Polymer Nanofibers for Biomedical Applications: Advances in Electrospinning

Page: [190 - 209] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: The demand for novel biomaterials has been exponentially rising in the last years as well as the searching for new technologies able to produce more efficient products in both drug delivery systems and regenerative medicine. Objective: The technique that can pretty well encompass the needs for novel and high-end materials with a relatively low-cost and easy operation is the electrospinning of polymer solutions.

Methods: Electrospinning usually produces ultrathin fibers that can be applied in a myriad of biomedical devices including sustained delivery systems for drugs, proteins, biomolecules, hormones, etc that can be applied in a broad spectrum of applications, from transdermal patches to cancer-related drugs.

Results: Electrospun fibers can be produced to mimic certain tissues of the human body, being an option to create new scaffolds for implants with several advantages.

Conclusions: In this review, we aimed to encompass the use of electrospun fibers in the field of biomedical devices, more specifically in the use of electrospun nanofibers applications toward the production of drug delivery systems and scaffolds for tissue regeneration.

Keywords: Polymers, Biomaterials, Nanofibers, Sustained Drug Delivery, Tissue Engineering, electrospun scaffolds

Graphical Abstract

[1]
Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 2013; 298(5): 504-20.
[http://dx.doi.org/10.1002/mame.201200290]
[2]
Jha A, Kumar A. Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst Eng 2019; 42(12): 1893-901.
[http://dx.doi.org/10.1007/s00449-019-02199-2] [PMID: 31542821]
[3]
Cheng X, Zhou W, Li P, et al. Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment. Chemosphere 2019; 234: 545-57.
[http://dx.doi.org/10.1016/j.chemosphere.2019.06.090] [PMID: 31229716]
[4]
Khalil AM, Schäfer AI. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water. J Membr Sci 2021; 618: 118228.
[http://dx.doi.org/10.1016/j.memsci.2020.118228]
[5]
Liang F-C, Kuo C-C, Chen B-Y, et al. RGB-switchable porous electrospun nanofiber chemoprobe-filter prepared from multifunctional copolymers for versatile sensing of pH and heavy metals. ACS Appl Mater Interfaces 2017; 9(19): 16381-96.
[http://dx.doi.org/10.1021/acsami.7b00970] [PMID: 28441012]
[6]
Obaid M, Barakat NAM, Fadali OA, Motlak M, Almajid AA, Khalil KA. Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats. Chem Eng J 2015; 259: 449-56.
[http://dx.doi.org/10.1016/j.cej.2014.07.095]
[7]
Patel S, Hota G. Synthesis of novel surface functionalized electrospun PAN nanofibers matrix for efficient adsorption of anionic CR dye from water. J Environ Chem Eng 2018; 6(4): 5301-10.
[http://dx.doi.org/10.1016/j.jece.2018.08.013]
[8]
Zhang Q, Wang H, Fan X, Lv F, Chen S, Quan X. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment. Surf Coat Tech 2016; 298: 45-52.
[http://dx.doi.org/10.1016/j.surfcoat.2016.04.054]
[9]
Cleeton C, Keirouz A, Chen X, Radacsi N. Electrospun nanofibers for drug delivery and biosensing. ACS Biomater Sci Eng 2019; 5(9): 4183-205.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00853] [PMID: 33417777]
[10]
Horne J, McLoughlin L, Bridgers B, Wujcik EK. Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring. Sense and Actuators Reports 2020; 2(1): 100005.
[http://dx.doi.org/10.1016/j.snr.2020.100005]
[11]
Kim SJ, Choi SJ, Jang JS, et al. Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 2016; 10(6): 5891-9.
[http://dx.doi.org/10.1021/acsnano.6b01196] [PMID: 27166639]
[12]
Pandey I, Bairagi PK, Verma N. Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: An electrochemical sensor for creatinine. Sens Actuators B Chem 2018; 277: 562-70.
[http://dx.doi.org/10.1016/j.snb.2018.09.036]
[13]
Xue W, Zhang Y, Duan J, et al. A highly sensitive fluorescent sensor based on small molecules doped in electrospun nanofibers: Detection of explosives as well as color modulation. J Mater Chem C Mater Opt Electron Devices 2015; 3(31): 8193-9.
[http://dx.doi.org/10.1039/C5TC00819K]
[14]
Zhang H, Xia J, Pang X, et al. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater Sci Eng C 2017; 73: 537-43.
[http://dx.doi.org/10.1016/j.msec.2016.12.116] [PMID: 28183642]
[15]
Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P. Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications. Mater Technol 2018; 33(8): 507-12.
[http://dx.doi.org/10.1080/10667857.2018.1473234]
[16]
Rahmani M, Faridi-Majidi R, Khani M-M, Mashaghi A, Noorizadeh F, Ghanbari H. Cross-linked PMS/PLA nanofibers with tunable mechanical properties and degradation rate for biomedical applications. Eur Polym J 2020; 130: 109633.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109633]
[17]
Ramanathan G, Singaravelu S, Raja MD, et al. Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Advances 2016; 6(10): 7914-22.
[http://dx.doi.org/10.1039/C5RA19529B]
[18]
da Silva TN, Gonçalves RP, Rocha CL, et al. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration. Mater Sci Eng C 2019; 97: 602-12.
[http://dx.doi.org/10.1016/j.msec.2018.12.020] [PMID: 30678947]
[19]
Tian L, Prabhakaran MP, Hu J, Chen M, Besenbacher F, Ramakrishna S. Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. RSC Advances 2015; 5(62): 49838-48.
[http://dx.doi.org/10.1039/C5RA05773F]
[20]
Yang F, Miao Y, Wang Y, Zhang L-M, Lin X. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells. Materials (Basel) 2017; 10(10): 1168.
