, B.; Nussinov, R.; Wei, G. Conformational distribution and α-helix to β-sheet transition of human amylin fragment dimer. Biomacromolecules, 2014, 15(1), 122-131.
[http://dx.doi.org/10.1021/bm401406e] [PMID: 24313776]
[103]
Gingell, J.J.; Burns, E.R.; Hay, D.L. Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology, 2014, 155(1), 21-26.
[http://dx.doi.org/10.1210/en.2013-1658] [PMID: 24169554]
[104]
Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol., 2018, 175(1), 3-17.
[http://dx.doi.org/10.1111/bph.14075] [PMID: 29059473]
[105]
Amylin: Physiology and Pharmacology - Andrew Young - Google Books. Available from: https://books.google.com/books?id=25NS2UArEoQC&pg=PA47&source=gbs_toc_r&cad=4#v=onepage&q&f=false
[106]
Banks, W.A.; Willoughby, L.M.; Thomas, D.R.; Morley, J.E. Insulin resistance syndrome in the elderly: assessment of functional, biochemical, metabolic, and inflammatory status. Diabetes Care, 2007, 30(9), 2369-2373.
[http://dx.doi.org/10.2337/dc07-0649] [PMID: 17536070]
[107]
Bailey, R.J.; Walker, C.S.; Ferner, A.H.; Loomes, K.M.; Prijic, G.; Halim, A.; Whiting, L.; Phillips, A.R.; Hay, D.L. Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes. Br. J. Pharmacol., 2012, 166(1), 151-167.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01717.x] [PMID: 22014233]
[108]
Lutz, T.A. Control of food intake and energy expenditure by amylin-therapeutic implications. Int. J. Obes., 2009, 33(S1)(Suppl. 1), S24-S27.
[http://dx.doi.org/10.1038/ijo.2009.13] [PMID: 19363503]
[109]
Trevaskis, J.L.; Parkes, D.G.; Roth, J.D. Insights into amylin-leptin synergy. Trends Endocrinol. Metab., 2010, 21(8), 473-479.
[http://dx.doi.org/10.1016/j.tem.2010.03.006] [PMID: 20413324]
[110]
Lutz, T.A.; Tschudy, S.; Mollet, A.; Geary, N.; Scharrer, E. Dopamine D(2) receptors mediate amylin’s acute satiety effect. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280(6), R1697-R1703.
[http://dx.doi.org/10.1152/ajpregu.2001.280.6.R1697] [PMID: 11353673]
[111]
Roth, J.D. Amylin and the regulation of appetite and adiposity: recent advances in receptor signaling, neurobiology and pharmacology. Curr. Opin. Endocrinol. Diabetes Obes., 2013, 20(1), 8-13.
[http://dx.doi.org/10.1097/MED.0b013e32835b896f] [PMID: 23183359]
[112]
Geary, N. A new way of looking at eating. Am. J. Physiol., 2005.
[http://dx.doi.org/10.1152/ajpregu.00066.2005]
[113]
Mollet, A.; Gilg, S.; Riediger, T.; Lutz, T.A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav., 2004, 81(1), 149-155.
[http://dx.doi.org/10.1016/j.physbeh.2004.01.006] [PMID: 15059694]
[114]
Gedulin, B.R.; Jodka, C.M.; Herrmann, K.; Young, A.A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept., 2006, 137(3), 121-127.
[http://dx.doi.org/10.1016/j.regpep.2006.06.004] [PMID: 16914214]
[115]
Rushing, P.A.; Hagan, M.M.; Seeley, R.J.; Lutz, T.A.; D’Alessio, D.A.; Air, E.L.; Woods, S.C. Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology, 2001, 142(11), 5035-5038.
[http://dx.doi.org/10.1210/endo.142.11.8593] [PMID: 11606473]
[116]
Clementi, G.; Valerio, C.; Emmi, I.; Prato, A.; Drago, F. Behavioral effects of amylin injected intracerebroventricularly in the rat. Peptides, 1996, 17(4), 589-591.
[http://dx.doi.org/10.1016/0196-9781(96)00062-9] [PMID: 8804066]
[117]
Liberini, C.G.; Boyle, C.N.; Cifani, C.; Venniro, M.; Hope, B.T.; Lutz, T.A. Amylin receptor components and the leptin receptor are co-expressed in single rat area postrema neurons. Eur. J. Neurosci., 2016, 43(5), 653-661.
