Machine Learning and Deep Learning Strategies in Drug Repositioning

Page: [217 - 237] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Drug repositioning invovles exploring novel usages for existing drugs. It plays an important role in drug discovery, especially in the pre-clinical stages. Compared with the traditional drug discovery approaches, computational approaches can save time and reduce cost significantly. Since drug repositioning relies on existing drug-, disease-, and target-centric data, many machine learning (ML) approaches have been proposed to extract useful information from multiple data resources. Deep learning (DL) is a subset of ML and appears in drug repositioning much later than basic ML. Nevertheless, DL methods have shown great performance in predicting potential drugs in many studies. In this article, we review the commonly used basic ML and DL approaches in drug repositioning. Firstly, the related databases are introduced, while all of them are publicly available for researchers. Two types of preprocessing steps, calculating similarities and constructing networks based on those data, are discussed. Secondly, the basic ML and DL strategies are illustrated separately. Thirdly, we review the latest studies focused on the applications of basic ML and DL in identifying potential drugs through three paths: drug-disease associations, drug-drug interactions, and drug-target interactions. Finally, we discuss the limitations in current studies and suggest several directions of future work to address those limitations.

Keywords: Machine learning, deep learning, drug repositioning, drug-disease association, drug-drug interaction, drug-target interaction.

Graphical Abstract

[1]
Emmert-Streib F, Tripathi S, Simoes RD, Hawwa AF, Dehmer M. The human disease network: Opportunities for classification, diagnosis, and prediction of disorders and disease genes. Syst Biomed 2013; 1(1): 20-8.
[http://dx.doi.org/10.4161/sysb.22816]
[2]
Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: Opportunities, challenges and future perspectives. Proteomes 2016; 4(3): 28.
[http://dx.doi.org/10.3390/proteomes4030028] [PMID: 28248238]
[3]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[4]
Jin G, Wong ST. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 2014; 19(5): 637-44.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[5]
Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov 2011; 10(7): 507-19.
[http://dx.doi.org/10.1038/nrd3480] [PMID: 21701501]
[6]
Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: From data to therapeutics. Clin Pharmacol Ther 2013; 93(4): 335-41.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[7]
Szabo M, Svensson Akusjärvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS. Cell and small animal models for phenotypic drug discov-ery. Drug Des Devel Ther 2017; 11: 1957-67.
[http://dx.doi.org/10.2147/DDDT.S129447] [PMID: 28721015]
[8]
Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 2017; 16(1): 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[9]
Turing AM. Computing machinery and intelligence. Mind 1950; 59(236): 433-60. 2009
[http://dx.doi.org/10.1007/978-1-4020-6710-5_3]
[10]
Rohani N, Eslahchi C. Drug-drug interaction predicting by neural network using integrated similarity. Sci Rep 2019; 9(1): 13645.
[http://dx.doi.org/10.1038/s41598-019-50121-3] [PMID: 31541145]
[11]
Li Z, Huang Q, Chen X, et al. Identification of drug-disease associations using information of molecular structures and clinical symptoms via deep convolutional neural network. Front Chem 2020; 7: 924.
[http://dx.doi.org/10.3389/fchem.2019.00924] [PMID: 31998700]
[12]
Manoochehri HE, Kadiyala SS, Nourani M. Predicting drug-target interactions using weisfeiler-lehman neural network. Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 2019 May 19-22; Chicago, IL, USA. 2019;
[http://dx.doi.org/10.1109/BHI.2019.8834572]
[13]
Eslami Manoochehri H, Nourani M. Drug-target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinformatics 2020; 21(Suppl. 4): 248.
[http://dx.doi.org/10.1186/s12859-020-3518-6] [PMID: 32631230]
[14]
Hu S, Zhang C, Chen P, Gu P, Zhang J, Wang B. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. BMC Bioinformatics 2019; 20(25)(Suppl. 25): 689.
[http://dx.doi.org/10.1186/s12859-019-3263-x] [PMID: 31874614]
[15]
Monteiro NR, Ribeiro B, Arrais J. Drug-target interaction prediction: End-to-end deep learning approach. IEEE/ACM Trans Comput Biol Bioinform 2020; 2020: 1-12.