[http://dx.doi.org/10.3390/ma10101168] [PMID: 29023390]
[21]
Basar AO, Castro S, Torres-Giner S, Lagaron JM, Turkoglu Sasmazel H. Novel poly(ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Mater Sci Eng C 2017; 81: 459-68.
[http://dx.doi.org/10.1016/j.msec.2017.08.025] [PMID: 28887998]
[22]
Li JJ, Yang YY, Yu DG, Du Q, Yang XL. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur J Pharm Sci 2018; 122: 195-204.
[http://dx.doi.org/10.1016/j.ejps.2018.07.002] [PMID: 30008429]
[23]
Qin ZY, Jia X-W, Liu Q, Kong BH, Wang H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int J Biol Macromol 2019; 137: 224-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.224] [PMID: 31260763]
[24]
Sedghi R, Shaabani A. Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer (Guildf) 2016; 101: 151-7.
[http://dx.doi.org/10.1016/j.polymer.2016.08.060]
[25]
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148: 1084-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.275] [PMID: 31917213]
[26]
Szabó E, Záhonyi P, Brecska D, et al. Comparison of amorphous solid dispersions of spironolactone prepared by spray drying and electrospinning: the influence of the preparation method on the dissolution properties. Mol Pharm 2021; 18(1): 317-27.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00965] [PMID: 33301326]
[27]
Barhoum A. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 2019; 17: 1-35.
[http://dx.doi.org/10.1016/j.apmt.2019.06.015]
[28]
Armedya TP, Dzikri MF, Sakti SCW, et al. Kinetical release study of copper ferrite nanoparticle incorporated on PCL/collagen nanofiber for naproxen delivery. Bionanoscience 2019; 9(2): 274-84.
[http://dx.doi.org/10.1007/s12668-019-00618-y]
[29]
Fahmi MZ, Prasetya RA, Dzikri MF, et al. MnFe2O4 nanoparticles/cellulose acetate composite nanofiber for controllable release of naproxen. Mater Chem Phys 2020; 250: 123055.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123055]
[30]
Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61(12): 1033-42.
[http://dx.doi.org/10.1016/j.addr.2009.07.007] [PMID: 19643152]
[31]
Kim B, Park H, Lee S-H, Sigmund WM. Poly(acrylic acid) nanofibers by electrospinning. Mater Lett 2005; 59(7): 829-32.
[http://dx.doi.org/10.1016/j.matlet.2004.11.032]
[32]
Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 2018; 19(2): 407.
[http://dx.doi.org/10.3390/ijms19020407] [PMID: 29385727]
[33]
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[34]
Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 2014; 19(6): 743-53.
[http://dx.doi.org/10.1016/j.drudis.2014.03.024] [PMID: 24704459]
[35]
Sui T, Ying S, Titov K, Dolbnya IP, Tan J-C, Korsunsky AM. Operando observation of the taylor cone during electrospinning by multiple synchrotron x-ray techniques. Mater Des 2016; 110: 933-4.
[http://dx.doi.org/10.1016/j.matdes.2016.08.097]
[36]
Winding CC, Hiatt GD. Polymeric Materials New York McGraw-Hill. 1961.
[37]
Jun Z, Hou H, Wendorff JH, Greiner A. Poly(vinyl alcohol) nanofibres by electrospinning: influence of molecular weight on fibre shape. e-Polymers 2005; 5(1): 37.
[http://dx.doi.org/10.1515/epoly.2005.5.1.387]
[38]
Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf) 2005; 46(16): 6128-34.
[http://dx.doi.org/10.1016/j.polymer.2005.05.068]
[39]
Luo CJ, Stride E, Edirisinghe M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 2012; 45(11): 4669-80.
[http://dx.doi.org/10.1021/ma300656u]
[40]
Yang Q, Li Z, Hong Y, et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci, B, Polym Phys 2004; 42(20): 3721-6.
[http://dx.doi.org/10.1002/polb.20222]
[41]
Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys Status Solidi, A Appl Mater Sci 2007; 204(6): 1830-4.
[http://dx.doi.org/10.1002/pssa.200675301]
[42]
Cui W, Li X, Zhou S, Weng J. Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci 2007; 103(5): 3105-12.
[http://dx.doi.org/10.1002/app.25464]
[43]
Jacobs V, Anandjiwala RD, Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 2010; 115(5): 3130-6.
[http://dx.doi.org/10.1002/app.31396]
[44]
He J-H, Wan Y-Q, Yu J-Y. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym 2008; 9(2): 140-2.
[http://dx.doi.org/10.1007/s12221-008-0023-3]
[45]
Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001; 42(1): 261-72.
[http://dx.doi.org/10.1016/S0032-3861(00)00250-0]
[46]
Amariei N, Manea LR, Bertea AP, Bertea A, Popa A. The influence of polymer solution on the properties of electrospun 3d nanostructures. IOP Conference Series: Materials Science and Engineering. 209: 012092.
[http://dx.doi.org/10.1088/1757-899X/209/1/012092]
[47]
Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer (Guildf) 1999; 40(16): 4585-92.
[http://dx.doi.org/10.1016/S0032-3861(99)00068-3]
[48]
SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad Afifi A. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process 2018; 33(5): 479-98.
[http://dx.doi.org/10.1080/10426914.2017.1388523]
[49]
Angammana CJ, Jayaram SH. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 2011; 47(3): 1109-17.
[http://dx.doi.org/10.1109/TIA.2011.2127431]
[50]
Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 2002; 43(16): 4403-12.
[http://dx.doi.org/10.1016/S0032-3861(02)00275-6]
[51]
Choi JS, Lee SW, Jeong L, et al. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate- co-3-hydroxyvalerate). Int J Biol Macromol 2004; 34(4): 249-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2004.06.001] [PMID: 15374681]
[52]
Huan S, Liu G, Han G, et al. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials (Basel) 2015; 8(5): 2718-34.