[http://dx.doi.org/10.1111/ejn.13163] [PMID: 26750109]
[118]
Zhang, Z.; Liu, X.; Morgan, D.A.; Kuburas, A.; Thedens, D.R.; Russo, A.F.; Rahmouni, K. Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes, 2011, 60(4), 1063-1071.
[http://dx.doi.org/10.2337/db10-0692] [PMID: 21357463]
[119]
Lutz, T.A.; Coester, B.; Whiting, L.; Dunn-Meynell, A.A.; Boyle, C.N.; Bouret, S.G.; Levin, B.E.; Le Foll, C. Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Diabetes, 2018, 67(5), 805-817.
[http://dx.doi.org/10.2337/db17-1347] [PMID: 29467172]
[120]
Banks, W.A.; Farr, S.A.; Butt, W.; Kumar, V.B.; Franko, M.W.; Morley, J.E. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J. Pharmacol. Exp. Ther., 2001, 297(3), 1113-1121.
[PMID: 11356936]
[121]
Roth, J.D.; Hughes, H.; Kendall, E.; Baron, A.D.; Anderson, C.M. Antiobesity effects of the β-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology, 2006, 147(12), 5855-5864.
[http://dx.doi.org/10.1210/en.2006-0393] [PMID: 16935845]
[122]
Mack, C.; Wilson, J.; Athanacio, J.; Reynolds, J.; Laugero, K.; Guss, S.; Vu, C.; Roth, J.; Parkes, D. Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(5), R1855-R1863.
[http://dx.doi.org/10.1152/ajpregu.00297.2007] [PMID: 17855496]
[123]
Riddle, M.; Frias, J.; Zhang, B.; Maier, H.; Brown, C.; Lutz, K.; Kolterman, O. Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care, 2007, 30(11), 2794-2799.
[http://dx.doi.org/10.2337/dc07-0589] [PMID: 17698615]
[124]
Coester, B.; Koester-Hegmann, C.; Lutz, T.A.; Le Foll, C. Amylin/Calcitonin Receptor-Mediated Signaling in POMC Neurons Influences Energy Balance and Locomotor Activity in Chow-Fed Male Mice. Diabetes, 2020, 69(6), 1110-1125.
[http://dx.doi.org/10.2337/db19-0849] [PMID: 32152204]
[125]
Roth, J.D.; Trevaskis, J.L.; Turek, V.F.; Parkes, D.G. “Weighing in” on synergy: preclinical research on neurohormonal anti-obesity combinations. Brain Res., 2010, 1350, 86-94.
[http://dx.doi.org/10.1016/j.brainres.2010.01.027] [PMID: 20096672]
[126]
Ernst, M.B.; Wunderlich, C.M.; Hess, S.; Paehler, M.; Mesaros, A.; Koralov, S.B.; Kleinridders, A.; Husch, A.; Münzberg, H.; Hampel, B.; Alber, J.; Kloppenburg, P.; Brüning, J.C.; Wunderlich, F.T. Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. J. Neurosci., 2009, 29(37), 11582-11593.
[http://dx.doi.org/10.1523/JNEUROSCI.5712-08.2009] [PMID: 19759305]
[127]
Schiöth, H.B.; Chhajlani, V.; Muceniece, R.; Klusa, V.; Wikberg, J.E.S. Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sci., 1996, 59(10), 797-801.
[http://dx.doi.org/10.1016/0024-3205(96)00370-0] [PMID: 8761313]
[128]
Adan, R.A.H.; Gispen, W.H. Brain melanocortin receptors: from cloning to function. Peptides, 1997, 18(8), 1279-1287.
[http://dx.doi.org/10.1016/S0196-9781(97)00078-8] [PMID: 9396074]
[129]
Eiden, S.; Daniel, C.; Steinbrueck, A.; Schmidt, I.; Simon, E. Salmon calcitonin - a potent inhibitor of food intake in states of impaired leptin signalling in laboratory rodents. J. Physiol., 2002, 541(Pt 3), 1041-1048.
[http://dx.doi.org/10.1113/jphysiol.2002.018671] [PMID: 12068061]
[130]
Cooper, G.J.; Willis, A.C.; Clark, A.; Turner, R.C.; Sim, R.B.; Reid, K.B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA, 1987, 84(23), 8628-8632.
[http://dx.doi.org/10.1073/pnas.84.23.8628] [PMID: 3317417]
[131]
Westermark, P.; Wernstedt, C.; O’Brien, T.D.; Hayden, D.W.; Johnson, K.H. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol., 1987, 127(3), 414-417.
