Bioaccessibility of Anthocyanins on in vitro Digestion Models: Factors Implicated and Role in Functional Foods Development

Page: [1124 - 1141] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC.

Methods: Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases.

Results: Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage.

Conclusion: Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.

Keywords: Anthocyanins, bioaccessibility, functional foods, agro-industrial residues, berries, by-products.

[1]
Caballero, B. Humans against obesity: who will win? Adv. Nutr., 2019, 10(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1093/advances/nmy055] [PMID: 30721956]
[2]
Berrigan, D.; Arteaga, S.S.; Colón-Ramos, U.; Rosas, L.G.; Monge-Rojas, R.; O’Connor, T.M.; Pérez-Escamilla, R.; Roberts, E.F.S.; Sanchez, B.; Téllez-Rojo, M.M.; Vorkoper, S. Measurement challenges for childhood obesity research within and between Latin America and the United States. Obes. Rev., 2021, 22(Suppl. 3), e13242.
[http://dx.doi.org/10.1111/obr.13242] [PMID: 33942975]
[3]
Garcia-Diaz, D.F.; Jimenez, P.; Reyes-Farias, M.; Soto-Covasich, J.; Costa, A.G.V. A review of the potential of Chilean native berries in the treatment of obesity and its related features. Plant Foods Hum. Nutr., 2019, 74(3), 277-286.
[http://dx.doi.org/10.1007/s11130-019-00746-6] [PMID: 31278560]
[4]
Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules, 2019, 24(6), 1056.
[http://dx.doi.org/10.3390/molecules24061056] [PMID: 30889812]
[5]
Dantas, A.M.; Mafaldo, I.M.; Oliveira, P.M.L.; Lima, M.D.S.; Magnani, M.; Borges, G.D.S.C. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem., 2019, 274, 202-214.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.099] [PMID: 30372928]
[6]
Oliveira, H.; Perez-Gregório, R.; de Freitas, V.; Mateus, N.; Fernandes, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: purple-fleshed sweet potato vs. red wine. Food Chem., 2019, 276, 410-418.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.159] [PMID: 30409613]
[7]
Carrillo, C.; Buvé, C.; Panozzo, A.; Grauwet, T.; Hendrickx, M. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids. Food Chem., 2017, 227, 271-279.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.062] [PMID: 28274432]
[8]
Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int. J. Mol. Sci., 2018, 19(9), 2785-2804.
[http://dx.doi.org/10.3390/ijms19092785] [PMID: 30223619]
[9]
Castagnini, J.M.; Betoret, N.; Betoret, E.; Fito, P. Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. Lebensm. Wiss. Technol., 2015, 64(2), 1289-1296.
[http://dx.doi.org/10.1016/j.lwt.2015.06.044]
[10]
Li, D.; Li, B.; Ma, Y.; Sun, X.; Lin, Y.; Meng, X. Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J. Food Compos. Anal., 2017, 62, 84-93.
[http://dx.doi.org/10.1016/j.jfca.2017.03.006]
[11]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1), 1361779.
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[12]
Lee, Y-M.; Yoon, Y.; Yoon, H.; Park, H-M.; Song, S.; Yeum, K-J. Dietary anthocyanins against obesity and inflammation. Nutrients, 2017, 9(10), 1089.
[http://dx.doi.org/10.3390/nu9101089] [PMID: 28974032]
[13]
He, J.; Giusti, M.M. Anthocyanins: natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol., 2010, 1, 163-187.
[http://dx.doi.org/10.1146/annurev.food.080708.100754] [PMID: 22129334]
[14]
Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The case for anthocyanin consumption to promote human health: a review. Compr. Rev. Food Sci. Food Saf., 2013, 12(5), 483-508.
[http://dx.doi.org/10.1111/1541-4337.12024] [PMID: 33412667]
[15]
Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors, 2017, 43(4), 507-516.