[http://dx.doi.org/10.3390/ma8052718]
[53]
Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 2005; 41(3): 423-32.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.10.027]
[54]
Thompson CJ, Chase GG, Yarin AL, Reneker DH. effects of parameters on nanofiber diameter determined from electrospinning model. Polymer (Guildf) 2007; 48(23): 6913-22.
[http://dx.doi.org/10.1016/j.polymer.2007.09.017]
[55]
Li Z, Wang C. One-Dimensional Nanostructures Berlin Springer Briefs in Materials; Springer. 2013.
[http://dx.doi.org/10.1007/978-3-642-36427-3]
[56]
Fallahi D, Rafizadeh M, Mohammadi N, Vahidi B. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions: effect of voltage on jet current and flow rate in electrospinning of PAN. Polym Int 2008; 57(12): 1363-8.
[http://dx.doi.org/10.1002/pi.2482]
[57]
Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 2010; 70(5): 703-18.
[http://dx.doi.org/10.1016/j.compscitech.2010.01.010]
[58]
Saadatmand MM, Yazdanshenas ME, Khajavi R, Mighani F, Toliyat T. Templated roughness on the surface of polyamide nanofibrous mat by mesh electrospinning. Orient J Chem 2017; 33(5): 2356-62.
[http://dx.doi.org/10.13005/ojc/330527]
[59]
Chowdhury M, Stylios G. Effect of Experimental parameters on the morphology of electrospun nylon 6 fibres. IJBAS 2010; 10(06): 9.
[60]
Macossay J, Marruffo A, Rincon R, Eubanks T, Kuang A. Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polym Adv Technol 2007; 18(3): 180-3.
[http://dx.doi.org/10.1002/pat.844]
[61]
Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004; 37(2): 573-8.
[http://dx.doi.org/10.1021/ma0351975]
[62]
Pelipenko J, Kristl J, Janković B, Baumgartner S, Kocbek P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 2013; 456(1): 125-34.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.078] [PMID: 23939535]
[63]
Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: production parameters and potential applications. Polym Test 2020; 90: 106647.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106647]
[64]
Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 2009; 113(4): 2322-30.
[http://dx.doi.org/10.1002/app.30275]
[65]
Daristotle JL, Behrens AM, Sandler AD, Kofinas P. a review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 2016; 8(51): 34951-63.
[http://dx.doi.org/10.1021/acsami.6b12994] [PMID: 27966857]
[66]
Huang Y, Song J, Yang C, Long Y, Wu H. Scalable manufacturing and applications of nanofibers. Mater Today 2019; 28: 98-113.
[http://dx.doi.org/10.1016/j.mattod.2019.04.018]
[67]
Kenry; Lim, C. T. Nanofiber technology: current status and emerging developments. Prog Polym Sci 2017; 70: 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[68]
Saleem H, Trabzon L, Kilic A, Zaidi SJ. Recent advances in nanofibrous membranes: production and applications in water treatment and desalination. Desalination 2020; 478: 114178.
[http://dx.doi.org/10.1016/j.desal.2019.114178]
[69]
Manzanares Palenzuela CL, Pumera M. (Bio)analytical chemistry enabled by 3d printing: sensors and biosensors. Trends Analyt Chem 2018; 103: 110-8.
[http://dx.doi.org/10.1016/j.trac.2018.03.016]
[70]
Tijing LD, Dizon JRC, Ibrahim I, Nisay ARN, Shon HK, Advincula RC. 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 2020; 18: 100486.
[http://dx.doi.org/10.1016/j.apmt.2019.100486]
[71]
Wang X, Jiang M, Zhou Z, Gou J, Hui D III. Printing of polymer matrix composites: A review and prospective. Compos, Part B Eng 2017; 110: 442-58.
[http://dx.doi.org/10.1016/j.compositesb.2016.11.034]
[72]
Kriegel C, Arecchi A, Kit K, McClements DJ, Weiss J. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 2008; 48(8): 775-97.
[http://dx.doi.org/10.1080/10408390802241325] [PMID: 18756399]
[73]
Trovatti E, Freire CSR, Pinto PC, et al. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 2012; 435(1): 83-7.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.002] [PMID: 22266531]
[74]
George A, Sanjay MR, Srisuk R, Parameswaranpillai J, Siengchin S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol 2020; 154: 329-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.120] [PMID: 32179114]
[75]
Nakajima H, Dijkstra P, Loos K. the recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers (Basel) 2017; 9(10): 523.
[http://dx.doi.org/10.3390/polym9100523] [PMID: 30965822]
[76]
Li X, Ding C, Li X, et al. Electronic biopolymers: from molecular engineering to functional devices. Chem Eng J 2020; 397: 125499.
[http://dx.doi.org/10.1016/j.cej.2020.125499]
[77]
Tenchurin TK, Shepelev AD, Belousov SI, Yastremskii EV, Chvaun SN. Production of nanofiber materials based on macromolecular hyaluronic acid by electrospinning. Nanotechnol Russ 2021; 16: 89-95.
[http://dx.doi.org/10.1134/S2635167621010092]
[78]
Jain R, Shetty S, Yadav KS. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J Drug Deliv Sci Technol 2020; 57: 101604.
[http://dx.doi.org/10.1016/j.jddst.2020.101604]
[79]
Tang Y, Lan X, Liang C, et al. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym 2019; 219: 113-20.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.004] [PMID: 31151507]
[80]
Ardeshirzadeh B, Anaraki NA, Irani M, Rad LR, Shamshiri S. Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Mater Sci Eng C 2015; 48: 384-90.
