Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic Synthesis

Page: [6 - 41] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

In recent years, photoredox catalysis has appeared as a new paradigm for forging a wide range of chemical bonds under mild conditions using abundant reagents. This approach allows many organic transformations through the generation of various radical species, enabling the valorization of non-traditional partners. A continuing interest has been devoted to the discovery of novel radical-generating procedures. Over the last ten years, strategies using rare-earth complexes as either redox-active centers or as redox-neutral Lewis acids have emerged. This review provides an overview of the recent accomplishments made in this field. It especially aims to demonstrate the utility of rare-earth complexes for ensuring photocatalytic transformations and to inspire future developments.

Keywords: Photocatalysis, radicals, rare-earth metals, lanthanides, Lewis acid, redox chemistry, photocyclization.

Graphical Abstract

[1]
Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[2]
Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
[3]
Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
[4]
Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341]
[5]
Kärkäs, M.D. Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: Methodology developments and catalytic applications. ACS Catal., 2017, 7, 4999-5022.
[http://dx.doi.org/10.1021/acscatal.7b01385]
[6]
Barraza, R., Jr; Allen, M.J. Lanthanide luminescence in visible-light-promoted photochemical reactions. Molecules, 2020, 25(17), 3892.
[http://dx.doi.org/10.3390/molecules25173892] [PMID: 32858962]
[7]
Qiao, Y.; Schelter, E.J. Lanthanide photocatalysis. Acc. Chem. Res., 2018, 51(11), 2926-2936.
[http://dx.doi.org/10.1021/acs.accounts.8b00336] [PMID: 30335356]
[8]
Kovacs, D.; Borbas, K.E. The role of photoinduced electron transfer in the quenching of sensitized Europium emission. Coord. Chem. Rev., 2018, 364, 1-9.
[http://dx.doi.org/10.1016/j.ccr.2018.03.004]
[9]
Yoon, T.P. Photochemical stereocontrol using tandem photoredox-chiral lewis acid catalysis. Acc. Chem. Res., 2016, 49(10), 2307-2315.
[http://dx.doi.org/10.1021/acs.accounts.6b00280] [PMID: 27505691]
[10]
Fukuzumi, S.; Jung, J.; Lee, Y-M.; Nam, W. Effects of lewis acids on photoredox catalysis. Asian J. Org. Chem., 2017, 6, 397-409.
[http://dx.doi.org/10.1002/ajoc.201600576]
[11]
Szostak, M.; Fazakerley, N.J.; Parmar, D.; Procter, D.J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev., 2014, 114(11), 5959-6039.
[http://dx.doi.org/10.1021/cr400685r] [PMID: 24758360]
[12]
Nair, V.; Deepthi, A. Cerium(IV) ammonium nitrate--a versatile single-electron oxidant. Chem. Rev., 2007, 107(5), 1862-1891.
[http://dx.doi.org/10.1021/cr068408n] [PMID: 17432919]
[13]
Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W.W-L. Rare-earth metal triflates in organic synthesis. Chem. Rev., 2002, 102(6), 2227-2302.
[http://dx.doi.org/10.1021/cr010289i] [PMID: 12059268]
[14]
Sakhuja, R.; Pericherla, K.; Bajaj, K.; Khungar, B.; Kumar, A. Ytterbium triflate catalyzed synthesis of heterocycles. Synthesis, 2016, 48, 4305-4346.
[http://dx.doi.org/10.1055/s-0036-1588321]
[15]
Bünzli, J-C. Chapter 287-Lanthanide luminescence: From a mystery to rationalization, understanding, and applications. Handbook on the Physics and Chemistry of Rare Earths., 2016, 50, pp. 141-176;
[16]
Werts, M.H.V. Making sense of lanthanide luminescence. Sci. Prog., 2005, 88(Pt 2), 101-131.
[http://dx.doi.org/10.3184/003685005783238435] [PMID: 16749431]
[17]
Sumino, Y.; Harato, N.; Tomisaka, Y.; Ogawa, A. A novel photoinduced reduction system of low-valent samarium species: Reduction of organic halides and chalcogenides, and its application to carbonylation with carbon monoxide. Tetrahedron, 2003, 59, 10499-10508.
[http://dx.doi.org/10.1016/j.tet.2003.08.070]
[18]
Ogawa, A.; Sumino, Y.; Nanke, T.; Ohya, S.; Sonoda, N.; Hirao, T. Photoinduced reduction and carbonylation of organic chlorides with samarium diiode. J. Am. Chem. Soc., 1997, 119, 2745-2746.