[http://dx.doi.org/10.1109/TCBB.2020.2977335]
[16]
Huang K, Fu T, Glass LM, Zitnik M, Xiao C, Sun J. DeepPurpose: A deep learning library for drug-target interaction prediction. Bioinformatics 2021; 36(22-23): 5545-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa1005] [PMID: 33275143]
[17]
Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129.
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[18]
Jiang M, Li Z, Zhang S, et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Advances 2020; 10(35): 20701-12.
[http://dx.doi.org/10.1039/D0RA02297G]
[19]
Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model 2019; 59(10): 4131-49.
[http://dx.doi.org/10.1021/acs.jcim.9b00628] [PMID: 31580672]
[20]
Wang Y, Deng G, Zeng N, Song X, Zhuang Y. Drug-disease association prediction based on neighborhood information aggregation in neural networks. IEEE Access 7: 50581-7.
[http://dx.doi.org/10.1109/ACCESS.2019.2907522]
[21]
Oh M, Ahn J, Yoon Y. A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions. PLoS One 2014; 9(10): e111668.
[http://dx.doi.org/10.1371/journal.pone.0111668] [PMID: 25356910]
[22]
Kastrin A, Ferk P, Leskošek B. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PLoS One 2018; 13(5): e0196865.
[http://dx.doi.org/10.1371/journal.pone.0196865] [PMID: 29738537]
[23]
Lee T, Yoon Y. Drug repositioning using drug-disease vectors based on an integrated network. BMC Bioinformatics 2018; 19(1): 446.
[http://dx.doi.org/10.1186/s12859-018-2490-x] [PMID: 30463505]
[24]
Zhou R, Lu Z, Luo H, Xiang J, Zeng M, Li M. NEDD: A network embedding based method for predicting drug-disease associations. BMC Bioinformatics 2020; 21(Suppl. 13): 387.
[http://dx.doi.org/10.1186/s12859-020-03682-4] [PMID: 32938396]
[25]
Liu H, Zhang W, Song Y, Deng L, Zhou S. HNet-DNN: Inferring new drug-disease associations with deep neural network based on heter-ogeneous network features. J Chem Inf Model 2020; 60(4): 2367-76.
[http://dx.doi.org/10.1021/acs.jcim.9b01008] [PMID: 32118415]
[26]
Jiang HJ, Huang YA, You ZH. Predicting drug-disease associations via using Gaussian interaction profile and kernel-based autoencoder. BioMed Res Int 2019; 2019: 2426958.
[http://dx.doi.org/10.1155/2019/2426958] [PMID: 31534955]
[27]
Jiang HJ, You ZH, Huang YA. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks. J Transl Med 2019; 17(1): 382.
[http://dx.doi.org/10.1186/s12967-019-2127-5] [PMID: 31747915]
[28]
Zhang Y, Qiu Y, Cui Y, Liu S, Zhang W. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embed-ding and positive-unlabeled learning. Methods 2020; 179: 37-46.
[http://dx.doi.org/10.1016/j.ymeth.2020.05.007] [PMID: 32497603]
[29]
Wang Y, Guo Y, Kuang Q, et al. A comparative study of family-specific protein-ligand complex affinity prediction based on random for-est approach. J Comput Aided Mol Des 2015; 29(4): 349-60.
[http://dx.doi.org/10.1007/s10822-014-9827-y] [PMID: 25527073]
[30]
Wang L, You ZH, Chen X, et al. A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J Comput Biol 2018; 25(3): 361-73.
[http://dx.doi.org/10.1089/cmb.2017.0135] [PMID: 28891684]
[31]
Kuo B, Kang Y, Wu P, Huang ST, Huang Y. Discovering drug-drug and drug-disease interactions inducing acute kidney injury using deep rule forests. Proceedings of the IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). 2020 Aug. 11-13; Las Vegas, NV, USA.
