The Prepropalustrin-2CE2 and Preprobrevinin-2CE3 Gene from Rana chensinensis: Gene Expression, Genomic Organization and Functional Analysis of the Promoter Activity

Page: [143 - 155] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: For amphibians, antimicrobial peptides are innate immune molecules that resist adverse external environmental stimuli. However, the regulation mechanism of antimicrobial peptide gene expression in frogs is still unclear.

Objective: The two antimicrobial peptides, palustrin-2CE2 and brevinin-2CE3, are produced under external stimulation in Rana chensinensis. Using this model, we analyzed the gene structure and regulatory elements of the two antimicrobial peptide genes and explored the regulatory effects of related transcription factors on the two genes.

Methods: Different stimuli such as E. coli, S. aureus, and chemical substance lipopolysaccharide (LPS) were applied to Rana chensinensis tadpoles at different developmental stages, and antimicrobial peptide expression levels were detected by RT-PCR. Bioinformatics analysis and 5'-RACE and genome walking technologies were employed to analyze the genome structure and promoter region of the antimicrobial peptide genes. With dual-luciferase reporter gene assays, yeast one-hybrid experiment and EMSA assays, we assessed the regulatory effect of the endogenous regulators of the cell on the antimicrobial peptide promoter.

Results: The transcription levels of prepropalustrin-2CE2 and preprobrevinin-2CE3 were significantly upregulated after different stimulations. Genomic structure analysis showed that both genes contained three exons and two introns. Promoter analysis indicated that there are binding sites for regulatory factors of the NF-κB family in the promoter region, and experiments showed that endogenous NF-κB family regulatory factors in frog cells activate the promoters of the antimicrobial peptide genes. Yeast one-hybrid experiment and EMSA assay demonstrated that RelA and NF-κB1 might interact with specific motifs in the prepropalustrin-2CE2 promoter.

Conclusion: In this paper, we found that the gene expression levels of the antimicrobial peptides, palustrin-2CE2 and brevinin-2CE3, in R. chensinensis will increase under environmental stimuli, and we verified that the changes in gene expression levels are affected by the transcription factors RelA and NF-κB1. The yeast one-hybrid experiment and EMSA assay confirmed that RelA and NF-κB1 could directly interact with the frog antimicrobial peptide gene promoter, providing new data for the regulatory mechanism of antimicrobial peptides in response to environmental stimuli.

Keywords: Antimicrobial peptides (AMPs), NF-κB, RelA, innate immunity, promoter, R. chensinensis.