[http://dx.doi.org/10.1002/biof.1365] [PMID: 28504479]
[16]
Yu, B.; Yu, B.; Yu, L. Commentary: reconciling hygiene and cleanliness: a new perspective from human microbiome. Indian J. Microbiol., 2020, 60(2), 259-261.
[http://dx.doi.org/10.1007/s12088-020-00863-w] [PMID: 32255860]
[17]
Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr., 2020, 11(2), 224-236.
[PMID: 31329250]
[18]
Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: a review. Crit. Rev. Food Sci. Nutr., 2020, 60(2), 181-200.
[http://dx.doi.org/10.1080/10408398.2018.1518895] [PMID: 30373383]
[19]
Belwal, T.; Singh, G.; Jeandet, P.; Pandey, A.; Giri, L.; Ramola, S.; Bhatt, I.D.; Venskutonis, P.R.; Georgiev, M.I.; Clément, C.; Luo, Z. Anthocyanins, multi-functional natural products of industrial relevance: recent biotechnological advances. Biotechnol. Adv., 2020, 43, 107600.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107600] [PMID: 32693016]
[20]
Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay between anthocyanins and gut microbiota. J. Agric. Food Chem., 2014, 62(29), 6898-6902.
[http://dx.doi.org/10.1021/jf501808a] [PMID: 24915058]
[21]
Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev., 2014, 46(4), 508-520.
[http://dx.doi.org/10.3109/03602532.2014.978080] [PMID: 25347327]
[22]
Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review. Crit. Rev. Food Sci. Nutr., 2015, 55(7), 887-919.
[http://dx.doi.org/10.1080/10408398.2011.654142] [PMID: 24915381]
[23]
Alegría, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In: The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Ed.; Springer: Switzerland, 2015; pp. 3-12.
[24]
Mahdavi, S.A.; Jafari, S.M.; Ghorbani, M.; Assadpoor, E. Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry. Technol., 2014, 32(5), 509-518.
[http://dx.doi.org/10.1080/07373937.2013.839562]
[25]
Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol., 2013, 75(3), 588-602.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x] [PMID: 22897361]
[26]
Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: facts and fiction. Phytochemistry, 2007, 68(22-24), 2986-3008.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.014] [PMID: 17976666]
[27]
Ryu, D.; Koh, E. Stability of anthocyanins in bokbunja (Rubus occidentalis L.) under in vitro gastrointestinal digestion. Food Chem., 2018, 267, 157-162.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.109] [PMID: 29934151]
[28]
Koh, J.; Xu, Z.; Wicker, L. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chem., 2020, 302, 125343.
[http://dx.doi.org/10.1016/j.foodchem.2019.125343] [PMID: 31430630]
[29]
Fredes, C.; Osorio, M.J.; Parada, J.; Robert, P. Stability and bioaccessibility of anthocyanins from maqui (Aristotelia chilensis [mol.] stuntz) juice microparticles. Lebensm. Wiss. Technol., 2018, 91, 549-556.
[http://dx.doi.org/10.1016/j.lwt.2018.01.090]
[30]
Guijarro-Fuertes, M.; Andrade-Cuvi, M.J.; Bravo-Vásquez, J.; Ramos-Guerrero, L.; Vernaza, M.G. Andean blueberry (Vaccinium Floribundum) bread: physicochemical properties and bioaccessibility of antioxidants. Food Sci. Technol. Int., 2019, 39(1), 56-62.
[http://dx.doi.org/10.1590/fst.30317] [PMID: 30153746]
[31]
Perez, C.; Tagliani, C.; Arcia, P.; Cozzano, S.; Curutchet, A. Blueberry by-product used as an ingredient in the development of functional cookies. Food Sci. Technol. Int., 2018, 24(4), 301-308.
[http://dx.doi.org/10.1177/1082013217748729] [PMID: 29260598]
[32]
Hirawan, R.; Diehl-Jones, W.; Beta, T. Comparative evaluation of the antioxidant potential of infant cereals produced from purple wheat and red rice grains and LC-MS analysis of their anthocyanins. J. Agric. Food Chem., 2011, 59(23), 12330-12341.