[http://dx.doi.org/10.1016/j.msec.2014.12.039] [PMID: 25579938]
[81]
Hardiansyah A, Tanadi H, Yang M-C, Liu T-Y. Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J Polym Res 2015; 22(4): 59.
[http://dx.doi.org/10.1007/s10965-015-0704-8]
[82]
Rijal NP, Adhikari U, Khanal S, Pai D, Sankar J, Bhattarai N. Magnesium oxide-poly(ε-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater Sci Eng B 2018; 228: 18-27.
[http://dx.doi.org/10.1016/j.mseb.2017.11.006]
[83]
Joanne P, Kitsara M, Boitard S-E, et al. Nanofibrous clinical- grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 2016; 80: 157-68.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.035] [PMID: 26708641]
[84]
Aguirre-Chagala YE, Altuzar V, León-Sarabia E, Tinoco-Magaña JC, Yañez-Limón JM, Mendoza-Barrera C. Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Mater Sci Eng C 2017; 76: 897-907.
[http://dx.doi.org/10.1016/j.msec.2017.03.118] [PMID: 28482605]
[85]
Lee F-Y, Lee D, Lee T-C, et al. Fabrication of multi-layered lidocaine and epinephrine-eluting PLGA/collagen nanofibers: In vitro and in vivo study. Polymers (Basel) 2017; 9(9): 416.
[http://dx.doi.org/10.3390/polym9090416] [PMID: 30965721]
[86]
Sang Q, Williams GR, Wu H, Liu K, Li H, Zhu L-M. Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Mater Sci Eng C 2017; 81: 359-65.
[http://dx.doi.org/10.1016/j.msec.2017.08.007] [PMID: 28887984]
[87]
Choi J, Panthi G, Liu Y, et al. Keratin/poly (vinyl alcohol) blended nanofibers with high optical transmittance. Polymer (Guildf) 2015; 58: 146-52.
[http://dx.doi.org/10.1016/j.polymer.2014.12.052]
[88]
Entekhabi E, Haghbin Nazarpak M, Moztarzadeh F, Sadeghi A. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 2016; 69: 380-7.
[http://dx.doi.org/10.1016/j.msec.2016.06.078]
[89]
Chanda A, Adhikari J, Ghosh A, et al. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 2018; 116: 774-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.099] [PMID: 29777811]
[90]
Huerta-Ángeles G, Knotková K, Knotek P, et al. Aligned nanofibres made of poly(3-hydroxybutyrate) grafted to hyaluronan for potential healthcare applications. J Mater Sci Mater Med 2018; 29(3): 32.
[http://dx.doi.org/10.1007/s10856-018-6045-5] [PMID: 29546462]
[91]
Mutlu G, Calamak S, Ulubayram K, Guven E. Curcumin-loaded electrospun phbv nanofibers as potential wound-dressing material. J Drug Deliv Sci Technol 2018; 43: 185-93.
[http://dx.doi.org/10.1016/j.jddst.2017.09.017]
[92]
Baradaran-Rafii A, Biazar E, Heidari-Keshel S. Cellular response of limbal stem cells on phbv/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int J Polym Mater 2015; 64(17): 879-87.
[http://dx.doi.org/10.1080/00914037.2015.1030658]
[93]
Li X, Liu Y, Zhang J, You R, Qu J, Li M. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing. Mater Sci Eng C 2017; 72: 394-404.
[http://dx.doi.org/10.1016/j.msec.2016.11.085] [PMID: 28024602]
[94]
Du J, Zhu T, Yu H, et al. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl Surf Sci 2018; 447: 269-78.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.077]
[95]
Sheikh FA, Ju HW, Lee JM, et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine 2015; 11(3): 681-91.
[http://dx.doi.org/10.1016/j.nano.2014.11.007] [PMID: 25555351]
[96]
Ahn S, Chantre CO, Gannon AR, et al. Soy Protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv Healthc Mater 2018; 7(9): e1701175.
[http://dx.doi.org/10.1002/adhm.201701175] [PMID: 29359866]
[97]
Waghmare VS, Wadke PR, Dyawanapelly S, Deshpande A, Jain R, Dandekar P. Starch based nanofibrous scaffolds for wound healing applications. Bioact Mater 2017; 3(3): 255-66.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.006] [PMID: 29744465]
[98]
Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym 2016; 140: 104-12.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.012] [PMID: 26876833]
[99]
Çanga EM, Dudak FC. Characterization of cellulose acetate/gum arabic fibers loaded with extract of Viburnum opulus l. fruit. Lebensm Wiss Technol 2019; 110: 247-54.
[http://dx.doi.org/10.1016/j.lwt.2019.04.085]
[100]
Aziz S, Hosseinzadeh L, Arkan E, Azandaryani AH. Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application. Int J Polym Mater 2019; 68(11): 639-46.
[http://dx.doi.org/10.1080/00914037.2018.1482464]
[101]
Ansari AQ, Ansari SJ, Khan MQ, et al. Electrospun zein nanofibers as drug carriers for controlled delivery of levodopa in parkinson syndrome. Mater Res Express 2019; 6(7): 075405.
[http://dx.doi.org/10.1088/2053-1591/ab16bf]
[102]
Vogt L, Liverani L, Roether JA, Boccaccini AR. Electrospun zein fibers incorporating poly(glycerol sebacate) for soft tissue engineering. Nanomaterials (Basel) 2018; 8(3): 150.
[http://dx.doi.org/10.3390/nano8030150] [PMID: 29518041]
[103]
Asadi N, Del Bakhshayesh AR, Davaran S, Akbarzadeh A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater Chem Phys 2020; 242: 122528.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122528]
[104]
Manoukian OS, Sardashti N, Stedman T, et al. Encyclopedia of Biomedical Engineering.Biomaterials for tissue engineering and regenerative medicine. Elsevier Inc 2019; pp. 462-82.