Graphical Abstract

[1]
Conlon, J.M. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell. Mol. Life Sci., 2011, 68(13), 2303-2315.
[http://dx.doi.org/10.1007/s00018-011-0720-8] [PMID: 21560068]
[2]
Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides, 2014, 57, 67-77.
[http://dx.doi.org/10.1016/j.peptides.2014.04.019] [PMID: 24793775]
[3]
Wang, Y.; Ouyang, J.; Luo, X.; Zhang, M.; Jiang, Y.; Zhang, F.; Zhou, J.; Wang, Y.; Zhao, C.; Ganz, T.; Lehrer, R.I. Identification and characterization of novel bi-functional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev. Comp. Immunol., 2021, 116(3), 103928.
[http://dx.doi.org/10.1016/j.dci.2020.103928] [PMID: 33242568]
[4]
Yang, X.; Lee, W.H.; Zhang, Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J. Proteome Res., 2012, 11(1), 306-319.
[http://dx.doi.org/10.1021/pr200782u] [PMID: 22029824]
[5]
Lai, Y.; Gallo, R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, 30(3), 131-141.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[6]
Loudon, A.H.; Kurtz, A.; Esposito, E.; Umile, T.P.; Minbiole, K.P.C.; Parfrey, L.W.; Sheafor, B.A. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. FEMS Microbiol. Ecol., 2020, 96(10), fiaa168.
[http://dx.doi.org/10.1093/femsec/fiaa168] [PMID: 32815986]
[7]
Tossi, A.; Sandri, L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr. Pharm. Des., 2002, 8(9), 743-761.
[http://dx.doi.org/10.2174/1381612023395475] [PMID: 11945169]
[8]
Ma, Y.; Liu, C.; Liu, X.; Wu, J.; Yang, H.; Wang, Y.; Li, J.; Yu, H.; Lai, R. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics, 2010, 95(1), 66-71.
[http://dx.doi.org/10.1016/j.ygeno.2009.09.004] [PMID: 19778602]
[9]
Gudmundsson, G.H.; Agerberth, B.; Odeberg, J.; Bergman, T.; Olsson, B.; Salcedo, R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem., 1996, 238(2), 325-332.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0325z.x] [PMID: 8681941]
[10]
Zhao, C.; Ganz, T.; Lehrer, R.I. Structures of genes for two cathelin-associated antimicrobial peptides: Prophenin-2 and PR-39. FEBS Lett., 1995, 376(3), 130-134.
[http://dx.doi.org/10.1016/0014-5793(95)01237-3] [PMID: 7498526]
[11]
Wang, Q.; Xia, R.; Ji, J.J.; Zhu, Q.; Li, X.P.; Ma, Y.; Xu, Y.C. Diversity of antimicrobial peptides in three partially sympatric frog species in Northeast Asia and implications for evolution. Genes (Basel), 2020, 11(2), 158.
[http://dx.doi.org/10.3390/genes11020158] [PMID: 32024145]
[12]
Helbing, C.C.; Hammond, S.A.; Jackman, S.H.; Houston, S.; Warren, R.L.; Cameron, C.E.; Birol, I. Antimicrobial peptides from Rana [Lithobates] catesbeiana: Gene structure and bioinformatic identification of novel forms from tadpoles. Sci. Rep., 2019, 9(1), 1529.
[http://dx.doi.org/10.1038/s41598-018-38442-1] [PMID: 30728430]
[13]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[14]
Kwon, S.Y.; Carlson, B.A.; Park, J.M.; Lee, B.J. Structural organization and expression of the gaegurin 4 gene of Rana rugosa. Biochim. Biophys. Acta, 2000, 1492(1), 185-190.
[http://dx.doi.org/10.1016/S0167-4781(00)00082-8] [PMID: 11004488]
[15]
Chen, M.; Che, Q.; Wang, X.; Li, J.; Yang, H.; Li, D.; Zhang, K.; Lai, R. Cloning and characterization of the first amphibian bradykinin gene. Biochimie, 2010, 92(3), 226-231.
[http://dx.doi.org/10.1016/j.biochi.2009.12.005] [PMID: 20025925]
[16]
Hayden, M.S.; Ghosh, S. NF-κB in immunobiology. Cell Res., 2011, 21(2), 223-244.
[http://dx.doi.org/10.1038/cr.2011.13] [PMID: 21243012]
[17]
Minakhina, S.; Steward, R. Nuclear factor-kappa B pathways in Drosophila. Oncogene, 2006, 25(51), 6749-6757.
[http://dx.doi.org/10.1038/sj.onc.1209940] [PMID: 17072326]
[18]
Wada, A.; Ogushi, K.; Kimura, T.; Hojo, H.; Mori, N.; Suzuki, S.; Kumatori, A.; Se, M.; Nakahara, Y.; Nakamura, M.; Moss, J.; Hirayama, T. Helicobacter pylori-mediated transcriptional regulation of the human beta-defensin 2 gene requires NF-kappaB. Cell. Microbiol., 2001, 3(2), 115-123.
[http://dx.doi.org/10.1046/j.1462-5822.2001.00096.x] [PMID: 11207625]
[19]
Yang, W.; Molenaar, A.; Kurts-Ebert, B.; Seyfert, H.M. NF-kappaB factors are essential, but not the switch, for pathogen-related induction of the bovine β-defensin 5-encoding gene in mammary epithelial cells. Mol. Immunol., 2006, 43(3), 210-225.