[PMID: 3296768]
[132]
Verma, N.; Ly, H.; Liu, M.; Chen, J.; Zhu, H.; Chow, M.; Hersh, L.B.; Despa, F. Intraneuronal amylin deposition, peroxidative membrane injury and increased IL-1β synthesis in brains of Alzheimer’s disease patients with type-2 diabetes and in diabetic HIP rats. J. Alzheimers Dis., 2016, 53(1), 259-272.
[http://dx.doi.org/10.3233/JAD-160047] [PMID: 27163815]
[133]
Ly, H.; Verma, N.; Sharma, S.; Kotiya, D.; Despa, S.; Abner, E.L.; Nelson, P.T.; Jicha, G.A.; Wilcock, D.M.; Goldstein, L.B.; Guerreiro, R.; Brás, J.; Hanson, A.J.; Craft, S.; Murray, A.J.; Biessels, G.J.; Troakes, C.; Zetterberg, H.; Hardy, J.; Lashley, T. Aesg; Despa, F. The association of circulating amylin with β-amyloid in familial Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2021, 7(1), e12130.
[http://dx.doi.org/10.1002/trc2.12130] [PMID: 33521236]
[134]
Jackson, K.; Barisone, G.A.; Diaz, E.; Jin, L.W.; DeCarli, C.; Despa, F. Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann. Neurol., 2013, 74(4), 517-526.
[http://dx.doi.org/10.1002/ana.23956] [PMID: 23794448]
[135]
Lorenzo, A.; Razzaboni, B.; Weir, G.C.; Yankner, B.A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature, 1994, 368(6473), 756-760.
[http://dx.doi.org/10.1038/368756a0] [PMID: 8152488]
[136]
Bharadwaj, P.; Solomon, T.; Sahoo, B.R.; Ignasiak, K.; Gaskin, S.; Rowles, J.; Verdile, G.; Howard, M.J.; Bond, C.S.; Ramamoorthy, A.; Martins, R.N.; Newsholme, P. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells. Sci. Rep., 2020, 10.
[http://dx.doi.org/10.1038/s41598-020-66602-9]
[137]
Lim, Y.A.; Ittner, L.M.; Lim, Y.L.; Götz, J. Human but not rat amylin shares neurotoxic properties with Abeta42 in long-term hippocampal and cortical cultures. FEBS Lett., 2008, 582(15), 2188-2194.
[http://dx.doi.org/10.1016/j.febslet.2008.05.006] [PMID: 18486611]
[138]
Lim, S.; Paterson, B.M.; Fodero-Tavoletti, M.T.; O’Keefe, G.J.; Cappai, R.; Barnham, K.J.; Villemagne, V.L.; Donnelly, P.S. A copper radiopharmaceutical for diagnostic imaging of Alzheimer’s disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-β plaques. Chem. Commun. (Camb.), 2010, 46(30), 5437-5439.
[http://dx.doi.org/10.1039/c0cc01175d] [PMID: 20556304]
[139]
Adler, B.L.; Yarchoan, M.; Hwang, H.M.; Louneva, N.; Blair, J.A.; Palm, R.; Smith, M.A.; Lee, H.G.; Arnold, S.E.; Casadesus, G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol. Aging, 2014, 35(4), 793-801.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.10.076] [PMID: 24239383]
[140]
Qiu, W.Q.; Au, R.; Zhu, H.; Wallack, M.; Liebson, E.; Li, H.; Rosenzweig, J.; Mwamburi, M.; Stern, R.A. Positive association between plasma amylin and cognition in a homebound elderly population. J. Alzheimers Dis., 2014, 42(2), 555-563.
[http://dx.doi.org/10.3233/JAD-140210] [PMID: 24898659]
[141]
Qiu, W.Q.; Zhu, H. Amylin and its analogs: a friend or foe for the treatment of Alzheimer’s disease? Front. Aging Neurosci., 2014, 6(JUL), 186.
[http://dx.doi.org/10.3389/fnagi.2014.00186] [PMID: 25120481]
[142]
Zhu, H.; Tao, Q.; Ang, T.F.A.; Massaro, J.; Gan, Q.; Salim, S.; Zhu, R.Y.; Kolachalama, V.B.; Zhang, X.; Devine, S.; Auerbach, S.H.; DeCarli, C.; Au, R.; Qiu, W.Q. Association of plasma amylin concentration with Alzheimer disease and brain structure in older adults. JAMA Netw. Open, 2019, 2(8), e199826-e199826.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.9826] [PMID: 31433485]
[143]
May, P.C.; Boggs, L.N.; Fuson, K.S. Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-β neurotoxicity. J. Neurochem., 1993, 61(6), 2330-2333.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb07480.x] [PMID: 8245987]
[144]
Ryan, G.J.; Jobe, L.J.; Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther., 2005, 27(10), 1500-1512.