[105]
Tchobanian A, Van Oosterwyck H, Fardim P. Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr Polym 2019; 205: 601-25.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.039] [PMID: 30446147]
[106]
Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS. Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 2021; 173: 580-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.156] [PMID: 33513421]
[107]
Radhika Rajasree SR, Gobalakrishnan M, Aranganathan L, Karthih MG. Fabrication and characterization of chitosan based collagen/gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications. Mater Sci Eng C 2020; 107: 110270.
[http://dx.doi.org/10.1016/j.msec.2019.110270] [PMID: 31761224]
[108]
Silva SS, Rodrigues LC, Fernandes EM, Reis RL. Fundamentals on biopolymers and global demand.Biopolymer Membranes and Films - Health, Food, Environment, and Energy Applications Elsevier Inc. 2020; pp. 3-34.
[109]
Del Bakhshayesh AR, Asadi N, Alihemmati A, et al. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 2019; 13(1): 85.
[http://dx.doi.org/10.1186/s13036-019-0209-9] [PMID: 31754372]
[110]
Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for regenerative medicine: Historical perspectives and current trends.Advances in Experimental Medicine and Biology - Cell Biology and Translational Medicine Springer Nature. 2018; pp. 1-19.
[http://dx.doi.org/10.1007/5584_2018_278]
[111]
Suesca E, Dias AMA, Braga MEM, de Sousa HC, Fontanilla MR. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Mater Sci Eng C 2017; 77: 333-41.
[http://dx.doi.org/10.1016/j.msec.2017.03.243] [PMID: 28532037]
[112]
Archana D, Upadhyay L, Tewari RP, Dutta J, Huang YB, Dutta PK. Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications. Indian J Biotechnol 2013; 12(4): 475-82.
[113]
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Popat KC, Mantovani D, Moraes ÂM. Polysaccharide-based tissue-engineered vascular patches. Mater Sci Eng C 2019; 104: 109973.
[http://dx.doi.org/10.1016/j.msec.2019.109973] [PMID: 31499972]
[114]
Coimbra P, Ferreira P, de Sousa HC, et al. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int J Biol Macromol 2011; 48(1): 112-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.006] [PMID: 20955729]
[115]
Martins JG, Camargo SEA, Bishop TT, Popat KC, Kipper MJ, Martins AF. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydr Polym 2018; 197: 47-56.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.062] [PMID: 30007637]
[116]
Xue F, Zhang H, Hu J, Liu Y. Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. Carbohydr Polym 2021; 259: 117757.
[http://dx.doi.org/10.1016/j.carbpol.2021.117757] [PMID: 33674011]
[117]
Biranje S, Madiwale P, Adivarekar RV. Porous electrospun casein/PVA nanofibrous mat for its potential application as wound dressing material. J Porous Mater 2019; 26(1): 29-40.
[http://dx.doi.org/10.1007/s10934-018-0602-7]
[118]
Niu Y, Stadler FJ, Fu M. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat. Mater Sci Eng C 2021; 121: 111858.
[http://dx.doi.org/10.1016/j.msec.2020.111858] [PMID: 33579490]
[119]
Ghafoor B, Aleem A, Najabat Ali M, Mir M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J Drug Deliv Sci Technol 2018; 48: 82-7.
[http://dx.doi.org/10.1016/j.jddst.2018.09.005]
[120]
Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater Sci Eng C 2020; 111: 110756.
[http://dx.doi.org/10.1016/j.msec.2020.110756] [PMID: 32279775]
[121]
Mohammadian F, Eatemadi A. Drug loading and delivery using nanofibers scaffolds. Artif Cells Nanomed Biotechnol 2017; 45(5): 881-8.
[http://dx.doi.org/10.1080/21691401.2016.1185726] [PMID: 27188394]
[122]
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240: 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[123]
Patel GC, Yadav BK. Polymeric Nanofibers for Controlled Drug Delivery Applications.Organic Materials as Smart Nanocarriers for Drug Delivery Elsevier. 2018; pp. 147-75.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00004-X]
[124]
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012; 64(9): 866-84.
[http://dx.doi.org/10.1016/j.addr.2012.01.020] [PMID: 22349241]
[125]
Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan W-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnology 2018; 16(1): 74.
[http://dx.doi.org/10.1186/s12951-018-0398-2] [PMID: 30243297]
[126]
Kojima C. Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 2010; 7(3): 307-19.
[http://dx.doi.org/10.1517/17425240903530651] [PMID: 20095875]
[127]
Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 2015; 125: 75-84.
[http://dx.doi.org/10.1016/j.ces.2014.08.046] [PMID: 25684779]
[128]
Qu T, Wang A, Yuan J, Gao Q. Preparation of an amphiphilic triblock copolymer with pH- and thermo-responsiveness and self-assembled micelles applied to drug release. J Colloid Interface Sci 2009; 336(2): 865-71.
[http://dx.doi.org/10.1016/j.jcis.2009.04.001] [PMID: 19464019]
[129]
Langer R, Peppas N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J Macromol Sci 1983; 23(1): 61-126.
[http://dx.doi.org/10.1080/07366578308079439]
[130]
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019; 87(3): 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[131]
Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000; 50(1): 27-46.
[http://dx.doi.org/10.1016/S0939-6411(00)00090-4] [PMID: 10840191]
[132]
Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 2010; 67(3): 217-23.
[PMID: 20524422]
[133]
Kamble P, Sadarani B, Majumdar A, Bhullar S. Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J Drug Deliv Sci Technol 2017; 41: 124-33.
[http://dx.doi.org/10.1016/j.jddst.2017.07.003]
[134]
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484(1-2): 57-74.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.043] [PMID: 25701683]
[135]
Thakkar S, Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur J Pharm Sci 2017; 107: 148-67.
