Preclinical Assessment of [68Ga]Ga-Cell Death Indicator (CDI): A Novel hsp90 Ligand for Positron Emission Tomography of Cell Death

Page: [184 - 193] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background:4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid (GSAO) when conjugated with a bifunctional chelator 2,2'-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-yl)oxy)-4- oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODAGA) (hereafter referred to as Cell Death Indicator [CDI]), enters dead and dying cells and binds to 90kDa heat shock proteins (hsp90).

Objective: This study assesses stability, biodistribution, imaging, and radiation dosimetry of [68Ga]- Ga-CDI for positron emission tomography (PET).

Methods: Preparation of [68Ga]Ga-CDI was performed as previously described. Product stability and stability in plasma were assessed using high-performance liquid chromatography. Biodistribution and imaging were conducted in ten healthy male Lewis rats at 1 and 2 h following intravenous [68Ga]Ga-CDI injection. Human radiation dosimetry was estimated by extrapolation for a standard reference man and calculated with OLINDA/EXM 1.1.

Results: Radiochemical purity of [68Ga]Ga-CDI averaged 93.8% in the product and 86.7% in plasma at 4 h post-synthesis. The highest concentration of [68Ga]Ga-CDI is observed in the kidneys; [68Ga]Ga-CDI is excreted in the urine, and mean retained activity was 32.4% and 21.4% at 1 and 2 h post-injection. Lower concentrations of [68Ga]Ga-CDI were present in the small bowel and liver. PET CT was concordant and additionally demonstrated focal growth plate uptake. The effective dose for [68Ga]Ga-CDI is 2.16E-02 mSv/MBq, and the urinary bladder wall received the highest dose (1.65E-02 mSv/Mbq).

Conclusion: [68Ga] Ga-CDI is stable and has favourable biodistribution, imaging, and radiation dosimetry for imaging of dead and dying cells. Human studies are underway.

Keywords: Cell death, apoptosis, positron-emission tomography, positron emission tomography computed tomography, gallium- 68, GSAO.