[http://dx.doi.org/10.1021/ja963117p]
[19]
Molander, G.A.; Alonso-Alija, C. Sequenced reactions with samarium(II) iodide. Sequential intermolecular carbonyl addition/intramolecular nucleophilic acyl substitution for the preparation of seven-, eight-, and nine-membered carbocycles. J. Org. Chem., 1998, 63, 4366-4373.
[http://dx.doi.org/10.1021/jo980119e]
[20]
Ishida, A.; Toki, S.; Takamuku, S. Photochemical reactions of α-methylstyrene induced by Eu(III)/Eu(II) photoredox system in methanol. Chem. Lett., 1985, 14(7), 893-896.
[http://dx.doi.org/10.1246/cl.1985.893]
[21]
Ishida, A.; Yamashita, S.; Toki, S.; Takamuku, S. Photochemical hydroxymethylation of alicyclic and aliphatic alkenes induced by a EuIII/EuII Photoredox system in methanol. Bull. Chem. Soc. Jpn., 1986, 59, 1195-1199.
[http://dx.doi.org/10.1246/bcsj.59.1195]
[22]
Ishida, A.; Toki, S.; Takamuku, S. Hydroxymethylation of 1,3-Dimethyluracil and its derivatives induced by a photoredox system of EuIII/EuII in MeOH. J. Chem. Soc. Chem. Commun., 1985, 1481-1483.
[http://dx.doi.org/10.1039/c39850001481]
[23]
Ishida, A.; Takamuku, S. One-electron reduction of Eu3+ ions induced by the irradiation of γ-ray or UV-Light. The fluorescence properties of Eu2+ ions in an ethanol matrix. Chem. Lett., 1988, 17(9), 1497-1500.
[http://dx.doi.org/10.1246/cl.1988.1497]
[24]
Guo, J-J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C-C bond cleavage and amination of cycloalkanols by cerium(III) chloride complex. Angew. Chem. Int. Ed. Engl., 2016, 55(49), 15319-15322.
[http://dx.doi.org/10.1002/anie.201609035] [PMID: 27862775]
[25]
Wang, Y.; He, J.; Zhang, Y. CeCl3-Promoted simultaneous photocatalytic cleavage and amination of Cα-Cβ bond in lignin model compounds and native lignin. CCS Chem., 2020, 2, 107-117.
[http://dx.doi.org/10.31635/ccschem.020.201900076]
[26]
Hu, A.; Chen, Y.; Guo, J-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed formal cycloaddition of cycloalkanols with alkenes through dual photoexcitation. J. Am. Chem. Soc., 2018, 140(42), 13580-13585.
[http://dx.doi.org/10.1021/jacs.8b08781] [PMID: 30289250]
[27]
Chen, Y.; Du, J.; Zuo, Z. Selective C-C bond scission of ketones via visible-light-mediated cerium catalysis. Chem, 2020, 6, 266-279.
[http://dx.doi.org/10.1016/j.chempr.2019.11.009]
[28]
Du, J.; Yang, X.; Wang, X.; An, Q.; He, X.; Pan, H.; Zuo, Z. Photocatalytic aerobic oxidative ring expansion of cyclic ketones to macrolactones by cerium and cyanoanthracene catalysis. Angew. Chem. Int. Ed. Engl., 2021, 60(10), 5370-5376.
[http://dx.doi.org/10.1002/anie.202012720] [PMID: 33259085]
[29]
Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. Photocatalytic dehydroxymethylative arylation by synergistic cerium and nickel catalysis. J. Am. Chem. Soc., 2021, 143(13), 4896-4902.
[http://dx.doi.org/10.1021/jacs.1c00618] [PMID: 33756079]
[30]
Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc., 2019, 141(26), 10556-10564.
[http://dx.doi.org/10.1021/jacs.9b05932] [PMID: 31244192]
[31]
Hu, A.; Guo, J-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. δ-Selective functionalization of alkanols enabled by visible-light-induced ligand-to-metal charge transfer. J. Am. Chem. Soc., 2018, 140(5), 1612-1616.
[http://dx.doi.org/10.1021/jacs.7b13131] [PMID: 29381061]
[32]
Hu, A.; Guo, J-J.; Pan, H.; Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science, 2018, 361(6403), 668-672.
[http://dx.doi.org/10.1126/science.aat9750] [PMID: 30049785]
[33]
An, Q.; Wang, Z.; Chen, Y.; Wang, X.; Zhang, K.; Pan, H.; Liu, W.; Zuo, Z. Cerium-catalyzed C-H functionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. J. Am. Chem. Soc., 2020, 142(13), 6216-6226.
