A Simple Scoring Model Predicting the Outcome of COVID-19 Patients: Tanta COVID Score

Page: [620 - 630] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: COVID-19 is a worldwide pandemic with high rates of morbidity and mortality, and an uncertain prognosis leading to an increased risk of infection in health providers and limited hospital care capacities. In this study, we have proposed a predictive, interpretable prognosis scoring system with the use of readily obtained clinical, radiological and laboratory characteristics to accurately predict worsening of the condition and overall survival of patients with COVID-19.

Methods: This is a single-center, observational, prospective, cohort study. A total of 347 patients infected with COVID-19 presenting to the Tanta University Hospital, Egypt, were enrolled in the study, and clinical, radiological and laboratory data were analyzed. Top-ranked variables were identified and selected to be integrated into a Cox regression model, building the scoring system for accurate prediction of the prognosis of patients with COVID-19.

Results: The six variables that were finally selected in the scoring system were lymphopenia, serum CRP, ferritin, D-Dimer, radiological CT lung findings and associated chronic debilitating disease. The scoring system discriminated risk groups with either mild disease or severe illness characterized by respiratory distress (and also those with hypoxia and in need for oxygen therapy or mechanical ventilation) or death. The area under the curve to estimate the discrimination performance of the scoring system was more than 90%.

Conclusion: We proposed a simple and clinically useful predictive scoring model for COVID- 19 patients. However, additional independent validation will be required before the scoring model can be used commonly.

Keywords: Viruses, SARS, SARS-COV-2, pandemic, prognosis, prediction.

[1]
Hu, B.; Guo, H.; Zhou, P. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[2]
Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis., 2020, 20(5), 533-534.
[http://dx.doi.org/10.1016/S1473-3099(20)30120-1] [PMID: 32087114]
[3]
World Health Organization. Coronavirus disease, 2019. Available from: https://www.who.int/publications/m/item/weekly-epidemio-logical-update-29-december-2020
[4]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) Outbreak in china: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648]
[5]
Bhimraj, A.; Morgan, R.L.; Shumaker, A.H. Infectious diseases society of america guidelines on the treatment and management of patients with COVID-19. Clin. Infect. Dis., 2020, 2020, ciaa478.
[http://dx.doi.org/10.1093/cid/ciaa478]
[6]
Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair allocation of scarce medical resources in the time of COVID-19. N. Engl. J. Med., 2020, 382(21), 2049-2055.
[http://dx.doi.org/10.1056/NEJMsb2005114] [PMID: 32202722]
[7]
White, D.B.; Lo, B. framework for rationing ventilators and critical care beds during the COVID-19 pandemic. JAMA, 2020, 323(18), 1773-1774.
[http://dx.doi.org/10.1001/jama.2020.5046] [PMID: 32219367]
[8]
Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med., 2020, 26(8), 1212-1217.
[http://dx.doi.org/10.1038/s41591-020-0952-y] [PMID: 32546823]
[9]
Singer, A.J.; Morley, E.J.; Meyers, K. Cohort of 4404 persons under investigation for COVID-19 in a NY hospital and predictors of ICU care and ventilation. Ann. Emerg. Med., 2020, 76(4), 394-404.
[http://dx.doi.org/10.1016/j.annemergmed.2020.05.011] [PMID: 32563601]
[10]
Haimovich, A.; Warner, F.; Young, H.P. Patient factors associated with SARS-CoV-2 in an admitted emergency department population. J. Am. Coll. Emerg. Physicians Open, 2020, 1(4), 569-577.
[http://dx.doi.org/10.1002/emp2.12145]
[11]
Badawi, O.; Liu, X.; Berman, I. Impact of COVID-19 pandemic on severity of illness and resources required during intensive care in the greater New York City area. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.08.20058180]
[12]
Prokop, M.; Everdingen, W.V.; Vellinga, T.V.R.; Ufford, H.Q.V.; Stöger, L.; Beenen, L.; Geurts, B.; Gietema, H.; Krdzalic, J.; Schaefer-Prokop, C.; Ginneken, B.V.; Brink, M. CO-RADS: A categorical CT assessment scheme for patients suspected of having covid-19-definition and evaluation. Radiology, 2020, 296(2), E97-E104.