[http://dx.doi.org/10.1021/jf202662a] [PMID: 22035073]
[33]
Oancea, A.M.; Hasan, M.; Vasile, A.M.; Barbu, V.; Enachi, E.; Bahrim, G.; Râpeanu, G.; Silvi, S.; Stănciuc, N. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. Lebensm. Wiss. Technol., 2018, 95, 129-134.
[http://dx.doi.org/10.1016/j.lwt.2018.04.083]
[34]
Cebeci, F.; Şahin-Yeşilçubuk, N. The matrix effect of blueberry, oat meal and milk on polyphenols, antioxidant activity and potential bioavailability. Int. J. Food Sci. Nutr., 2014, 65(1), 69-78.
[http://dx.doi.org/10.3109/09637486.2013.825699] [PMID: 23944181]
[35]
Anuyahong, T.; Chusak, C.; Thilavech, T.; Adisakwattana, S. Postprandial effect of yogurt enriched with anthocyanins from riceberry rice on glycemic response and antioxidant capacity in healthy adults. Nutrients, 2020, 12(10), 2930.
[http://dx.doi.org/10.3390/nu12102930] [PMID: 32987943]
[36]
Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: nutritional, technological, antioxidant, and sensory properties. Foods, 2021, 10(1), 75.
[http://dx.doi.org/10.3390/foods10010075] [PMID: 33401782]
[37]
Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J.F.B, 2018, 4, 11-68.
[38]
Rein, M.J. Copigmentation Reactions and Color Stability of Berry Anthocyanins. Academic Dissertation, University of Helsinki: Helsinki, Finland, 2005.
[39]
Andersen, O.M.; Jordheim, M. The Anthocyanins. In: Flavonoids: Chemistry, Biochemistry and Applications; Andersen, O.M.; Markham, K.R., Eds.; CRC Press: Boca Raton, 2006; pp. 471-552.
[40]
Yonekura-Sakakibara, K.; Saito, K. Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep., 2009, 26(11), 1466-1487.
[http://dx.doi.org/10.1039/b817077k] [PMID: 19844641]
[41]
Delgado-Vargas, F.; Paredes-Lopez, O. Anthocyanins and betalains. In: Natural Colorants for Food and Nutraceutical Uses; Delgado-Vargas, F.; Paredes-Lopez, O., Eds.; CRC Press: Boca Raton, 2003; pp. 167-219.
[42]
Prior, R.L.; Wu, X. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res., 2006, 40(10), 1014-1028.
[http://dx.doi.org/10.1080/10715760600758522] [PMID: 17015246]
[43]
Hidalgo, G-I.; Almajano, M.P. Red Fruits: extraction of antioxidants, phenolic content, and radical scavenging determination: a review. Antioxidants, 2017, 6(1), 7.
[http://dx.doi.org/10.3390/antiox6010007] [PMID: 28106822]
[44]
Prior, R.L. Absortion and Metabolism of Anthocyanins: Potential Health Effects. In: Phytochemicals: Mechanism of Action; Meskin, M.; Bidlack, W.R.; Davies, A.J.; Lewis, D.S.; Randolph, R.K., Eds.; CRC Press: Boca Raton, 2004; pp. 1-19.
[45]
Yonekura-Sakakibara, K.; Nakayama, T.; Yamazaki, M.; Saito, K. Modification and Stabilization of Anthocyanins. In: Anthocyanins; Winefield, C.; Davies, K.; Gould, K., Eds.; Springer: New York, 2008; pp. 169-190.
[http://dx.doi.org/10.1007/978-0-387-77335-3_6]
[46]
Liu, J.; Zhuang, Y.; Hu, Y.; Xue, S.; Li, H.; Chen, L.; Fei, P. Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid. Lebensm. Wiss. Technol., 2020, 130, 198673.
[http://dx.doi.org/10.1016/j.lwt.2020.109673]
[47]
Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res. Int., 2011, 44(2), 499-509.
[http://dx.doi.org/10.1016/j.foodres.2010.12.007]
[48]
Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem., 2003, 51(3), 628-633.