[http://dx.doi.org/10.1021/jacs.0c00212] [PMID: 32181657]
[34]
Yang, Q.; Wang, Y-H.; Qiao, Y.; Gau, M.; Carroll, P.J.; Walsh, P.J.; Schelter, E.J. Photocatalytic C-H activation and the subtle role of chlorine radical complexation in reactivity. Science, 2021, 372(6544), 847-852.
[http://dx.doi.org/10.1126/science.abd8408] [PMID: 34016778]
[35]
Sheldon, R.A.; Kochi, J.K. Photochemical and thermal reduction of cerium (IV) carboxylates. Formation and oxidation of alkyl radicals. J. Am. Chem. Soc., 1968, 90, 6688-6698.
[http://dx.doi.org/10.1021/ja01026a022]
[36]
Yatham, V.R.; Bellotti, P.; König, B. Decarboxylative hydrazination of unactivated carboxylic acids by cerium photocatalysis. Chem. Commun. (Camb.), 2019, 55(24), 3489-3492.
[http://dx.doi.org/10.1039/C9CC00492K] [PMID: 30829348]
[37]
Wadekar, K.; Aswale, S.; Yatham, V.R. Cerium photocatalyzed dehydrogenative lactonization of 2-arylbenzoic acids. Org. Biomol. Chem., 2020, 18(5), 983-987.
[http://dx.doi.org/10.1039/C9OB02676B] [PMID: 31939464]
[38]
Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. Cerium(IV) carboxylate photocatalyst for catalytic radical formation from carboxylic acids: Decarboxylative oxygenation of aliphatic carboxylic acids and lactonization of aromatic carboxylic acids. J. Am. Chem. Soc., 2020, 142(12), 5668-5675.
[http://dx.doi.org/10.1021/jacs.9b12918] [PMID: 32109060]
[39]
Tsui, E.; Wang, H.; Knowles, R.R. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem. Sci. (Camb.), 2020, 11(41), 11124-11141.
[http://dx.doi.org/10.1039/D0SC04542J] [PMID: 33384861]
[40]
Capaldo, L.; Ravelli, D. Alkoxy radicals generation: Facile photocatalytic reduction of N-alkoxyazinium or azolium salts. Chem. Commun. (Camb.), 2019, 55(21), 3029-3032.
[http://dx.doi.org/10.1039/C9CC00035F] [PMID: 30766977]
[41]
Wu, X.; Zhu, C. Recent advances in alkoxy radical-promoted C-C and C-H bond functionalization starting from free alcohols. Chem. Commun. (Camb.), 2019, 55(66), 9747-9756.
[http://dx.doi.org/10.1039/C9CC04785A] [PMID: 31347637]
[42]
Guo, J-J.; Hu, A.; Zuo, Z. Photocatalytic alkoxy radical mediated transformations. Tetrahedron Lett., 2018, 59, 2103-2111.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.060]
[43]
Balzani, V.; Ceroni, P.; Juris, A. Photochemistry and photophysics: Concepts, research, applications; Wiley-VCH: Weinheim, Germany, 2014.
[44]
Bortolamei, N.; Isse, A.A.; Gennaro, A. Estimation of standard reduction potentials of alkyl radicals involved in atom transfer radical polymerization. Electrochim. Acta, 2010, 55, 8312-8318.
[http://dx.doi.org/10.1016/j.electacta.2010.02.099]
[45]
Lipp, A.; Badir, S.O.; Molander, G.A. Stereoinduction in metallaphotoredox catalysis. Angew. Chem. Int. Ed. Engl., 2021, 60(4), 1714-1726.
[http://dx.doi.org/10.1002/anie.202007668] [PMID: 32677341]
[46]
Zhu, C.; Yue, H.; Chu, L.; Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: Pushing the boundaries of complexity. Chem. Sci. (Camb.), 2020, 11(16), 4051-4064.
[http://dx.doi.org/10.1039/D0SC00712A] [PMID: 32864080]
[47]
Twilton, J.; Le, C.; Zhang, P.; Shaw, M.H.; Evans, R.W.; MacMillan, D.W.C. The merger of transition metal and photocatalysis.Nat. Rev. Chem, 2017, 1, 0052.,
[http://dx.doi.org/10.1038/s41570-017-0052]
[48]
Cavalcanti, L.N.; Molander, G.A. Photoredox catalysis in nickel-catalyzed cross-coupling. Top. Curr. Chem. (Cham), 2016, 374(4), 39.