[http://dx.doi.org/10.1016/j.clinthera.2005.10.009] [PMID: 16330288]
[145]
Nyholm, B.; Ørskov, L.; Hove, K.Y.; Gravholt, C.H.; Møller, N.; Alberti, K.G.; Moyses, C.; Kolterman, O.; Schmitz, O. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism, 1999, 48(7), 935-941.
[http://dx.doi.org/10.1016/S0026-0495(99)90232-9] [PMID: 10421239]
[146]
Riddle, M.; Pencek, R.; Charenkavanich, S.; Lutz, K.; Wilhelm, K.; Porter, L. Randomized comparison of pramlintide or mealtime insulin added to basal insulin treatment for patients with type 2 diabetes. Diabetes Care, 2009, 32(9), 1577-1582.
[http://dx.doi.org/10.2337/dc09-0395] [PMID: 19502544]
[147]
Garcia-Alloza, M.; Robbins, E.M.; Zhang-Nunes, S.X.; Purcell, S.M.; Betensky, R.A.; Raju, S.; Prada, C.; Greenberg, S.M.; Bacskai, B.J.; Frosch, M.P. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis., 2006, 24(3), 516-524.
[http://dx.doi.org/10.1016/j.nbd.2006.08.017] [PMID: 17029828]
[148]
Patrick, S.; Corrigan, R.; Grizzanti, J.; Mey, M.; Blair, J.; Pallas, M.; Camins, A.; Lee, H.G.; Casadesus, G. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer’s disease are associated with oxidative stress regulation mechanisms. J. Alzheimers Dis., 2019, 69(1), 157-168.
[http://dx.doi.org/10.3233/JAD-180421] [PMID: 30958347]
[149]
Zhu, H.; Wang, X.; Wallack, M.; Li, H.; Carreras, I.; Dedeoglu, A.; Hur, J.Y.; Zheng, H.; Li, H.; Fine, R.; Mwamburi, M.; Sun, X.; Kowall, N.; Stern, R.A.; Qiu, W.Q. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Mol. Psychiatry, 2015, 20(2), 252-262.
[http://dx.doi.org/10.1038/mp.2014.17] [PMID: 24614496]
[150]
Zhu, H.; Xue, X.; Wang, E.; Wallack, M.; Na, H.; Hooker, J.M.; Kowall, N.; Tao, Q.; Stein, T.D.; Wolozin, B.; Qiu, W.Q. Amylin receptor ligands reduce the pathological cascade of Alzheimer’s disease. Neuropharmacology, 2017, 119, 170-181.
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.030] [PMID: 28363773]
[151]
Soudy, R.; Patel, A.; Fu, W.; Kaur, K.; MacTavish, D.; Westaway, D.; Davey, R.; Zajac, J.; Jhamandas, J. Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2016, 3(1), 44-56.
[http://dx.doi.org/10.1016/j.trci.2016.11.005] [PMID: 29067318]
[152]
Kimura, R.; MacTavish, D.; Yang, J.; Westaway, D.; Jhamandas, J.H. Pramlintide antagonizes beta amyloid (Aβ)- and human amylin-induced depression of hippocampal long-term potentiation. Mol. Neurobiol., 2017, 54(1), 748-754.
[http://dx.doi.org/10.1007/s12035-016-9684-x] [PMID: 26768593]
[153]
Patel, A.; Shiritsu, S.; Tokyo, Y.; Daigaku, R.; Fu, W.; Soudy, R. Genetic depletion of amylin/calcitonin receptors improves memory and learning in transgenic Alzheimer’s disease mouse models. Mol. Neurobiol., 2021.
[http://dx.doi.org/10.21203/rs.3.rs-515476/v1]
[154]
Bennett, R.G.; Hamel, F.G.; Duckworth, W.C. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes, 2003, 52(9), 2315-2320.
[http://dx.doi.org/10.2337/diabetes.52.9.2315] [PMID: 12941771]
[155]
Fu, W.; Ruangkittisakul, A.; MacTavish, D.; Shi, J.Y.; Ballanyi, K.; Jhamandas, J.H. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J. Biol. Chem., 2012, 287(22), 18820-18830.