[32]
Yan C, Duan G, Pan Y, Wu FX, Wang J. DDIGIP: Predicting drug-drug interactions based on Gaussian interaction profile kernels. BMC Bioinformatics 2019; 20(Suppl. 15): 538.
[http://dx.doi.org/10.1186/s12859-019-3093-x] [PMID: 31874609]
[33]
Luo H, Wang J, Li M, et al. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016; 32(17): 2664-71.
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[34]
Luo H, Wang J, Li M, et al. Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Trans Comput Biol Bioinform 2018; 16(6): 1890-900.
[35]
Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics 2017; 18(1): 18.
[http://dx.doi.org/10.1186/s12859-016-1415-9] [PMID: 28056782]
[36]
Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014 Aug. 24-27; NY, USA.
[http://dx.doi.org/10.1145/2623330.2623732]
[37]
Luo Y, Zhao X, Zhou J, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 2017; 8(1): 573.
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[38]
Lee I, Nam H. Identification of drug-target interaction by a random walk with restart method on an interactome network. BMC Bioinformatics 2018; 19(Suppl. 8): 208.
[http://dx.doi.org/10.1186/s12859-018-2199-x] [PMID: 29897326]
[39]
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient boosting decision tree-based method for predicting interactions between target genes and drugs. Front Genet 2019; 10: 459.
[http://dx.doi.org/10.3389/fgene.2019.00459] [PMID: 31214240]
[40]
Parvizi P, Azuaje F, Theodoratou E, Luz S. A network-based embedding method for drug-target interaction prediction. Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2020 July ; 20-4. QC, Canada.
[http://dx.doi.org/10.1109/EMBC44109.2020.9176165]
[41]
Sun C, Xuan P, Zhang T, Ye Y. Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions. IEEE/ACM Trans Comput Biol Bioinform 2020; 2020: 1.
[42]
Wang H, Wang J, Dong C, Lian Y, Liu D, Yan Z. A novel approach for drug-target interactions prediction based on multimodal deep auto-encoder. Front Pharmacol 2020; 10: 1592.
[http://dx.doi.org/10.3389/fphar.2019.01592] [PMID: 32047432]
[43]
Kim E, Choi AS, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinformatics 2019; 20(Suppl. 10): 247.
[http://dx.doi.org/10.1186/s12859-019-2811-8] [PMID: 31138103]
[44]
Zheng Y, Peng H, Zhang X, Zhao Z, Gao X, Li J. DDI-PULearn: A positive-unlabeled learning method for large-scale prediction of drug-drug interactions. BMC Bioinformatics 2019; 20(Suppl. 19): 661.
[http://dx.doi.org/10.1186/s12859-019-3214-6] [PMID: 31870276]
[45]
Song D, Chen Y, Min Q, et al. Similarity-based machine learning support vector machine predictor of drug-drug interactions with im-proved accuracies. J Clin Pharm Ther 2019; 44(2): 268-75.
[http://dx.doi.org/10.1111/jcpt.12786] [PMID: 30565313]
[46]
Hunta S, Aunsri N, Yooyativong T. Drug-drug interactions prediction from enzyme action crossing through machine learning approaches. Proceedings of the 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 2018 July 18-21; Chiang Rai, Thailand.
[http://dx.doi.org/10.1109/ECTICon.2015.7207126]
[47]
Zhang W, Yue X, Huang F, Liu R, Chen Y, Ruan C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods 2018; 145: 51-9.
[http://dx.doi.org/10.1016/j.ymeth.2018.06.001] [PMID: 29879508]
[48]
Jarada TN, Rokne JG, Alhajj R. SNF–CVAE: Computational method to predict drug-disease interactions using similarity network fusion and collective variational autoencoder. Knowl Base Syst 2021; 212: 106585.
[http://dx.doi.org/10.1016/j.knosys.2020.106585]
[49]
Lee G, Park C, Ahn J. Novel deep learning model for more accurate prediction of drug-drug interaction effects. BMC Bioinform 2019; 20(1): 415.
[http://dx.doi.org/10.1186/s12859-019-3013-0] [PMID: 31387547]
[50]
Zeng X, Zhu S, Lu W, et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem Sci (Camb) 2020; 11(7): 1775-97.