[http://dx.doi.org/10.1007/s41061-016-0037-z] [PMID: 27573391]
[49]
Matsui, J.K.; Lang, S.B.; Heitz, D.R.; Molander, G.A. Photoredox-Mediated routes to radicals: The value of catalytic radical generation in synthetic methods development. ACS Catal., 2017, 7(4), 2563-2575.
[http://dx.doi.org/10.1021/acscatal.7b00094] [PMID: 28413692]
[50]
Wenger, O.S. Photoactive nickel complexes in cross-coupling catalysis. Chemistry, 2021, 27(7), 2270-2278.
[http://dx.doi.org/10.1002/chem.202003974] [PMID: 33111994]
[51]
Tellis, J.C.; Primer, D.N.; Molander, G.A. Dual catalysis. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science, 2014, 345(6195), 433-436.
[http://dx.doi.org/10.1126/science.1253647] [PMID: 24903560]
[52]
Zuo, Z.; Ahneman, D.T.; Chu, L.; Terrett, J.A.; Doyle, A.G.; MacMillan, D.W.C. Dual catalysis. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides. Science, 2014, 345(6195), 437-440.
[http://dx.doi.org/10.1126/science.1255525] [PMID: 24903563]
[53]
Corcé, V.; Chamoreau, L-M.; Derat, E.; Goddard, J-P.; Ollivier, C.; Fensterbank, L. Silicates as latent alkyl radical precursors: Visible-Light photocatalytic oxidation of hypervalent bis-catecholato silicon compounds. Angew. Chem. Int. Ed. Engl., 2015, 54(39), 11414-11418.
[http://dx.doi.org/10.1002/anie.201504963] [PMID: 26216069]
[54]
Nakajima, K.; Nojima, S.; Nishibayashi, Y. Nickel and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14106-14110.
[http://dx.doi.org/10.1002/anie.201606513] [PMID: 27709775]
[55]
Buzzetti, L.; Prieto, A.; Roy, S.R.; Melchiorre, P. Radical-based C-C bond-forming processes enabled by the photoexcitation of 4-Alkyl-1,4-dihydropyridines. Angew. Chem. Int. Ed. Engl., 2017, 56(47), 15039-15043.
[http://dx.doi.org/10.1002/anie.201709571] [PMID: 28984403]
[56]
Shen, Y.; Gu, Y.; Martin, R. Sp3 C-H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc., 2018, 140(38), 12200-12209.
[http://dx.doi.org/10.1021/jacs.8b07405] [PMID: 30184423]
[57]
Perry, I.B.; Brewer, T.F.; Sarver, P.J.; Schultz, D.M.; DiRocco, D.A.; MacMillan, D.W.C. Direct arylation of strong aliphatic C-H bonds. Nature, 2018, 560(7716), 70-75.
[http://dx.doi.org/10.1038/s41586-018-0366-x] [PMID: 30068953]
[58]
Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Sequential C-O decarboxylative vinylation/C-H arylation of cyclic oxalates via a nickel-catalyzed multicomponent radical cascade. Chem. Sci. (Camb.), 2020, 11(19), 4904-4910.
[http://dx.doi.org/10.1039/D0SC01471K] [PMID: 34122946]
[59]
Guo, L.; Song, F.; Zhu, S.; Li, H.; Chu, L. Syn-selective alkylarylation of terminal alkynes via the combination of photoredox and nickel catalysis. Nat. Commun., 2018, 9(1), 4543.
[http://dx.doi.org/10.1038/s41467-018-06904-9] [PMID: 30382103]
[60]
Zhang, X.; MacMillan, D.W.C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3-sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc., 2016, 138(42), 13862-13865.
[http://dx.doi.org/10.1021/jacs.6b09533] [PMID: 27718570]
[61]
Pitre, S.P.; Muuronen, M.; Fishman, D.A.; Overman, L.E. Tertiary alcohols as radical precursors for the introduction of tertiary substituents into heteroarenes. ACS Catal., 2019, 9, 3413-3418.
[http://dx.doi.org/10.1021/acscatal.9b00405]
[62]
Nawrat, C.C.; Jamison, C.R.; Slutskyy, Y.; MacMillan, D.W.C.; Overman, L.E. Oxalates as activating groups for alcohols in visible light photoredox catalysis: Formation of quaternary centers by redox-neutral fragment coupling. J. Am. Chem. Soc., 2015, 137(35), 11270-11273.