[http://dx.doi.org/10.1074/jbc.M111.331181] [PMID: 22500019]
[156]
Andreetto, E.; Yan, L. -.M.; Caporale, A.; Kapurniotu, A. Dissecting the role of single regions of an IAPP mimic and IAPP in inhibition of Aβ40 amyloid formation and cytotoxicity. ChemBioChem, 2011, 12(9), 1313-1322.
[http://dx.doi.org/10.1002/cbic.201100192] [PMID: 21630409]
[157]
Tao, Q.; Zhu, H.; Chen, X.; Stern, R.A.; Kowall, N.; Au, R.; Blusztajn, J.K.; Qiu, W.Q. Pramlintide: The effects of a single drug injection on blood phosphatidylcholine profile for Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(2), 597-609.
[http://dx.doi.org/10.3233/JAD-170948] [PMID: 29480193]
[158]
Edvinsson, L.; Goadsby, P.J.; Uddman, R. Amylin: localization, effects on cerebral arteries and on local cerebral blood flow in the cat. ScientificWorldJournal, 2001, 1, 168-180.
[http://dx.doi.org/10.1100/tsw.2001.23] [PMID: 12805660]
[159]
Martinez-Valbuena, I.; Valenti-Azcarate, R.; Amat-Villegas, I.; Riverol, M.; Marcilla, I.; de Andrea, C.E.; Sánchez-Arias, J.A.; Del Mar Carmona-Abellan, M.; Marti, G.; Erro, M.E.; Martínez-Vila, E.; Tuñon, M.T.; Luquin, M.R. Amylin as a potential link between type 2 diabetes and alzheimer disease. Ann. Neurol., 2019, 86(4), 539-551.
[http://dx.doi.org/10.1002/ana.25570] [PMID: 31376172]
[160]
Cavallucci, V.; Ferraina, C.; D’Amelio, M. Key role of mitochondria in Alzheimer’s disease synaptic dysfunction. Curr. Pharm. Des., 2013, 19(36), 6440-6450.
[http://dx.doi.org/10.2174/1381612811319360005] [PMID: 23432718]
[161]
Yu, Q.; Du, F.; Douglas, J.T.; Yu, H.; Yan, S.S.; Yan, S.F. Mitochondrial dysfunction triggers synaptic deficits via activation of p38 MAP kinase signaling in differentiated Alzheimer’s disease trans-mitochondrial cybrid cells. J. Alzheimers Dis., 2017, 59(1), 223-239.
[http://dx.doi.org/10.3233/JAD-170283] [PMID: 28598851]
[162]
Du, H.; Guo, L.; Yan, S.; Sosunov, A.A.; McKhann, G.M.; Yan, S.S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18670-18675.
[http://dx.doi.org/10.1073/pnas.1006586107] [PMID: 20937894]
[163]
Miller, K.E.; Sheetz, M.P. Axonal mitochondrial transport and potential are correlated. J. Cell Sci., 2004, 117(Pt 13), 2791-2804.
[http://dx.doi.org/10.1242/jcs.01130] [PMID: 15150321]
[164]
Swerdlow, R.H.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp. Neurol., 2009, 218(2), 308-315.
[http://dx.doi.org/10.1016/j.expneurol.2009.01.011] [PMID: 19416677]
[165]
Fu, W.; Patel, A.; Kimura, R.; Soudy, R.; Jhamandas, J.H. Amylin receptor: A potential therapeutic target for Alzheimer’s disease. Trends Mol. Med., 2017, 23(8), 709-720.
[http://dx.doi.org/10.1016/j.molmed.2017.06.003] [PMID: 28694141]
[166]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H. -.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[167]
Mohamed, L.A.; Zhu, H.; Mousa, Y.M.; Wang, E.; Qiu, W.Q.; Kaddoumi, A. Amylin enhances amyloid-β peptide brain to blood efflux across the blood-brain barrier. J. Alzheimers Dis., 2017, 56(3), 1087-1099.
[http://dx.doi.org/10.3233/JAD-160800] [PMID: 28059785]
[168]
Qiu, W.Q.; Wallack, M.; Dean, M.; Liebson, E.; Mwamburi, M.; Zhu, H. Association between Amylin and Amyloid-β Peptides in Plasma in the Context of Apolipoprotein E4 Allele. PLoS One, 2014, 9(2), e88063.
[http://dx.doi.org/10.1371/journal.pone.0088063] [PMID: 24520345]