[http://dx.doi.org/10.1039/C9SC04336E] [PMID: 34123272]
[51]
Zeng X, Zhu S, Hou Y, et al. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest. Bioinformatics 2020; 36(9): 2805-12.
[http://dx.doi.org/10.1093/bioinformatics/btaa010] [PMID: 31971579]
[52]
Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug–target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[53]
Jarada TN, Rokne JG, Alhajj R. SNF-NN: Computational method to predict drug-disease interactions using similarity network fusion and neural networks. BMC Bioinfor 2021; 22(1): 28.
[http://dx.doi.org/10.1186/s12859-020-03950-3] [PMID: 33482713]
[54]
Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci USA 2018; 115(18): E4304-11.
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[55]
Kumar Shukla P, Kumar Shukla P, Sharma P, et al. Efficient prediction of drug-drug interaction using deep learning models. IET Syst Biol 2020; 14(4): 211-6.
[http://dx.doi.org/10.1049/iet-syb.2019.0116] [PMID: 32737279]
[56]
Deng Y, Xu X, Qiu Y, Xia J, Zhang W, Liu S. A multimodal deep learning framework for predicting drug-drug interaction events. Bioinform 2020; 36(15): 4316-22.
[http://dx.doi.org/10.1093/bioinformatics/btaa501] [PMID: 32407508]
[57]
Feng YH, Zhang SW, Shi JY. DPDDI: A deep predictor for drug-drug interactions. BMC Bioinformatics 2020; 21(1): 419.
[http://dx.doi.org/10.1186/s12859-020-03724-x] [PMID: 32972364]
[58]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[59]
Zhao T, Hu Y, Valsdottir LR, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief Bioinform 2021; 22(2): 2141-50.
[http://dx.doi.org/10.1093/bib/bbaa044] [PMID: 32367110]
[60]
Lee H, Kim W. Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics 2019; 11(8): 377.
[http://dx.doi.org/10.3390/pharmaceutics11080377] [PMID: 31382356]
[61]
Peng J, Li J, Shang X. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. BMC Bioinformatics 2020; 21(13)(Suppl. 13): 394.
[http://dx.doi.org/10.1186/s12859-020-03677-1] [PMID: 32938374]
[62]
Xuan P, Ye Y, Zhang T, Zhao L, Sun C. Convolutional neural network and bidirectional long short-term memory-based method for pre-dicting drug–disease associations. Cells 2019; 8(7): 705.
[http://dx.doi.org/10.3390/cells8070705] [PMID: 31336774]
[63]
Xuan P, Cui H, Shen T, Sheng N, Zhang T. HeteroDualNet: A dual convolutional neural network with heterogeneous layers for drug-disease association prediction via Chou’s five-step rule. Front Pharmacol 2019; 10: 1301.
[http://dx.doi.org/10.3389/fphar.2019.01301] [PMID: 31780934]
[64]
Xuan P, Zhao L, Zhang T, Ye Y, Zhang Y. Inferring drug-related diseases based on convolutional neural network and gated recurrent unit. Molecules 2019; 24(15): 2712.
[http://dx.doi.org/10.3390/molecules24152712] [PMID: 31349692]
[65]
Xuan P, Gao L, Sheng N, Zhang T, Nakaguchi T. Graph convolutional autoencoder and fully-connected autoencoder with attention mech-anism based method for predicting drug-disease associations. IEEE J Biomed Health Inform 2021; 25(5): 1793-804.
[http://dx.doi.org/10.1109/JBHI.2020.3039502] [PMID: 33216722]
[66]
Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: A network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019; 35(24): 5191-8.
[http://dx.doi.org/10.1093/bioinformatics/btz418] [PMID: 31116390]
[67]
Palleria C, Di Paolo A, Giofrè C, et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 2013; 18(7): 601-10.
[PMID: 24516494]
[68]
Altshuler D, Daly M, Kruglyak L. Guilt by association. Nat Genet 2000; 26(2): 135-7.