[http://dx.doi.org/10.1016/j.ejps.2017.07.001] [PMID: 28690099]
[136]
Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006; 12(5): 1197-211.
[http://dx.doi.org/10.1089/ten.2006.12.1197] [PMID: 16771634]
[137]
Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 2010; 11(1): 014108.
[http://dx.doi.org/10.1088/1468-6996/11/1/014108] [PMID: 27877323]
[138]
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2006; 1(1): 15-30.
[http://dx.doi.org/10.2147/nano.2006.1.1.15] [PMID: 17722259]
[139]
Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 2018; 11(1): 5.
[http://dx.doi.org/10.3390/pharmaceutics11010005] [PMID: 30586852]
[140]
Sun H, Meng F, Dias AA, Hendriks M, Feijen J, Zhong Z. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications. Biomacromolecules 2011; 12(6): 1937-55.
[http://dx.doi.org/10.1021/bm200043u] [PMID: 21469742]
[141]
Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 2011; 6: 993-1003.
[PMID: 21720511]
[142]
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Mater Sci Eng C 2020; 109: 110521.
[http://dx.doi.org/10.1016/j.msec.2019.110521] [PMID: 32228899]
[143]
Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I. Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 2015; 132(3): 41286.
[http://dx.doi.org/10.1002/app.41286]
[144]
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65(1): 104-20.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863]
[145]
Franco L, Valle JL, Puiggalí J. mart Systems Related to Polypeptide Sequences. Laboratory of Synthetic Polymers, Structure and Properties (PSEP), Chemical Engineering Department, Polytechnic University of Catalonia (UPC), Barcelona, Spain. S AIMS Mater Sci 2016; 3(1): 289-323.
[http://dx.doi.org/10.3934/matersci.2016.1.289]
[146]
Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 2017; 155: 208-17.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.073] [PMID: 27702506]
[147]
Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63(6): 470-91.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[148]
Roberts MS, Mohammed Y, Pastore MN, et al. Topical and cutaneous delivery using nanosystems. J Control Release 2017; 247: 86-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.022] [PMID: 28024914]
[149]
Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2012; 33(5): 1607-17.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[150]
Matalanis A, Jones OG, McClements DJ. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll 2011; 25(8): 1865-80.
[http://dx.doi.org/10.1016/j.foodhyd.2011.04.014]
[151]
Talebian S, Foroughi J, Wade SJ, et al. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv Mater 2018; 30(31): e1706665.
[http://dx.doi.org/10.1002/adma.201706665] [PMID: 29756237]
[152]
Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[153]
Zylberberg C, Matosevic S. Bioengineered liposome-scaffold composites as therapeutic delivery systems. Ther Deliv 2017; 8(6): 425-45.
[http://dx.doi.org/10.4155/tde-2017-0014] [PMID: 28530145]
[154]
Ngawhirunpat T, Opanasopit P, Rojanarata T, Akkaramongkolporn P, Ruktanonchai U, Supaphol P. Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent. Pharm Dev Technol 2009; 14(1): 70-9.
[http://dx.doi.org/10.1080/10837450802409420] [PMID: 18800295]
[155]
Opanasopit P, Sila-On W, Rojanarata T, Ngawhirunpat T. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm Dev Technol 2013; 18(5): 1140-7.
[http://dx.doi.org/10.3109/10837450.2012.727004] [PMID: 23033938]
[156]
Rahmani M, Arbabi Bidgoli S, Rezayat SM. Electrospun polymeric nanofibers for transdermal drug delivery. Nanomed J 2017; 4(2): 61-70.
[157]
Shen X, Xu Q, Xu S, Li J, Zhang N, Zhang L. Preparation and transdermal diffusion evaluation of the prazosin hydrochloride-loaded electrospun poly(vinyl alcohol) fiber mats. J nanosci nanotech 2014; 14(7): 5258-65.
[158]
Cho S, Lowe L, Hamilton TA, Fisher GJ, Voorhees JJ, Kang S. Long-term treatment of photoaged human skin with topical retinoic acid improves epidermal cell atypia and thickens the collagen band in papillary dermis. J Am Acad Dermatol 2005; 53(5): 769-74.
[http://dx.doi.org/10.1016/j.jaad.2005.06.052] [PMID: 16243124]
[159]
Kataria K, Gupta A, Rath G, Mathur RB, Dhakate SR. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 2014; 469(1): 102-10.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.047] [PMID: 24751731]
[160]
Andreu V, Mendoza G, Arruebo M, Irusta S. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials (Basel) 2015; 8(8): 5154-93.
[http://dx.doi.org/10.3390/ma8085154] [PMID: 28793497]
[161]
Zahedi P, Karami Z, Rezaeian I, et al. Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends. J Appl Polym Sci 2012; 124(5): 4174-83.
[http://dx.doi.org/10.1002/app.35372]
[162]
Caramella CM, Rossi S, Ferrari F, Bonferoni MC, Sandri G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev 2015; 92: 39-52.
[http://dx.doi.org/10.1016/j.addr.2015.02.001] [PMID: 25683694]
[163]
Gowthamarajan K, Jawahar N, Wake P, Jain K, Sood S. Development of buccal tablets for curcumin using anacardium occidentale gum. Carbohydr Polym 2012; 88(4): 1177-83.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.072]
[164]
Sharma A, Gupta A, Rath G, Goyal A, Mathur RB, Dhakate SR. Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. J Mater Chem B Mater Biol Med 2013; 1(27): 3410-8.
[http://dx.doi.org/10.1039/c3tb20487a] [PMID: 32260931]
[165]
Pérez-González GL, Villarreal-Gómez LJ, Serrano-Medina A, Torres-Martínez EJ, Cornejo-Bravo JM. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles. Int J Nanomedicine 2019; 14: 5271-85.