[http://dx.doi.org/10.1021/jacs.5b07678] [PMID: 26322524]
[63]
Lackner, G.L.; Quasdorf, K.W.; Pratsch, G.; Overman, L.E. Fragment coupling and the construction of quaternary carbons using tertiary radicals generated from tert-alkyl N-phthalimidoyl oxalates by visible-light photocatalysis. J. Org. Chem., 2015, 80(12), 6012-6024.
[http://dx.doi.org/10.1021/acs.joc.5b00794] [PMID: 26030387]
[64]
Lackner, G.L.; Quasdorf, K.W.; Overman, L.E. Direct construction of quaternary carbons from tertiary alcohols via photoredox-catalyzed fragmentation of tert-alkyl N-phthalimidoyl oxalates. J. Am. Chem. Soc., 2013, 135(41), 15342-15345.
[http://dx.doi.org/10.1021/ja408971t] [PMID: 24074152]
[65]
Kautzky, J.A.; Wang, T.; Evans, R.W.; MacMillan, D.W.C. Decarboxylative trifluoromethylation of aliphatic carboxylic acids. J. Am. Chem. Soc., 2018, 140(21), 6522-6526.
[http://dx.doi.org/10.1021/jacs.8b02650] [PMID: 29754491]
[66]
Till, N.A.; Smith, R.T.; MacMillan, D.W.C. Decarboxylative hydroalkylation of alkynes. J. Am. Chem. Soc., 2018, 140(17), 5701-5705.
[http://dx.doi.org/10.1021/jacs.8b02834] [PMID: 29664294]
[67]
Johnston, C.P.; Smith, R.T.; Allmendinger, S.; MacMillan, D.W.C. Metallaphotoredox-catalysed sp3–sp3 crosscoupling of carboxylic acids with alkyl halides. Nature, 2016, 536, 322-325.
[http://dx.doi.org/10.1038/nature19056] [PMID: 27535536]
[68]
Kondo, T.; Akazome, M.; Watanabe, Y. Lanthanide(II) iodide catalysed photochemical allylation of aldehydes with allylic halides. J. Chem. Soc. Chem. Commun., 1991, 757-758.
[http://dx.doi.org/10.1039/c39910000757]
[69]
Ogawa, A.; Ohya, S.; Sumino, Y.; Sonoda, N.; Hirao, T. Novel enhancement of the reducing ability of ytterbium diiodide by irradiation with near-UV light. Tetrahedron Lett., 1997, 38, 9017-9018.
[http://dx.doi.org/10.1016/S0040-4039(97)10409-9]
[70]
Jenks, T.C.; Bailey, M.D.; Hovey, J.L.; Fernando, S.; Basnayake, G.; Cross, M.E.; Li, W.; Allen, M.J. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis. Chem. Sci. (Camb.), 2017, 9(5), 1273-1278.
[http://dx.doi.org/10.1039/C7SC02479G] [PMID: 29675173]
[71]
Yin, H.; Carroll, P.J.; Anna, J.M.; Schelter, E.J. Luminescent Ce(III) Complexes as stoichiometric and catalytic photoreductants for halogen atom abstraction reactions. J. Am. Chem. Soc., 2015, 137(29), 9234-9237.
[http://dx.doi.org/10.1021/jacs.5b05411] [PMID: 26151154]
[72]
Yin, H.; Carroll, P.J.; Manor, B.C.; Anna, J.M.; Schelter, E.J. Cerium photosensitizers: Structure-function relationships and applications in photocatalytic aryl coupling reactions. J. Am. Chem. Soc., 2016, 138(18), 5984-5993.
[http://dx.doi.org/10.1021/jacs.6b02248] [PMID: 27058605]
[73]
Qiao, Y.; Yang, Q.; Schelter, E.J. Photoinduced miyaura borylation by a rare-earth-metal photoreductant: The hexachlorocerate(III) anion. Angew. Chem. Int. Ed. Engl., 2018, 57(34), 10999-11003.
[http://dx.doi.org/10.1002/anie.201804022] [PMID: 29752881]
[74]
Meyer, A.U.; Slanina, T.; Heckel, A.; König, B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chemistry, 2017, 23(33), 7900-7904.
[http://dx.doi.org/10.1002/chem.201701665] [PMID: 28429580]
[75]
Kuda-Wedagedara, A.N.W.; Wang, C.; Martin, P.D.; Allen, M.J. Aqueous EuII-containing complex with bright yellow luminescence. J. Am. Chem. Soc., 2015, 137(15), 4960-4963.