Graphical Abstract

[1]
Don, A.S.; Kisker, O.; Dilda, P.; Donoghue, N.; Zhao, X.; Decollogne, S.; Creighton, B.; Flynn, E.; Folkman, J.; Hogg, P.J. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell, 2003, 3(5), 497-509.
[http://dx.doi.org/10.1016/S1535-6108(03)00109-0] [PMID: 12781367]
[2]
Park, D.; Don, A.S.; Massamiri, T.; Karwa, A.; Warner, B.; MacDonald, J.; Hemenway, C.; Naik, A.; Kuan, K.T.; Dilda, P.J.; Wong, J.W.; Camphausen, K.; Chinen, L.; Dyszlewski, M.; Hogg, P.J. Noninvasive imaging of cell death using an Hsp90 ligand. J. Am. Chem. Soc., 2011, 133(9), 2832-2835.
[http://dx.doi.org/10.1021/ja110226y] [PMID: 21322555]
[3]
Csermely, P.; Schnaider, T.; Soti, C.; Prohászka, Z.; Nardai, G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther., 1998, 79(2), 129-168.
[http://dx.doi.org/10.1016/S0163-7258(98)00013-8] [PMID: 9749880]
[4]
Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549.
[http://dx.doi.org/10.1038/nrc2887] [PMID: 20651736]
[5]
Park, D.; Xie, B.W.; Van Beek, E.R.; Blankevoort, V.; Que, I.; Löwik, C.W.; Hogg, P.J. Optical imaging of treatment-related tumor cell death using a heat shock protein-90 alkylator. Mol. Pharm., 2013, 10(10), 3882-3891.
[http://dx.doi.org/10.1021/mp4003464] [PMID: 23968358]
[6]
National Nuclear Data Center Nuclear Decay Data in the MIRD Format. Available from: https://www.nndc.bnl.gov/nudat2/mird/
[7]
Ho Shon, I.; Kumar, D.; Sathiakumar, C.; Berghofer, P.; Van, K.; Chicco, A.; Hogg, P.J. Biodistribution and imaging of an hsp90 ligand labelled with 111In and 67Ga for imaging of cell death. EJNMMI Res., 2020, 10(1), 4.
[http://dx.doi.org/10.1186/s13550-020-0590-x] [PMID: 31960173]
[8]
Ho Shon, I.; Gotsbacher, M.P.; Guille, J.; Kumar, D.; Codd, R.; Hogg, P. Preparation of a Dithiol-Reactive Probe for PET Imaging of Cell Death. In: Functional Disulphide Bonds: Methods and Protocols; Springer Nature, 2019; 1967, pp. 295-304.
[http://dx.doi.org/10.1007/978-1-4939-9187-7_19]
[9]
Ho Shon, I.; Gotsbacher, M.P.; Guille, J.; Kumar, D.; Codd, R.; Hogg, P. Preparation of a dithiol-reactive probe for PET imaging of cell death. Methods Mol. Biol., 2019, 1967, 295-304.
[http://dx.doi.org/10.1007/978-1-4939-9187-7_19] [PMID: 31069779]
[10]
Dick, L.J.; Gray, A.; Ram, A.; Hume, A.; Parris, C.; Hogg, P.J.; Elliott, M.A.; Ford, S.J.; Halbert, G.W. Elimination of the antimicrobial action of the organoarsenical cancer therapeutic, 4-(N-(S-glutathionylacetyl)amino) phenylarsonous acid, before finished product sterility testing. J. Pharm. Pharmacol., 2013, 65(11), 1664-1669.
[http://dx.doi.org/10.1111/jphp.12143] [PMID: 24102542]
[11]
Stabin, M.G. Fundamentals of Nuclear Medicine Dosimetry; Springer: New York, 2008.
[12]
Cristy, M.; Eckerman, K. F. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male; United States. 1987, p. 46.
[http://dx.doi.org/10.2172/6233638]
[13]
Blankenberg, F.G.; Strauss, H.W. Nuclear medicine applications in molecular imaging. J. Magn. Reson. Imaging, 2002, 16(4), 352-361.
[http://dx.doi.org/10.1002/jmri.10171] [PMID: 12353251]
[14]
Kemerink, G.J.; Liu, X.; Kieffer, D.; Ceyssens, S.; Mortelmans, L.; Verbruggen, A.M.; Steinmetz, N.D.; Vanderheyden, J.L.; Green, A.M.; Verbeke, K. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application. J. Nucl. Med., 2003, 44(6), 947-952.
[PMID: 12791824]
[15]
Belhocine, T.; Steinmetz, N.; Hustinx, R.; Bartsch, P.; Jerusalem, G.; Seidel, L.; Rigo, P.; Green, A. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res., 2002, 8(9), 2766-2774.
[PMID: 12231515]
[16]
Wuest, M.; Perreault, A.; Richter, S.; Knight, J.C.; Wuest, F. Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis, 2019, 24(3-4), 221-244.
[http://dx.doi.org/10.1007/s10495-019-01523-1] [PMID: 30684144]
[17]
Elvas, F.; Stroobants, S.; Wyffels, L. Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis, 2017, 22(8), 971-987.
[http://dx.doi.org/10.1007/s10495-017-1384-0] [PMID: 28623512]
[18]
Rix, A.; Drude, N.I.; Mrugalla, A.; Baskaya, F.; Pak, K.Y.; Gray, B.; Kaiser, H.J.; Tolba, R.H.; Fiegle, E.; Lederle, W.; Mottaghy, F.M.; Kiessling, F. Assessment of chemotherapy-induced organ damage with Ga-68 labeled duramycin. Mol. Imaging Biol., 2019.