[http://dx.doi.org/10.1021/jf025551i] [PMID: 12537433]
[49]
Etcheverry, P.; Grusak, M.A.; Fleige, L.E. Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front. Physiol., 2012, 3, 317.
[http://dx.doi.org/10.3389/fphys.2012.00317] [PMID: 22934067]
[50]
Santos, T.P.; Cunha, R.L. In vitro digestibility of gellan gels loaded with jabuticaba extract: effect of matrix-bioactive interaction. Food Res. Int., 2019, 125, 108638.
[http://dx.doi.org/10.1016/j.foodres.2019.108638] [PMID: 31554089]
[51]
Tian, Q.; Giusti, M.M.; Stoner, G.D.; Schwartz, S.J. Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. J. Agric. Food Chem., 2006, 54(4), 1467-1472.
[http://dx.doi.org/10.1021/jf052367z] [PMID: 16478275]
[52]
Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling anthocyanin bioavailability for human health. Annu. Rev. Food Sci. Technol., 2016, 7(1), 375-393.
[http://dx.doi.org/10.1146/annurev-food-041715-033346] [PMID: 26772410]
[53]
Xu, W.; Yang, Y.; Xue, S.J.; Shi, J.; Lim, L-T.; Forney, C.; Xu, G.; Bamba, B.S.B. Effect of in vitro digestion on water-in-oil-in-water emulsions containing anthocyanins from grape skin powder. Molecules, 2018, 23(11), 2808.
[http://dx.doi.org/10.3390/molecules23112808] [PMID: 30380666]
[54]
Ahmad, M.; Ashraf, B.; Gani, A.; Gani, A. Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol., 2018, 109, 435-442.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.122] [PMID: 29229246]
[55]
Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; Clemente, A.; Corredig, M.; Dupont, D.; Dufour, C.; Edwards, C.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; Lesmes, U.; Macierzanka, A.; Mackie, A.R.; Martins, C.; Marze, S.; McClements, D.J.; Ménard, O.; Minekus, M.; Portmann, R.; Santos, C.N.; Souchon, I.; Singh, R.P.; Vegarud, G.E.; Wickham, M.S.J.; Weitschies, W.; Recio, I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc., 2019, 14(4), 991-1014.
[http://dx.doi.org/10.1038/s41596-018-0119-1] [PMID: 30886367]
[56]
Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem., 2011, 125(1), 1-12.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.036]
[57]
Milbury, P.E.; Cao, G.; Prior, R.L.; Blumberg, J. Bioavailablility of elderberry anthocyanins. Mech. Ageing Dev., 2002, 123(8), 997-1006.
[http://dx.doi.org/10.1016/S0047-6374(01)00383-9] [PMID: 12044949]
[58]
Passamonti, S.; Terdoslavich, M.; Franca, R.; Vanzo, A.; Tramer, F.; Braidot, E.; Petrussa, E.; Vianello, A. Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr. Drug Metab., 2009, 10(4), 369-394.
[http://dx.doi.org/10.2174/138920009788498950] [PMID: 19519345]
[59]
Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. The stomach as a site for anthocyanins absorption from food. FEBS Lett., 2003, 544(1-3), 210-213.
[http://dx.doi.org/10.1016/S0014-5793(03)00504-0] [PMID: 12782318]
[60]
Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Manach, C.; Lamaison, J-L.; Rémésy, C. Anthocyanins are efficiently absorbed from the small intestine in rats. J. Nutr., 2004, 134(9), 2275-2279.
[http://dx.doi.org/10.1093/jn/134.9.2275] [PMID: 15333716]
[61]
Faria, A.; Pestana, D.; Azevedo, J.; Martel, F.; de Freitas, V.; Azevedo, I.; Mateus, N.; Calhau, C. Absorption of anthocyanins through intestinal epithelial cells - Putative involvement of GLUT2. Mol. Nutr. Food Res., 2009, 53(11), 1430-1437.