[http://dx.doi.org/10.1021/jacs.5b02506] [PMID: 25853298]
[76]
Jenks, T.C.; Bailey, M.D.; Corbin, B.A.; Kuda-Wedagedara, A.N.W.; Martin, P.D.; Schlegel, H.B.; Rabuffetti, F.A.; Allen, M.J. Photophysical characterization of a highly luminescent divalent-europium-containing azacryptate. Chem. Commun. (Camb.), 2018, 54(36), 4545-4548.
[http://dx.doi.org/10.1039/C8CC01737A] [PMID: 29662990]
[77]
Basal, L.A.; Kajjam, A.B.; Bailey, M.D.; Allen, M.J. Systematic tuning of the optical properties of discrete complexes of EuII in solution using counterions and solvents. Inorg. Chem., 2020, 59(14), 9476-9480.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01516] [PMID: 32618468]
[78]
Yin, H.; Jin, Y.; Hertzog, J.E.; Mullane, K.C.; Carroll, P.J.; Manor, B.C.; Anna, J.M.; Schelter, E.J. The hexachlorocerate(III) anion: A potent, benchtop stable, and readily available ultraviolet a photosensitizer for aryl chlorides. J. Am. Chem. Soc., 2016, 138(50), 16266-16273.
[http://dx.doi.org/10.1021/jacs.6b05712] [PMID: 27936638]
[79]
Qiao, Y.; Sergentu, D-C.; Yin, H.; Zabula, A.V.; Cheisson, T.; McSkimming, A.; Manor, B.C.; Carroll, P.J.; Anna, J.M.; Autschbach, J.; Schelter, E.J. Understanding and controlling the emission brightness and color of molecular cerium luminophores. J. Am. Chem. Soc., 2018, 140(13), 4588-4595.
[http://dx.doi.org/10.1021/jacs.7b13339] [PMID: 29359933]
[80]
Tian, Y-M.; Guo, X-N.; Braunschweig, H.; Radius, U.; Marder, T.B. Photoinduced borylation for the synthesis of organoboron compounds. Chem. Rev., 2021, 121(7), 3561-3597.
[http://dx.doi.org/10.1021/acs.chemrev.0c01236] [PMID: 33596057]
[81]
Lai, D.; Ghosh, S.; Hajra, A. Light-induced borylation: Developments and mechanistic insights. Org. Biomol. Chem., 2021, 19(20), 4397-4428.
[http://dx.doi.org/10.1039/D1OB00323B] [PMID: 33913460]
[82]
Marzo, L.; Ghosh, I.; Esteban, F.; König, B. Metal-Free photocatalyzed cross coupling of bromoheteroarenes with pyrroles. ACS Catal., 2016, 6, 6780-6784.
[http://dx.doi.org/10.1021/acscatal.6b01452]
[83]
Zeitler, K.; Neumann, M. Synergistic visible light photoredox catalysis. Phys. Sci. Rev., 2019, 520170173
[84]
Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[85]
Hopkinson, M.N.; Sahoo, B.; Li, J-L.; Glorius, F. Dual catalysis sees the light: Combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry, 2014, 20(14), 3874-3886.
[http://dx.doi.org/10.1002/chem.201304823] [PMID: 24596102]
[86]
König, B.; Kümmel, S.; Cibulka, R. Flavin photocatalysis. Phys. Sci. Rev., 2018, 320170168
[87]
Srivastava, V.; Singh, P.K.; Srivastava, A.; Singh, P.P. Synthetic applications of flavin photocatalysis: a review. RSC Adv, 2021, 11, 14251.
[http://dx.doi.org/10.1039/D1RA00925G]
[88]
Fukuzumi, S.; Kuroda, S.; Tanaka, T. Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of 7-methylbenzyl alcohol by oxygen under irradiation with visible light. J. Am. Chem. Soc., 1985, 107, 3020-3027.
[http://dx.doi.org/10.1021/ja00297a005]
[89]
Fukuzumi, S.; Yasui, K.; Suenobu, T.; Ohkubo, K.; Fujitsuka, M.; Ito, O. Efficient catalysis of rare-earth metal ions in photoinduced electron-transfer oxidation of benzyl alcohols by a flavin analogue. J. Phys. Chem. A, 2001, 105, 10501-10510.
[http://dx.doi.org/10.1021/jp012709d]
[90]
Mühldorf, B.; Wolf, R. Photocatalytic benzylic C-H bond oxidation with a flavin scandium complex. Chem. Commun. (Camb.), 2015, 51(40), 8425-8428.