[http://dx.doi.org/10.1016/j.molimm.2005.02.003] [PMID: 16199258]
[20]
Xi, L.; Wang, C.; Chen, P.; Yang, Q.; Hu, R.; Zhang, H.; Weng, Q.; Xu, M. Expressions of IL-6, TNF-α and NF-κB in the skin of Chinese brown frog (Rana dybowskii). Eur. J. Histochem., 2017, 61(4), 2834.
[http://dx.doi.org/10.4081/ejh.2017.2834] [PMID: 29313598]
[21]
Mangoni, M.L.; Miele, R.; Renda, T.G.; Barra, D.; Simmaco, M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J., 2001, 15(8), 1431-1432.
[http://dx.doi.org/10.1096/fj.00-0695fje] [PMID: 11387247]
[22]
Miele, R.; Björklund, G.; Barra, D.; Simmaco, M.; Engström, Y. Involvement of Rel factors in the expression of antimicrobial peptide genes in amphibia. Eur. J. Biochem., 2001, 268(2), 443-449.
[http://dx.doi.org/10.1046/j.1432-1033.2001.01908.x] [PMID: 11168381]
[23]
Roelants, K.; Fry, B.G.; Ye, L.; Stijlemans, B.; Brys, L.; Kok, P.; Clynen, E.; Schoofs, L.; Cornelis, P.; Bossuyt, F. Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet., 2013, 9(8), e1003662.
[http://dx.doi.org/10.1371/journal.pgen.1003662] [PMID: 23935531]
[24]
Miele, R.; Ponti, D.; Boman, H.G.; Barra, D.; Simmaco, M. Molecular cloning of a bombinin gene from Bombina orientalis: Detection of NF-kappaB and NF-IL6 binding sites in its promoter. FEBS Lett., 1998, 431(1), 23-28.
[http://dx.doi.org/10.1016/S0014-5793(98)00718-2] [PMID: 9684858]
[25]
Zhao, J.; Sun, Y.; Li, Z.; Su, Q. Molecular cloning of novel antimicrobial peptide genes from the skin of the Chinese brown frog, Rana chensinensis. Zool. Sci., 2011, 28(2), 112-117.
[http://dx.doi.org/10.2108/zsj.28.112] [PMID: 21303203]
[26]
Zhang, Y.; Liu, Y.; Sun, Y.; Liu, Q.; Wang, X.; Li, Z.; Hao, J. In vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Curr. Microbiol., 2014, 68(6), 685-692.
[http://dx.doi.org/10.1007/s00284-014-0529-4] [PMID: 24474334]
[27]
Hsieh, S.J.; Lin, C.Y.; Liu, N.H.; Chow, W.Y.; Tang, C.Y. GeneAlign: a coding exon prediction tool based on phylogenetical comparisons. Nucleic Acids Res., 2006, 34, W280-4.
[http://dx.doi.org/10.1093/nar/gkl307] [PMID: 16845010]
[28]
Perkins, N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[http://dx.doi.org/10.1038/nrc3204] [PMID: 22257950]
[29]
Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol., 2019, 9, 3128.
[http://dx.doi.org/10.3389/fimmu.2018.03128] [PMID: 30692997]
[30]
Brown, K.L.; Hancock, R.E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol., 2006, 18(1), 24-30.
[http://dx.doi.org/10.1016/j.coi.2005.11.004] [PMID: 16337365]
[31]
Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence, 2010, 1(5), 440-464.
[http://dx.doi.org/10.4161/viru.1.5.12983] [PMID: 21178486]
[32]
Rollins-Smith, L.A.; Reinert, L.K.; O’Leary, C.J.; Houston, L.E.; Woodhams, D.C. Antimicrobial Peptide defenses in amphibian skin. Integr. Comp. Biol., 2005, 45(1), 137-142.
[http://dx.doi.org/10.1093/icb/45.1.137] [PMID: 21676754]
[33]
Toledo, R.C.; Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. Part A Physiol., 1995, 111(1), 1-29.
[http://dx.doi.org/10.1016/0300-9629(95)98515-I]
[34]
Ohnuma, A.; Conlon, J.M.; Iwamuro, S. Differential expression of genes encoding preprobrevinin-2, prepropalustrin-2, and preproranatuerin-2 in developing larvae and adult tissues of the mountain brown frog Rana ornativentris. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2010, 151(1), 122-130.
[http://dx.doi.org/10.1016/j.cbpc.2009.09.004] [PMID: 19755171]
[35]
Lima, M.S.; Pederassi, J. Morphometrics and ratio of body proportionality of tadpoles of Rhinella icterica (Anura, Bufonidae) at different developmental stages. Braz. J. Biol., 2012, 72(3), 623-629.
[http://dx.doi.org/10.1590/S1519-69842012000300028]
[36]
Brown, D.D.; Cai, L. Amphibian metamorphosis. Dev. Biol., 2007, 306(1), 20-33.
[http://dx.doi.org/10.1016/j.ydbio.2007.03.021] [PMID: 17449026]
[37]
Savelyeva, A.; Ghavami, S.; Davoodpour, P.; Asoodeh, A.; Los, M.J. An overview of Brevinin superfamily: Structure, function and clinical perspectives. Adv. Exp. Med. Biol., 2014, 818, 197-212.