[http://dx.doi.org/10.1007/s11307-019-01417-3] [PMID: 31396770]
[19]
Witney, T.H.; Hoehne, A.; Reeves, R.E.; Ilovich, O.; Namavari, M.; Shen, B.; Chin, F.T.; Rao, J.; Gambhir, S.S. A systematic comparison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment. Clin. Cancer Res., 2015, 21(17), 3896-3905.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3176] [PMID: 25972517]
[20]
Challapalli, A.; Kenny, L.M.; Hallett, W.A.; Kozlowski, K.; Tomasi, G.; Gudi, M.; Al-Nahhas, A.; Coombes, R.C.; Aboagye, E.O. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J. Nucl. Med., 2013, 54(9), 1551-1556.
[http://dx.doi.org/10.2967/jnumed.112.118760] [PMID: 23949910]
[21]
Dubash, S.R.; Merchant, S.; Heinzmann, K.; Mauri, F.; Lavdas, I.; Inglese, M.; Kozlowski, K.; Rama, N.; Masrour, N.; Steel, J.F.; Thornton, A.; Lim, A.K.; Lewanski, C.; Cleator, S.; Coombes, R.C.; Kenny, L.; Aboagye, E.O. Clinical translation of [18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(13), 2285-2299.
[http://dx.doi.org/10.1007/s00259-018-4098-9] [PMID: 30259091]
[22]
Doss, M.; Kolb, H.C.; Walsh, J.C.; Mocharla, V.; Fan, H.; Chaudhary, A.; Zhu, Z.; Alpaugh, R.K.; Lango, M.N.; Yu, J.Q. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J. Nucl. Med., 2013, 54(12), 2087-2092.
[http://dx.doi.org/10.2967/jnumed.113.119800] [PMID: 24136934]
[23]
Wang, X.; Feng, H.; Zhao, S.; Xu, J.; Wu, X.; Cui, J.; Zhang, Y.; Qin, Y.; Liu, Z.; Gao, T.; Gao, Y.; Zeng, W. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget, 2017, 8(12), 20476-20495.
[http://dx.doi.org/10.18632/oncotarget.14730] [PMID: 28108738]
[24]
Rybczynska, A.A.; Boersma, H.H.; de Jong, S.; Gietema, J.A.; Noordzij, W.; Dierckx, R.A.J.O.; Elsinga, P.H.; van Waarde, A. Avenues to molecular imaging of dying cells: Focus on cancer. Med. Res. Rev., 2018, 38(6), 1713-1768.
[http://dx.doi.org/10.1002/med.21495] [PMID: 29528513]
[25]
Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; Krause, B.J.; Mottaghy, F.M.; Schöder, H.; Sunderland, J.; Wan, S.; Wester, H.J.; Fanti, S.; Herrmann, K. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(6), 1014-1024.
[http://dx.doi.org/10.1007/s00259-017-3670-z] [PMID: 28283702]
[26]
Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; De Cristoforo, C.; Chiti, A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(10), 2004-2010.
[http://dx.doi.org/10.1007/s00259-010-1512-3] [PMID: 20596866]
[27]
Gaber, S.; Fischerauer, E.E.; Fröhlich, E.; Janezic, G.; Amerstorfer, F.; Weinberg, A.M. Chondrocyte apoptosis enhanced at the growth plate: a physeal response to a diaphyseal fracture. Cell Tissue Res., 2009, 335(3), 539-549.
[http://dx.doi.org/10.1007/s00441-008-0735-0] [PMID: 19089454]
[28]
Negroni, A.; Cucchiara, S.; Stronati, L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm., 2015, 2015, 250762.
[http://dx.doi.org/10.1155/2015/250762] [PMID: 26483605]
[29]
Liu, L.U.; Holt, P.R.; Krivosheyev, V.; Moss, S.F. Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut, 1999, 45(1), 45-50.
[http://dx.doi.org/10.1136/gut.45.1.45] [PMID: 10369703]
[30]
Mattsson, S.; Johansson, L.; Leide Svegborn, S.; Liniecki, J.; Noßke, D.; Riklund, K.Å.; Stabin, M.; Taylor, D.; Bolch, W.; Carlsson, S.; Eckerman, K.; Giussani, A.; Söderberg, L.; Valind, S. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann. ICRP, 2015, 44(2)(Suppl.), 7-321.
[http://dx.doi.org/10.1177/0146645314558019] [PMID: 26069086]
[31]
Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; Stroobants, S.; Delbeke, D.; Donohoe, K.J.; Holbrook, S.; Graham, M.M.; Testanera, G.; Hoekstra, O.S.; Zijlstra, J.; Visser, E.; Hoekstra, C.J.; Pruim, J.; Willemsen, A.; Arends, B.; Kotzerke, J.; Bockisch, A.; Beyer, T.; Chiti, A.; Krause, B.J. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 328-354.
[http://dx.doi.org/10.1007/s00259-014-2961-x] [PMID: 25452219]
[32]
Ho Shon, I.; Hennessy, T.; Guille, J.; Gotsbacher, M.; Horsfield, M.; McBride, B.; Codd, R.; Philip, H. A first in human study of Cell Death Indicator positron emission tomography (CDI-PET) - interim analysis. J. Nucl. Med., 2020, 61(Suppl. 1), 344.