[http://dx.doi.org/10.1039/C5CC00178A] [PMID: 25647055]
[91]
Fukuzumi, S.; Yuasa, J.; Satoh, N.; Suenobu, T. Scandium ion-promoted photoinduced electron transfer from electron donors to acridine and pyrene. Essential role of scandium ion in photocatalytic oxygenation of hexamethylbenzene. J. Am. Chem. Soc., 2004, 126(24), 7585-7594.
[http://dx.doi.org/10.1021/ja031649h] [PMID: 15198606]
[92]
Ke, X-S.; Ning, Y.; Tang, J.; Hu, J-Y.; Yin, H-Y.; Wang, G-X.; Yang, Z-S.; Jie, J.; Liu, K.; Meng, Z-S.; Zhang, Z.; Su, H.; Shu, C.; Zhang, J-L. Gadolinium(III) Porpholactones as efficient and robust singlet oxygen photosensitizers. Chemistry, 2016, 22(28), 9676-9686.
[http://dx.doi.org/10.1002/chem.201601517] [PMID: 27249665]
[93]
Sicignano, M.; Rodríguez, R.I.; Alemán, J. Recent visible light and metal free strategies in [2+2 and [4+2 photocycloadditions. Eur. J. Org. Chem., 2021, 2021(22), 3303-3321.
[http://dx.doi.org/10.1002/ejoc.202100518] [PMID: 34248414]
[94]
Sarkar, D.; Bera, N.; Ghosh, S. [2+2 Photochemical cycloaddition in organic synthesis. Eur. J. Org. Chem., 2020, 10, 1310-1326.
[95]
Zhang, T.; Zhang, Y.; Das, S. Deal;Photoredox catalysis for the cycloaddition reactions. ChemCatChem, 2020, 12, 6173-6185.
[http://dx.doi.org/10.1002/cctc.202001195]
[96]
Poplata, S.; Tröster, A.; Zou, Y-Q.; Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] Photocycloaddition reactions. Chem. Rev., 2016, 116(17), 9748-9815.
[http://dx.doi.org/10.1021/acs.chemrev.5b00723] [PMID: 27018601]
[97]
Poplata, S.; Bach, T. Enantioselective intermolecular [2+2 Photocycloaddition reaction of cyclic enones and its application in a synthesis of (-)-grandisol. J. Am. Chem. Soc., 2018, 140(9), 3228-3231.
[http://dx.doi.org/10.1021/jacs.8b01011] [PMID: 29458250]
[98]
Zhang, L.; Meggers, E. Steering asymmetric lewis acid catalysis exclusively with octahedral metal-centered chirality. Acc. Chem. Res., 2017, 50(2), 320-330.
[http://dx.doi.org/10.1021/acs.accounts.6b00586] [PMID: 28128920]
[99]
Yu, H.; Dong, S.; Yao, Q.; Chen, L.; Zhang, D.; Liu, X.; Feng, X. Enantioselective [2+2 Photocycloaddition reactions of enones and olefins with visible light mediated by N,N′-dioxide-metal complexes. Chemistry, 2018, 24(72), 19361-19367.
[http://dx.doi.org/10.1002/chem.201804600] [PMID: 30341931]
[100]
Ma, J.; Schäfers, F.; Daniliuc, C.; Bergander, K.; Strassert, C.A.; Glorius, F. Gadolinium photocatalysis: Dearomative [2+2 Cycloaddition/Ring-Expansion sequence with indoles. Angew. Chem. Int. Ed. Engl., 2020, 59(24), 9639-9645.
[http://dx.doi.org/10.1002/anie.202001200] [PMID: 32056352]
[101]
Du, J.; Skubi, K.L.; Schultz, D.M.; Yoon, T.P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science, 2014, 344(6182), 392-396.
[http://dx.doi.org/10.1126/science.1251511] [PMID: 24763585]
[102]
Blum, T.R.; Miller, Z.D.; Bates, D.M.; Guzei, I.A.; Yoon, T.P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science, 2016, 354(6318), 1391-1395.
[http://dx.doi.org/10.1126/science.aai8228] [PMID: 27980203]
[103]
Miller, Z.D.; Lee, B.J.; Yoon, T.P. Enantioselective crossed photocycloadditions of styrenic olefins by lewis acid catalyzed triplet sensitization. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11891-11895.
[http://dx.doi.org/10.1002/anie.201706975] [PMID: 28776908]
[104]
Hodgson, G.K.; Scaiano, J.C. Heterogeneous dual photoredox-lewis acid catalysis using a single bifunctional nanomaterial. ACS Catal., 2018, 8, 2914-2922.