[http://dx.doi.org/10.1038/79839] [PMID: 11017062]
[69]
Oliver S. Guilt-by-association goes global. Nature 2000; 403(6770): 601-3.
[http://dx.doi.org/10.1038/35001165] [PMID: 10688178]
[70]
Hu SS, Chen P, Wang B, Li J. Protein binding hot spots prediction from sequence only by a new ensemble learning method. Amino Acids 2017; 49(10): 1773-85.
[http://dx.doi.org/10.1007/s00726-017-2474-6] [PMID: 28766075]
[71]
Gashaw I, Ellinghaus P, Sommer A, Asadullah K. What makes a good drug target? Drug Discov Today 2011; 16(23-24): 1037-43.
[http://dx.doi.org/10.1016/j.drudis.2011.09.007] [PMID: 21945861]
[72]
Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug repositioning: A comprehensive review. Brief Bioinform 2021; 22(2): 1604-19.
[http://dx.doi.org/10.1093/bib/bbz176] [PMID: 32043521]
[73]
Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL. Recent developments of the Chemistry Development Kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr Pharm Des 2006; 12(17): 2111-20.
[http://dx.doi.org/10.2174/138161206777585274] [PMID: 16796559]
[74]
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 2003; 125(39): 11853-65.
[http://dx.doi.org/10.1021/ja036030u] [PMID: 14505407]
[75]
Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. Proceedings of the 20th international conference on ma-chine learning (ICML-03). 2003 August 21-24; Washington DC, USA.
[76]
Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 2015; 7(1): 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[77]
Klambauer G, Wischenbart M, Mahr M, Unterthiner T, Mayr A, Hochreiter S. RCHEMCPP: A web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map. Bioinformatics 2015; 31(20): 3392-4.
[http://dx.doi.org/10.1093/bioinformatics/btv373] [PMID: 26088801]
[78]
Resnik P. Using information content to evaluate semantic similarity in a taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence. 1995 Aug. 20-25; CA, USA.
[79]
Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science 2008; 321(5886): 263-6.
[http://dx.doi.org/10.1126/science.1158140] [PMID: 18621671]
[80]
Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y. Drug target prediction using adverse event report systems: A phar-macogenomic approach. Bioinformatics 2012; 28(18): i611-8.
[http://dx.doi.org/10.1093/bioinformatics/bts413] [PMID: 22962489]
[81]
Cheng L, Li J, Ju P, Peng J, Wang Y. SemFunSim: A new method for measuring disease similarity by integrating semantic and gene func-tional association. PLoS One 2014; 9(6): e99415.
[http://dx.doi.org/10.1371/journal.pone.0099415] [PMID: 24932637]
[82]
Menche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224): 1257601.
[http://dx.doi.org/10.1126/science.1257601] [PMID: 25700523]
[83]
Yu G, Wang LG, Yan GR, He QY. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 2015; 31(4): 608-9.
[http://dx.doi.org/10.1093/bioinformatics/btu684] [PMID: 25677125]
[84]
Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity. J Biomed Inform 2012; 45(2): 363-71.
[http://dx.doi.org/10.1016/j.jbi.2011.11.017] [PMID: 22166490]
[85]
Paik H, Heo HS, Ban HJ, Cho SB. Unraveling human protein interaction networks underlying co-occurrences of diseases and pathological conditions. J Transl Med 2014; 12(1): 99.
[http://dx.doi.org/10.1186/1479-5876-12-99] [PMID: 24731539]
[86]
Smith SB, Dampier W, Tozeren A, Brown JR, Magid-Slav M. Identification of common biological pathways and drug targets across multi-ple respiratory viruses based on human host gene expression analysis. PLoS One 2012; 7(3): e33174.
[http://dx.doi.org/10.1371/journal.pone.0033174] [PMID: 22432004]
[87]
Palme J, Hochreiter S, Bodenhofer U. KeBABS: An R package for kernel-based analysis of biological sequences. Bioinformatics 2015; 31(15): 2574-6.
[http://dx.doi.org/10.1093/bioinformatics/btv176] [PMID: 25812745]
[88]
Resnik P. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural lan-guage. J Artif Intell Res 1999; 11: 95-130.