[http://dx.doi.org/10.1148/radiol.2020201473] [PMID: 32339082]
[13]
Ronsoni, R.; Predabon, B.; Leiria, T.; Lima, G. Basic principles of risk score formulation in medicine. Rev. Assoc. Med. Bras., 2020, 66(4), 516-520.
[http://dx.doi.org/10.1590/1806-9282.66.4.516] [PMID: 32578789]
[14]
Altschul, D.J.; Unda, S.R.; Benton, J.; de la Garza Ramos, R.; Cezayirli, P.; Mehler, M.; Eskandar, E.N. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci. Rep., 2020, 10(1), 16726.
[http://dx.doi.org/10.1038/s41598-020-73962-9] [PMID: 33028914]
[15]
Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; Gupta, R.; Halpin, S.; Hardwick, H.E.; Holden, K.A.; Horby, P.W.; Jackson, C.; Mclean, K.A.; Merson, L.; Nguyen-Van-Tam, J.S.; Norman, L.; Noursadeghi, M.; Olliaro, P.L.; Pritchard, M.G.; Russell, C.D.; Shaw, C.A.; Sheikh, A.; Solomon, T.; Sudlow, C.; Swann, O.V.; Turtle, L.C.; Openshaw, P.J.; Baillie, J.K.; Semple, M.G.; Docherty, A.B.; Harrison, E.M. Risk stratification of patients admitted to hospital with COVID-19 using the isaric who clinical characterisation protocol: development and validation of the 4C mortality score. BMJ, 2020, 370, m3339.
[http://dx.doi.org/10.1136/bmj.m3339] [PMID: 32907855]
[16]
Haimovich, A.D.; Ravindra, N.G.; Stoytchev, S.; Young, H.P.; Wilson, F.P.; van Dijk, D.; Schulz, W.L.; Taylor, R.A. Development and validation of the quick covid-19 severity index: A prognostic tool for early clinical decompensation. Ann. Emerg. Med., 2020, 76(4), 442-453.
[http://dx.doi.org/10.1016/j.annemergmed.2020.07.022] [PMID: 33012378]
[17]
Hafez, M.A.F. The mean severity score and its correlation with common computed tomography chest manifestations in Egyptian patients with COVID-2019 pneumonia. Egypt. J. Radiol. Nucl. Med., 2020, 51, 254.
[http://dx.doi.org/10.1186/s43055-020-00368-y]
[18]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[19]
Salinas, M.; Blasco, V.; Santo-Quiles, A. Laboratory parameters in patients with COVID-19 on first emergency admission is different in non-survivors: albumin and lactate dehydrogenase as risk factors. J. Clin. Pathol., 2020, 74(10), 1-3.
[http://dx.doi.org/10.1136/jclinpath-2020-206865] [PMID: 33023942]
[20]
Elshazli, R.M.; Toraih, E.A.; Elgaml, A.; El-Mowafy, M.; El-Mesery, M.; Amin, M.N.; Hussein, M.H.; Killackey, M.T.; Fawzy, M.S.; Kandil, E. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PLoS One, 2020, 15(8), e0238160.
[http://dx.doi.org/10.1371/journal.pone.0238160] [PMID: 32822430]
[21]
Henry, B.M.; de Oliveira, M.H.S.; Benoit, S. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med., 2020, 58(7), 1021-1028.
[http://dx.doi.org/10.1515/cclm-2020-0369]
[22]
Chen, C.; Chen, C.; Yan, J.T. Analysis of myocardial injury in patients with covid-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi, 2020, 48(7), 567-571.
[http://dx.doi.org/10.3760/cma.j.cn112148-20200225-00123]
[23]
Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J. Med. Virol., 2020, 92(7), 791-796.
[http://dx.doi.org/10.1002/jmv.25770] [PMID: 32181911]
[24]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[25]
Becker, R.C. COVID-19 update: COVID-19-associated coagulopathy. J. Thromb. Thrombolysis, 2020, 50(1), 54-67.
[http://dx.doi.org/10.1007/s11239-020-02134-3] [PMID: 32415579]
[26]
Yu, B.; Li, X.; Chen, J.; Ouyang, M.; Zhang, H.; Zhao, X.; Tang, L.; Luo, Q.; Xu, M.; Yang, L.; Huang, G.; Liu, X.; Tang, J. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: a retrospective analysis. J. Thromb. Thrombolysis, 2020, 50(3), 548-557.