[http://dx.doi.org/10.2147/IJN.S193328] [PMID: 31409989]
[166]
Potrč T, Baumgartner S, Roškar R, et al. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. Eur J Pharm Sci 2015; 75: 101-13.
[http://dx.doi.org/10.1016/j.ejps.2015.04.004] [PMID: 25910438]
[167]
Grewal H, Dhakate SR, Goyal AK, Markandeywar TS, Malik B, Rath G. Development of transmucosal patch using nanofibers. Artif Cells Blood Substit Immobil Biotechnol 2012; 40(1-2): 146-50.
[http://dx.doi.org/10.3109/10731199.2011.637924] [PMID: 22192072]
[168]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[169]
Yan E, Fan Y, Sun Z, et al. Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mater Sci Eng C 2014; 41: 217-23.
[http://dx.doi.org/10.1016/j.msec.2014.04.053] [PMID: 24907754]
[170]
Pour Khalili N, Moradi R, Kavehpour P, Islamzada F. Boron nitride nanotube clusters and their hybrid nanofibers with polycaprolacton: thermo-ph sensitive drug delivery functional materials. Eur Polym J 2020; 127: 109585.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109585]
[171]
Wang C, Ma C, Wu Z, et al. Enhanced bioavailability and anticancer effect of curcumin-loaded electrospun nanofiber: In vitro and in vivo study. Nanoscale Res Lett 2015; 10(1): 439.
[http://dx.doi.org/10.1186/s11671-015-1146-2] [PMID: 26573930]
[172]
Zhou H, Liu X, Wu F, et al. Preparation, Characterization, and antitumor evaluation of electrospun resveratrol loaded nanofibers. J Nanomater 2016; 2016: 5918462.
[http://dx.doi.org/10.1155/2016/5918462]
[173]
Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005; 6(4): 2017-24.
[http://dx.doi.org/10.1021/bm0501149] [PMID: 16004440]
[174]
Hu J, Kai D, Ye H, et al. Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C 2017; 70(Pt 2): 1089-94.
[http://dx.doi.org/10.1016/j.msec.2016.03.035] [PMID: 27772709]
[175]
Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules 2009; 10(5): 1084-9.
[http://dx.doi.org/10.1021/bm8012499] [PMID: 19323510]
[176]
Chew SY, Mi R, Hoke A, Leong KW. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater 2007; 17(8): 1288-96.
[http://dx.doi.org/10.1002/adfm.200600441] [PMID: 18618021]
[177]
Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly(ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers (Basel) 2016; 8(2): 54.
[http://dx.doi.org/10.3390/polym8020054] [PMID: 30979150]
[178]
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol 2016; 49: 10-24.
[http://dx.doi.org/10.1016/j.matbio.2015.06.003] [PMID: 26163349]
[179]
Tallawi M, Rosellini E, Barbani N, et al. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12(108): 20150254.
[http://dx.doi.org/10.1098/rsif.2015.0254] [PMID: 26109634]
[180]
Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol 2018; 115: 243-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.045] [PMID: 29654862]
[181]
Saadatkish N, Nouri Khorasani S, Morshed M, et al. A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res A 2018; 106(9): 2394-401.
[http://dx.doi.org/10.1002/jbm.a.36431] [PMID: 29637736]
[182]
Chen J, Yu M, Guo B, Ma PX, Yin Z. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci 2018; 514: 517-27.
[http://dx.doi.org/10.1016/j.jcis.2017.12.062] [PMID: 29289734]
[183]
Abdal-Hay A, Hussein KH, Casettari L, Khalil KA, Hamdy AS. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Mater Sci Eng C 2016; 60: 143-50.
[http://dx.doi.org/10.1016/j.msec.2015.11.024] [PMID: 26706517]
[184]
Tian L, Prabhakaran MP, Hu J, Chen M, Besenbacher F, Ramakrishna S. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids Surf B Biointerfaces 2016; 145: 420-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.032] [PMID: 27232305]
[185]
Toledo ALMM, Ramalho BS, Picciani PHS, Baptista LS, Martinez AMB, Dias ML. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. Inter J Polym Mater Polym Biomater 2020; 70(17): 1-13.
[186]
Mochane MJ, Motsoeneng TS, Sadiku ER, Mokhena TC, Sefadi JS. morphology and properties of electrospun pcl and its composites for medical applications: a mini review. Appl Sci (Basel) 2019; 9(11): 2205.
[http://dx.doi.org/10.3390/app9112205]
[187]
Mondal S. Review on nanocellulose polymer nanocomposites. Polym Plast Technol Eng 2018; 57(13): 1377-91.
[http://dx.doi.org/10.1080/03602559.2017.1381253]
[188]
Han J, Ma B, Liu H, et al. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. J Biomed Mater Res A 2018; 106(12): 3099-110.
[http://dx.doi.org/10.1002/jbm.a.36502] [PMID: 30325096]
[189]
Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 2019; 97: 325-35.
[http://dx.doi.org/10.1016/j.msec.2018.12.027] [PMID: 30678918]
[190]
Serio F, Miola M, Vernè E, Pisignano D, Boccaccini AR, Liverani L. Electrospun filaments embedding bioactive glass particles with ion release and enhanced mineralization. Nanomaterials (Basel) 2019; 9(2): 182.
[http://dx.doi.org/10.3390/nano9020182] [PMID: 30717161]
[191]
Tong H-W, Wang M, Li Z-Y, Lu WW. Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater 2010; 5(5): 054111.
[http://dx.doi.org/10.1088/1748-6041/5/5/054111] [PMID: 20876957]
[192]
Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Mater Sci Eng C 2020; 107: 110347.