[http://dx.doi.org/10.1007/978-1-4471-6458-6_10] [PMID: 25001538]
[38]
Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins (Basel), 2018, 10(11), 461.
[http://dx.doi.org/10.3390/toxins10110461] [PMID: 30413046]
[39]
Simmaco, M.; Mignogna, G.; Barra, D. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers, 1998, 47(6), 435-450.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8] [PMID: 10333736]
[40]
Kuchler, K.; Kreil, G.; Sures, I. The genes for the frog skin peptides GLa, xenopsin, levitide and caerulein contain a homologous export exon encoding a signal sequence and part of an amphiphilic peptide. Eur. J. Biochem., 1989, 179(2), 281-285.
[http://dx.doi.org/10.1111/j.1432-1033.1989.tb14552.x] [PMID: 2465151]
[41]
Scocchi, M.; Wang, S.; Zanetti, M. Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett., 1997, 417(3), 311-315.
[http://dx.doi.org/10.1016/S0014-5793(97)01310-0] [PMID: 9409740]
[42]
Marsango, S.; di Patti, M.C.; Barra, D.; Miele, R. The Bv8 gene from Bombina orientalis: molecular cloning, genomic organization and functional characterization of the promoter. Peptides, 2009, 30(12), 2182-2190.
[http://dx.doi.org/10.1016/j.peptides.2009.09.007] [PMID: 19747954]
[43]
Park, J.M.; Lee, J.Y.; Moon, H.M.; Lee, B.J. Molecular cloning of cDNAs encoding precursors of frog skin antimicrobial peptides from Rana rugosa. Biochim. Biophys. Acta, 1995, 1264(1), 23-25.
[http://dx.doi.org/10.1016/0167-4781(95)00149-B] [PMID: 7578251]
[44]
Shrestha, S.; Kim, H.H.; Kim, Y. An inhibitor of NF-kB encoded in Cotesia plutella bracovirus inhibits expression of antimicrobial peptides and enhances pathogenicity of Bacillus thuringiensis. J. Asia Pac. Entomol., 2009, 12(4), 277-283.
[http://dx.doi.org/10.1016/j.aspen.2009.06.004]
[45]
Yokoi, K.; Koyama, H.; Ito, W.; Minakuchi, C.; Tanaka, T.; Miura, K. Involvement of NF-κB transcription factors in antimicrobial peptide gene induction in the red flour beetle, Tribolium castaneum. Dev. Comp. Immunol., 2012, 38(2), 342-351.
[http://dx.doi.org/10.1016/j.dci.2012.06.008] [PMID: 22771624]
[46]
Rao, X.J.; Xu, X.X.; Yu, X.Q. Manduca sexta moricin promoter elements can increase promoter activities of Drosophila melanogaster antimicrobial peptide genes. Insect Biochem. Mol. Biol., 2011, 41(12), 982-992.
[http://dx.doi.org/10.1016/j.ibmb.2011.09.007] [PMID: 22005212]
[47]
Chowdhury, M.; Zhang, J.; Xu, X.X.; He, Z.; Lu, Y.; Liu, X.S.; Wang, Y.F.; Yu, X.Q. An in vitro study of NF-κB factors cooperatively in regulation of Drosophila melanogaster antimicrobial peptide genes. Dev. Comp. Immunol., 2019, 95, 50-58.
[http://dx.doi.org/10.1016/j.dci.2019.01.017] [PMID: 30735676]
[48]
Cuesta, A.; Meseguer, J.; Esteban, M.A. The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol. Immunol., 2008, 45(8), 2333-2342.
[http://dx.doi.org/10.1016/j.molimm.2007.11.007] [PMID: 18164062]
[49]
van Dijk, A.; van Eldik, M.; Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, H.L.; de Zoete, M.R.; Bikker, F.J.; Haagsman, H.P. Immunomodulatory and anti-inflammatory activities of chicken cathelicidin-2 derived peptides. PLoS One, 2016, 11(2), e0147919.
[http://dx.doi.org/10.1371/journal.pone.0147919] [PMID: 26848845]
[50]
Kress, E.; Merres, J.; Albrecht, L.J.; Hammerschmidt, S.; Pufe, T.; Tauber, S.C.; Brandenburg, L.O. CRAMP deficiency leads to a pro-inflammatory phenotype and impaired phagocytosis after exposure to bacterial meningitis pathogens. Cell Commun. Signal., 2017, 15(1), 32.
[http://dx.doi.org/10.1186/s12964-017-0190-1] [PMID: 28915816]
[51]
Braff, M.H.; Bardan, A.; Nizet, V.; Gallo, R.L. Cutaneous defense mechanisms by antimicrobial peptides. J. Invest. Dermatol., 2005, 125(1), 9-13.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23587.x] [PMID: 15982297]
[52]
Duplantier, A.J.; van Hoek, M.L. The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front. Immunol., 2013, 4, 143.
[http://dx.doi.org/10.3389/fimmu.2013.00143] [PMID: 23840194]
[53]
Ramsey, J.P.; Reinert, L.K.; Harper, L.K.; Woodhams, D.C.; Rollins-Smith, L.A. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect. Immun., 2010, 78(9), 3981-3992.
[http://dx.doi.org/10.1128/IAI.00402-10] [PMID: 20584973]