[http://dx.doi.org/10.1007/s11239-020-02171-y] [PMID: 32524516]
[27]
Lippi, G.; Favaloro, E.J. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb. Haemost., 2020, 120(5), 876-878.
[http://dx.doi.org/10.1055/s-0040-1709650] [PMID: 32246450]
[28]
Long, H.; Nie, L.; Xiang, X.; Li, H.; Zhang, X.; Fu, X.; Ren, H.; Liu, W.; Wang, Q.; Wu, Q. D-Dimer and prothrombin time are the significant indicators of severe COVID-19 and poor prognosis. BioMed Res. Int., 2020, 2020, 6159720.
[http://dx.doi.org/10.1155/2020/6159720] [PMID: 32596339]
[29]
Yao, Y.; Cao, J.; Wang, Q. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care, 2020, 8, 49.
[30]
Garcia-Olivé, I.; Sintes, H.; Radua, J.; Abad Capa, J.; Rosell, A. D-dimer in patients infected with COVID-19 and suspected pulmonary embolism. Respir. Med., 2020, 16, 9106023.
[http://dx.doi.org/10.1016/j.rmed.2020.106023] [PMID: 32454268]
[31]
Goshua, G.; Pine, A.B.; Meizlish, M.L.; Chang, C.H.; Zhang, H.; Bahel, P.; Baluha, A.; Bar, N.; Bona, R.D.; Burns, A.J.; Dela Cruz, C.S.; Dumont, A.; Halene, S.; Hwa, J.; Koff, J.; Menninger, H.; Neparidze, N.; Price, C.; Siner, J.M.; Tormey, C.; Rinder, H.M.; Chun, H.J.; Lee, A.I. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol., 2020, 7(8), e575-e582.
[http://dx.doi.org/10.1016/S2352-3026(20)30216-7] [PMID: 32619411]
[32]
Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[33]
Wang, D.; Hu, B.; Hu, C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in wuhan, china. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585]
[34]
Henry, B.M. COVID-19, ECMO, and lymphopenia: A word of caution. Lancet Respir. Med., 2020, 8(4), e24.
[http://dx.doi.org/10.1016/S2213-2600(20)30119-3] [PMID: 32178774]
[35]
Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol., 2020, 92(7), 856-862.
[http://dx.doi.org/10.1002/jmv.25871] [PMID: 32281668]
[36]
Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis. Crit. Care, 2020, 24(1), 647.
[http://dx.doi.org/10.1186/s13054-020-03374-8] [PMID: 33198786]
[37]
Cheng, L.; Li, H.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. Lab. Anal., 2020, 34(10), e23618.
[http://dx.doi.org/10.1002/jcla.23618] [PMID: 33078400]
[38]
Cecconi, M.; Piovani, D.; Brunetta, E.; Aghemo, A.; Greco, M.; Ciccarelli, M.; Angelini, C.; Voza, A.; Omodei, P.; Vespa, E.; Pugliese, N.; Parigi, T.L.; Folci, M.; Danese, S.; Bonovas, S. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. J. Clin. Med., 2020, 9(5), 2429.
[http://dx.doi.org/10.3390/jcm9051548] [PMID: 32443899]
[39]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[40]
Qin, L.; Li, X.; Shi, J.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Zhou, M.; Xu, S.; Wu, B.; Yang, Z.; Zhang, C.; Yue, J.; Cheng, C.; Liu, X.; Xie, M. Gendered effects on inflammation reaction and outcome of COVID-19 patients in Wuhan. J. Med. Virol., 2020, 92(11), 2684-2692.
[http://dx.doi.org/10.1002/jmv.26137] [PMID: 32497297]
[41]
Sun, L.; Shen, L.; Fan, J.; Gu, F.; Hu, M.; An, Y.; Zhou, Q.; Fan, H.; Bi, J. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J. Med. Virol., 2020, 92(10), 2055-2066.