[http://dx.doi.org/10.1002/mnfr.200900007] [PMID: 19785001]
[62]
Walton, M.C.; McGhie, T.K.; Reynolds, G.W.; Hendriks, W.H. The flavonol quercetin-3-glucoside inhibits cyanidin-3-glucoside absorption in vitro. J. Agric. Food Chem., 2006, 54(13), 4913-4920.
[http://dx.doi.org/10.1021/jf0607922] [PMID: 16787048]
[63]
Kay, C.D. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr. Res. Rev., 2006, 19(1), 137-146.
[http://dx.doi.org/10.1079/NRR2005116] [PMID: 19079881]
[64]
Aura, A-M.; Martin-Lopez, P.; O’Leary, K.A.; Williamson, G.; Oksman-Caldentey, K-M.; Poutanen, K.; Santos-Buelga, C. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr., 2005, 44(3), 133-142.
[http://dx.doi.org/10.1007/s00394-004-0502-2] [PMID: 15309431]
[65]
McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; Hentschel, U.; King, N.; Kjelleberg, S.; Knoll, A.H.; Kremer, N.; Mazmanian, S.K.; Metcalf, J.L.; Nealson, K.; Pierce, N.E.; Rawls, J.F.; Reid, A.; Ruby, E.G.; Rumpho, M.; Sanders, J.G.; Tautz, D.; Wernegreen, J.J. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3229-3236.
[http://dx.doi.org/10.1073/pnas.1218525110] [PMID: 23391737]
[66]
Alexander, K.L.; Targan, S.R.; Elson, C.O., III Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev., 2014, 260(1), 206-220.
[http://dx.doi.org/10.1111/imr.12180] [PMID: 24942691]
[67]
David, L.; Danciu, V.; Moldovan, B.; Filip, A. Effects of in vitro gastrointestinal digestion on the antioxidant capacity and anthocyanin content of cornelian cherry fruit extract. Antioxidants, 2019, 8(5), 114.
[http://dx.doi.org/10.3390/antiox8050114] [PMID: 31052224]
[68]
Singh, A.; Kitts, D.D. In vitro bioaccessibility of tart cherry anthocyanins in a health supplement mix containing mineral clay. J. Food Sci., 2019, 84(3), 475-480.
[http://dx.doi.org/10.1111/1750-3841.14455] [PMID: 30706481]
[69]
Jiao, X.; Li, B.; Zhang, Q.; Gao, N.; Zhang, X.; Meng, X. effect of in vitro-simulated gastrointestinal digestion on the stability and antioxidant activity of blueberry polyphenols and their cellular antioxidant activity towards HepG2 cells. Int. J. Food Sci. Technol., 2018, 53(1), 61-71.
[http://dx.doi.org/10.1111/ijfs.13516]
[70]
Liu, Y.; Zhang, D.; Wu, Y.; Wang, D.; Wei, Y.; Wu, J.; Ji, B. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Int. J. Food Sci. Nutr., 2014, 65(4), 440-448.
[http://dx.doi.org/10.3109/09637486.2013.869798] [PMID: 24393027]
[71]
Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem., 2014, 165, 522-531.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.135] [PMID: 25038707]
[72]
Ah-Hen, K.S.; Mathias-Rettig, K.; Gómez-Pérez, L.S.; Riquelme-Asenjo, G.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. J. Food Meas. Charact., 2018, 12(1), 602-615.
[http://dx.doi.org/10.1007/s11694-017-9673-4]
[73]
Yang, P.; Yuan, C.; Wang, H.; Han, F.; Liu, Y.; Wang, L.; Liu, Y. Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules, 2018, 23(2), E354.
[http://dx.doi.org/10.3390/molecules23020354] [PMID: 29414926]
[74]
Lang, Y.; Li, B.; Gong, E.; Shu, C.; Si, X.; Gao, N.; Zhang, W.; Cui, H.; Meng, X. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chem., 2021, 334, 127526.