[http://dx.doi.org/10.1016/j.msec.2019.110347] [PMID: 31761152]
[193]
Saburi E, Islami M, Hosseinzadeh S, et al. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers. Gene 2019; 696: 72-9.
[http://dx.doi.org/10.1016/j.gene.2019.02.028] [PMID: 30772518]
[194]
Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer (Guildf) 2018; 142: 244-55.
[http://dx.doi.org/10.1016/j.polymer.2018.03.045]
[195]
Patel KD, Kim T-H, Mandakhbayar N, et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 2020; 108: 97-110.
[http://dx.doi.org/10.1016/j.actbio.2020.03.012] [PMID: 32165193]
[196]
Sanfelice RC, Mercante LA, Pavinatto A, et al. Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J Mater Sci 2017; 52(4): 1919-29.
[http://dx.doi.org/10.1007/s10853-016-0481-8]
[197]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[198]
Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev 2011; 40(7): 3391-404.
[http://dx.doi.org/10.1039/c0cs00180e] [PMID: 21629885]
[199]
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[200]
Lee D, Heo DN, Lee SJ, et al. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl Surf Sci 2018; 432: 300-7.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.237]
[201]
Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med 2018; 29(9): 134.
[http://dx.doi.org/10.1007/s10856-018-6144-3] [PMID: 30120577]
[202]
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7(5): 1700845.
[http://dx.doi.org/10.1002/adhm.201700845] [PMID: 29280314]
[203]
Nazari H, Heirani-Tabasi A, Hajiabbas M, et al. Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering. J Cell Biochem 2020; 121(4): 2981-93.
[http://dx.doi.org/10.1002/jcb.29553] [PMID: 31724234]
[204]
Pearce ME, Melanko JB, Salem AK. Multifunctional nanorods for biomedical applications. Pharm Res 2007; 24(12): 2335-52.
[http://dx.doi.org/10.1007/s11095-007-9380-7] [PMID: 17684708]
[205]
Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B Mater Biol Med 2017; 5(24): 4660-72.
[http://dx.doi.org/10.1039/C7TB00518K] [PMID: 32264308]
[206]
Zou Y, Zhang L, Yang L, et al. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J Control Release 2018; 273: 160-79.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.023] [PMID: 29382547]
[207]
Hidalgo Pitaluga L, Trevelin Souza M, Dutra Zanotto E, Santocildes Romero ME, Hatton PV. Electrospun F18 Bioactive Glass/PCL-Poly (ε-caprolactone)-Membrane for Guided Tissue Regeneration. Materials (Basel) 2018; 11(3): 400.
[http://dx.doi.org/10.3390/ma11030400] [PMID: 29517988]
[208]
Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C 2019; 103: 109731.
[http://dx.doi.org/10.1016/j.msec.2019.05.016] [PMID: 31349472]
[209]
Sarker B, Hum J, Nazhat SN, Boccaccini AR. Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater 2015; 4(2): 176-94.
[http://dx.doi.org/10.1002/adhm.201400302] [PMID: 25116596]
[210]
Wang Y, Cui W, Chou J, Wen S, Sun Y, Zhang H. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf B Biointerfaces 2018; 172: 90-7.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.032] [PMID: 30142529]
[211]
Park S, Kim J, Lee M-K, et al. Fabrication of strong, bioactive vascular grafts with pcl/collagen and pcl/silica bilayers for small-diameter vascular applications. Mater Des 2019; 181: 108079.
[http://dx.doi.org/10.1016/j.matdes.2019.108079]
[212]
Lin Y, Zhang L, Liu NQ, et al. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine 2019; 14: 5831-48.
[http://dx.doi.org/10.2147/IJN.S210509] [PMID: 31534327]
[213]
Tu T, Shen Y, Wang X, et al. Tendon ECM modified bioactive electrospun fibers promote msc tenogenic differentiation and tendon regeneration. Appl Mater Today 2020; 18: 100495.
[http://dx.doi.org/10.1016/j.apmt.2019.100495]
[214]
Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 2019; 9(1): 6293.
[http://dx.doi.org/10.1038/s41598-019-42627-7] [PMID: 31000735]
[215]
Wen M, Zhi D, Wang L, et al. Local delivery of dual microRNAs in trilayered electrospun grafts for vascular regeneration. ACS Appl Mater Interfaces 2020; 12(6): 6863-75.
[http://dx.doi.org/10.1021/acsami.9b19452] [PMID: 31958006]
[216]
Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-poly(caprolactone) nanofibers for skin repair. J Mater Chem B Mater Biol Med 2017; 5(9): 1822-33.
[http://dx.doi.org/10.1039/C6TB03223K] [PMID: 28529754]
[217]
Wang J, Tian L, Luo B, et al. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids Surf B Biointerfaces 2018; 169: 356-65.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.021] [PMID: 29803151]
[218]
Babitha S, Annamalai M, Dykas MM, et al. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering. J Tissue Eng Regen Med 2018; 12(4): 991-1001.
[http://dx.doi.org/10.1002/term.2563] [PMID: 28871656]
[219]
Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. Effect of incorporating Elaeagnus angustifolia extract in pcl-peg-pcl nanofibers for bone tissue engineering. Front Chem Sci Eng 2019; 13(1): 108-19.
[http://dx.doi.org/10.1007/s11705-018-1742-7]
[220]
Shirani K, Nourbakhsh MS, Rafienia M. electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering. Int J Polym Mater 2019; 68(10): 607-15.
[http://dx.doi.org/10.1080/00914037.2018.1482461]
[221]
Şafak Ş, Vatan Ö. In vitro evaluation of electrospun polysaccharide based nanofibrous mats as surgical adhesion barriers. Textile Apparel 2020; 30(2): 99-107.