[http://dx.doi.org/10.1002/jmv.25966] [PMID: 32369208]
[42]
Hou, H.; Zhang, B.; Huang, H.; Luo, Y.; Wu, S.; Tang, G.; Liu, W.; Mao, L.; Mao, L.; Wang, F.; Sun, Z. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin. Exp. Immunol., 2020, 201(1), 76-84.
[http://dx.doi.org/10.1111/cei.13450] [PMID: 32365221]
[43]
Chen, Z.; Zhang, F.; Hu, W.; Chen, Q.; Li, C.; Wu, L.; Zhang, Z.; Li, B.; Ye, Q.; Mei, J.; Yue, J. Laboratory markers associated with COVID-19 progression in patients with or without comorbidity: A retrospective study. J. Clin. Lab. Anal., 2021, 35(1), e23644.
[http://dx.doi.org/10.1002/jcla.23644] [PMID: 33112011]
[44]
Kim, J.; Hong, J.Y.; Kim, S.T.; Park, S.H.; Jekal, S.Y.; Choi, J.S.; Chang, D.K.; Kang, W.K.; Seo, S.W.; Lee, J. Clinical scoring system for the prediction of survival of patients with advanced gastric cancer. ESMO Open, 2020, 5(2), e000670.
[http://dx.doi.org/10.1136/esmoopen-2020-000670] [PMID: 32188716]
[45]
Abd-Elsalam, S.; Soliman, S.; Esmail, E.S.; Khalaf, M.; Mostafa, E.F.; Medhat, M.A.; Ahmed, O.A.; El Ghafar, M.S.A.; Alboraie, M.; Hassany, S.M. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine? A randomized, multicenter trial. Biol. Trace Elem. Res., 2021, 199(10), 3642-3646.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[46]
Chen, Z. Zhang., F.; Hu, W.; Chen, Q.; Li, C.; Wu, L.; Zhang, Z.; Li., B.; Ye, Q.; Mei, J.; Yue, J. Laboratory markers associated with COVID‐19 progression in patients with or without comorbidity: A retrospective study. J. Clin. Lab. Anal., 2020, 35(1), e23644.
[47]
Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis., 2020, 95, 304-307.
[http://dx.doi.org/10.1016/j.ijid.2020.04.061] [PMID: 32344011]
[48]
Dabbous, H.M.; Abd-Elsalam, S.; El-Sayed, M.H.; Sherief, A.F.; Ebeid, F.F.S.; El Ghafar, M.S.A.; Soliman, S.; Elbahnasawy, M.; Badawi, R.; Tageldin, M.A. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch. Virol., 2021, 166(3), 949-954.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[49]
Mohamed, A.A.; Mohamed, N.; Mohamoud, S.; Zahran, F.E.; Khattab, R.A.; El-Damasy, D.A.; Alsayed, E.; Abd-Elsalam, S. SARS-CoV-2: The path of prevention and control. Infect. Disord. Drug Targets, 2021, 21(3), 358-362.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[50]
Yasin, R.; Gouda, W. Chest X-ray findings monitoring COVID-19 disease course and severity. Egypt. J. Radiol. Nucl. Med., 2020, 51, 193.
[http://dx.doi.org/10.1186/s43055-020-00296-x]
[51]
Lemmers, Arnaud The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology, 2009, 49(2), 646-657.
[http://dx.doi.org/10.1002/hep.22680]
[52]
Abd-Elsalam, S.; Esmail, E.S.; Khalaf, M.; El-Sarnagawy, G.N.; Shalaby, S.M.; El Ghafar, M.S.A.; Elbahnasawy, M.; Elfert, A.; Soliman, H.; El-Kalla, F.; Ghoneim, A. Tanta protocol for management of COVID-19: Perspectives from a developing country. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(10), 1775-1780.
[http://dx.doi.org/10.2174/1871530320999201117142305] [PMID: 33208083]
[53]
Mohamed, A.A.; Tantawi, O.I.; Fathalla, L.A.; El-Hassib, D.M.A.; El-Toukhy, N.E.R.; Salah, W.; Elkadeem, M.; Ezzat, O.; Abd-Elsalam, S. Covid-19: Urgent call to action. Antiinflamm. Antiallergy Agents Med. Chem., 2021, 20(2), 118-122.