[http://dx.doi.org/10.1016/j.foodchem.2020.127526] [PMID: 32702589]
[75]
Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chem., 2014, 153, 272-278.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.063] [PMID: 24491730]
[76]
Flores, F.P.; Singh, R.K.; Kerr, W.L.; Phillips, D.R.; Kong, F. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chem., 2015, 168, 225-232.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.059] [PMID: 25172704]
[77]
Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules, 2018, 23(5), 1227.
[http://dx.doi.org/10.3390/molecules23051227] [PMID: 29783783]
[78]
Zampedri, C.; Zampedri, P.; Scattolaro, O.; Zapata, L.; Castagnini, J. Evaluación de la biodisponibilidad in vitro de compuestos bioactivos de arándanos. Cienc. Docencia Tecnol., 2018, 29(57), 285-295.
[http://dx.doi.org/10.33255/2957/320]
[79]
Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Chacana-Ojeda, M. High pressure extraction increases the antioxidant potential and in vitro bio-accessibility of bioactive compounds from discarded blueberries. CYTA J. Food, 2019, 17(1), 622-631.
[http://dx.doi.org/10.1080/19476337.2019.1624622]
[80]
Bas-Bellver, C.; Andrés, C.; Seguí, L.; Barrera, C.; Jiménez-Hernández, N.; Artacho, A.; Betoret, N.; Gosalbes, M.J. Valorization of persimmon and blueberry byproducts to obtain functional powders: in vitro digestion and fermentation by gut microbiota. J. Agric. Food Chem., 2020, 68(30), 8080-8090.
[http://dx.doi.org/10.1021/acs.jafc.0c02088] [PMID: 32633956]
[81]
Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 2015, 175, 556-567.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.013] [PMID: 25577120]
[82]
Xiong, J.; Chan, Y.H.; Rathinasabapathy, T.; Grace, M.H.; Komarnytsky, S.; Lila, M.A. Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chem., 2020, 331, 127279.
[http://dx.doi.org/10.1016/j.foodchem.2020.127279] [PMID: 32563800]
[83]
Oidtmann, J.; Schantz, M.; Mäder, K.; Baum, M.; Berg, S.; Betz, M.; Kulozik, U.; Leick, S.; Rehage, H.; Schwarz, K.; Richling, E. Preparation and comparative release characteristics of three anthocyanin encapsulation systems. J. Agric. Food Chem., 2012, 60(3), 844-851.
[http://dx.doi.org/10.1021/jf2047515] [PMID: 22224434]
[84]
Podsędek, A.; Redzynia, M.; Klewicka, E.; Koziołkiewicz, M. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Res. Int., 2014, 2014, 365738.
[http://dx.doi.org/10.1155/2014/365738] [PMID: 24575407]
[85]
Zhang, H.; Hassan, Y.I.; Renaud, J.; Liu, R.; Yang, C.; Sun, Y.; Tsao, R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Mol. Nutr. Food Res., 2017, 61(10), 1600928.
[http://dx.doi.org/10.1002/mnfr.201600928] [PMID: 28691370]
[86]
Kubow, S.; Iskandar, M.M.; Melgar-Bermudez, E.; Sleno, L.; Sabally, K.; Azadi, B.; How, E.; Prakash, S.; Burgos, G.; Felde, T.Z. Effects of simulated human gastrointestinal digestion of two purple-fleshed potato cultivars on anthocyanin composition and cytotoxicity in colonic cancer and non-tumorigenic cells. Nutrients, 2017, 9(9), 953.
[http://dx.doi.org/10.3390/nu9090953] [PMID: 28850070]
[87]
Vergara, C.; Pino, M.T.; Zamora, O.; Parada, J.; Pérez, R.; Uribe, M.; Kalazich, J. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules, 2020, 25(3), 722.
[http://dx.doi.org/10.3390/molecules25030722] [PMID: 32046046]
[88]
Toktaş, B.; Bildik, F.; Özçelik, B. Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. J. Sci. Food Agric., 2018, 98(8), 3066-3075.
[http://dx.doi.org/10.1002/jsfa.8806] [PMID: 29194639]