[http://dx.doi.org/10.1021/acscatal.7b04032]
[105]
Ischay, M.A.; Anzovino, M.E.; Du, J.; Yoon, T.P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc., 2008, 130(39), 12886-12887.
[http://dx.doi.org/10.1021/ja805387f] [PMID: 18767798]
[106]
Lu, Z.; Shen, M.; Yoon, T.P. [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc., 2011, 133(5), 1162-1164.
[http://dx.doi.org/10.1021/ja107849y] [PMID: 21214249]
[107]
Amador, A.G.; Sherbrook, E.M.; Yoon, T.P. Enantioselective photocatalytic [3 + 2] cycloadditions of Aryl cyclopropyl ketones. J. Am. Chem. Soc., 2016, 138(14), 4722-4725.
[http://dx.doi.org/10.1021/jacs.6b01728] [PMID: 27015009]
[108]
Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Lin, R.; Xia, W. Reactivity insight into reductive coupling and aldol cyclization of chalcones by visible light photocatalysis. J. Org. Chem., 2012, 77(14), 6302-6306.
[http://dx.doi.org/10.1021/jo300796j] [PMID: 22731518]
[109]
Ye, C-X.; Melcamu, Y.Y.; Li, H-H.; Cheng, J-T.; Zhang, T-T.; Ruan, Y-P.; Zheng, X.; Lu, X.; Huang, P-Q. Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Nat. Commun., 2018, 9(1), 410.
[http://dx.doi.org/10.1038/s41467-017-02698-4] [PMID: 29379007]
[110]
Ruiz Espelt, L.; McPherson, I.S.; Wiensch, E.M.; Yoon, T.P. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc., 2015, 137(7), 2452-2455.
[http://dx.doi.org/10.1021/ja512746q] [PMID: 25668687]
[111]
Lee, K.N.; Lei, Z.; Ngai, M-Y. β-selective reductive coupling of alkenylpyridines with aldehydes and imines via synergistic Lewis acid/photoredox catalysis. J. Am. Chem. Soc., 2017, 139(14), 5003-5006.
[http://dx.doi.org/10.1021/jacs.7b01373] [PMID: 28358497]
[112]
Foy, N.J.; Forbes, K.C.; Crooke, A.M.; Gruber, M.D.; Cannon, J.S. Dual lewis acid/photoredox-catalyzed addition of ketyl radicals to vinylogous carbonates in the synthesis of 2,6-dioxabicyclo[3.3.0]octan-3-ones. Org. Lett., 2018, 20(18), 5727-5731.
[http://dx.doi.org/10.1021/acs.orglett.8b02442] [PMID: 30188722]
[113]
McDonald, B.R.; Scheidt, K.A. Intermolecular reductive couplings of arylidene malonates via Lewis acid/photoredox cooperative catalysis. Org. Lett., 2018, 20(21), 6877-6881.
[http://dx.doi.org/10.1021/acs.orglett.8b02893] [PMID: 30346177]
[114]
Speckmeier, E.; Fuchs, P.J.W.; Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C-C cross-coupling of styrenes. Chem. Sci. (Camb.), 2018, 9(35), 7096-7103.
[http://dx.doi.org/10.1039/C8SC02106F] [PMID: 30310630]
[115]
Ge, H.; Wu, B.; Liu, Y.; Wang, H.; Shen, Q. Synergistic lewis acid and photoredox-catalyzed trifluoromethylative difunctionalization of alkenes with selenium ylide-based trifluoromethylating reagent. ACS Catal., 2020, 10, 12414-12424.
[http://dx.doi.org/10.1021/acscatal.0c03776]
[116]
Zheng, J.; Dong, X.; Yoon, T.P. Divergent photocatalytic reactions of α-ketoesters under triplet sensitization and photoredox conditions. Org. Lett., 2020, 22(16), 6520-6525.
[http://dx.doi.org/10.1021/acs.orglett.0c02314] [PMID: 32806138]
[117]
Liu, J.; Liu, X-P.; Wu, H.; Wei, Y.; Lu, F-D.; Guo, K-R.; Cheng, Y.; Xiao, W-J. Visible-light-induced triple catalysis for a ring-opening cyanation of cyclopropyl ketones. Chem. Commun. (Camb.), 2020, 56(77), 11508-11511..
[http://dx.doi.org/10.1039/D0CC05167E] [PMID: 32869792]