[http://dx.doi.org/10.2174/1871523019666201202092859] [PMID: 33267767]
[54]
Gunduz, R.; Yildiz, B.S.; Ozdemir, I.H.; Cetin, N.; Ozen, M.B.; Bakir, E.O.; Ozgur, S.; Bayturan, O. CHA2DS2-VASc score and modified CHA2DS2-VASc score can predict mortality and intensive care unit hospitalization in COVID-19 patients. J. Thromb. Thrombolysis, 2021, 52(3), 914-924.
[PMID: 33730303]
[55]
Badawi, R.; Alboraie, M.; Abd-Elsalam, S.; Abourahma, M.Z.; Ramadan, H.K.; Ahmed, O.A.; Fouad, M.H.A.; Soliman, S.; Mohareb, D.A.; Haydara, T.; Alnabawy, S.M.; El Kassas, M. Serum alpha-fetoprotein levels and response to direct antiviral therapy in patients with chronic hepatitis C: Real-world results from 1716 patients in egypt. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 1005-1011.
[http://dx.doi.org/10.2174/1871530319666190204154830] [PMID: 30727931]
[56]
Haimovich, A.; Ravindra, N.G.; Stoytchev, S. Development and validation of the COVID-19 severity index (CSI): a prognostic tool for early respiratory decompensation. Cold Spring Harbor Laboratory, 2020, 76(4), 442-453.
[57]
Favara, D.M.; McAdam, K.; Cooke, A. Alex, B-K.; Budriunaite , I.; Bossingham, S.; Houghton, S.; Doffinger, R.; Ainsworth, N.; Corrie, P. SARS-CoV-2 antigen and antibody prevalence among UK staff working with cancer patients during the COVID-19 pandemic. Cold Spring Harbor Laboratory, 2020.
[http://dx.doi.org/10.1101/2020.09.18.20197590]
[58]
Luban, J.; Sattler, R.; Mühlberger, E.; Graci, J.D.; Cao, L.; Weetall, M.; Trotta, C.; Colacino, J.M.; Bavari, S.; Strambio-De-Castillia, C.; Suder, E.L.; Wang, Y.; Soloveva, V.; Cintron-Lue, K.; Naryshkin, N.A.; Pykett, M.; Welch, E.M.; O’Keefe, K.; Kong, R.; Goodwin, E.; Jacobson, A.; Paessler, S.; Peltz, S.W. The DHODH Inhibitor PTC299 Arrests SARS-CoV-2 Replication and Suppresses Induction of Inflammatory Cytokines. Virus Res., 2020, 292, 198246. https://pubmed.ncbi.nlm.nih.gov/33249060/
[PMID: 33249060]
[59]
Kothandaraman, N.; Rengaraj, A.; Xue, B.; Yew, W.S.; Velan, S.S.; Karnani, N.; Leow, M.K.S. COVID-19 endocrinopathy with hindsight from SARS. Am. J. Physiol. Endocrinol. Metab., 2021, 320(1), E139-E150.
[http://dx.doi.org/10.1152/ajpendo.00480.2020] [PMID: 33236920]
[60]
van Dam, P.M.E.L.; Zelis, N.; van Kuijk, S.M.J.; Linkens, A.E.M.J.H. Performance of prediction models for short term outcome in COVID-19 patients in the emergency department: a retrospective study; Cold Spring Harbor Laboratory, 2020, 53(1),402-409. https://pubmed.ncbi.nlm.nih.gov/33629918/
[PMID: 33629918]
[61]
Zhou, J.; Lee, S.; Wang, X.; Li, Y.; Wu, K.K.W.; Liu, T.; Cao, Z.; Zeng, D.D.; Wong, I.C.K.; Zhang, Q.; Tse, G. Development of a predictive risk model for severe COVID-19 disease using population-based administrative data; Cold Spring Harbor Laboratory, 2020.
[http://dx.doi.org/10.1101/2020.10.21.20217380]
[62]
Mohammed, D.A.; Helal, D.S. Prognostic significance of epithelial/stromal caveolin-1 expression in prostatic hyperplasia, high grade prostatic intraepithelial hyperplasia and prostatic carcinoma and its correlation with microvessel density. J. Egypt. Natl. Canc. Inst., 2017, 29(1), 25-31.
[http://dx.doi.org/10.1016/j.jnci.2017.01.002] [PMID: 28259631]