Multifactorial diseases, such as cancer and diabetes present a challenge for the traditional “one-target, one disease” paradigm due to their complex pathogenic mechanisms. Although a combination of drugs can be used, a multitarget drug may be a better choice due to its efficacy, lower adverse effects and lower chance of resistance development. The computer-based design of these multitarget drugs can explore the same techniques used for single-target drug design, but the difficulties associated with the obtention of drugs that are capable of modulating two or more targets with similar efficacy impose new challenges, whose solutions involve the adaptation of known techniques and also to the development of new ones, including machine-learning approaches. In this review, some SBDD and LBDD techniques for the multitarget drug design are discussed, together with some cases where the application of such techniques led to effective multitarget ligands.
Keywords: Multitarget Drug design, SDBB, LBDD, Molecular hybridization, Artificial intelligence, Machine learning.