[http://dx.doi.org/10.1613/jair.514]
[89]
Vapnik V. The nature of statistical learning theory. Springer science & business media 2013.
[90]
Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 1991; 21(3): 660-74.
[http://dx.doi.org/10.1109/21.97458]
[91]
Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. J Chemometr 2004; 18(6): 275-85.
[http://dx.doi.org/10.1002/cem.873]
[92]
Breiman L. Bagging predictors. Mach Learn 1996; 24(2): 123-40.
[http://dx.doi.org/10.1007/BF00058655]
[93]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[94]
Qi Y. Random forest for bioinformatics Ensemble machine learning. Boston, MA: Springer 2012; pp. 307-23.
[http://dx.doi.org/10.1007/978-1-4419-9326-7_11]
[95]
Khoshgoftaar TM, Van Hulse J, Napolitano A. Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans Syst Man Cybern Syst 2010; 41(3): 552-68.
[http://dx.doi.org/10.1109/TSMCA.2010.2084081]
[96]
Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997; 55(1): 119-39.
[http://dx.doi.org/10.1006/jcss.1997.1504]
[97]
Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal 2002; 38(4): 367-78.
[http://dx.doi.org/10.1016/S0167-9473(01)00065-2]
[98]
Peterson LE. K-nearest neighbor. Scholarpedia 2009; 4(2): 1883.
[http://dx.doi.org/10.4249/scholarpedia.1883]
[99]
Wang F, Ding Y, Lei X, Liao B, Wu F. Identifying gene signatures for cancer drug repositioning based on sample clustering. IEEE/ACM Trans Comput Biol Bioinform 2020; 1-13.
[100]
Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 1982; 79(8): 2554-8.
[http://dx.doi.org/10.1073/pnas.79.8.2554] [PMID: 6953413]
[101]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012; 25: 1097-105.
[102]
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. Machine Learn 2012. arXiv:1211.5063.
[103]
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010; 11(12): 3371-408.
[104]
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020; 63(11): 139-44.
[http://dx.doi.org/10.1145/3422622]
[105]
Fukushima K, Miyake S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition Competi-tion and cooperation in neural nets. Berlin, Heidelberg: Springer 1982; pp. 267-85.
[http://dx.doi.org/10.1007/978-3-642-46466-9_18]
[106]
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal 2019; 58: 101552.
[http://dx.doi.org/10.1016/j.media.2019.101552] [PMID: 31521965]
[107]
Agyemang B, Wu WP, Kpiebaareh MY, Nanor E. Drug-target indication prediction by integrating end-to-end learning and fingerprints. Proceedings of the 16th International Computer Conference on Wavelet Active Media Technology and Information Processing. 2019 Dec 14; Chengdu, China. 2019; pp. 266-72.
[108]
Huang L, Luo H, Yang M, Wu FX, Wang J. Drug and disease similarity calculation platform for drug repositioning. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2019 Dec. 9-12; San Diego USA. 2021; pp. 124-9.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983401]
[109]
Huang L, Luo H, Li S, Wu FX, Wang J. Drug-drug similarity measure and its applications. Brief Bioinform 2021; 22(4): 1-20.
[PMID: 33152756]
[110]
Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc 2000; 88(3): 265-6.
[PMID: 10928714]
[111]
van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet 2006; 14(5): 535-42.
[http://dx.doi.org/10.1038/sj.ejhg.5201585] [PMID: 16493445]
[112]
Bullinaria JA, Levy JP. Extracting semantic representations from word co-occurrence statistics: A computational study. Behav Res Methods 2007; 39(3): 510-26.
[http://dx.doi.org/10.3758/BF03193020] [PMID: 17958162]
[113]
Chen X, Yan CC, Zhang X, et al. WBSMDA: Within and between score for MiRNA-disease association prediction. Sci Rep 2016; 6(1): 21106.
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[114]
Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: A method for inferring novel drug indications with application to personalized med-icine. Mol Syst Biol 2011; 7(1): 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[115]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[116]
Zhou X, Menche J, Barabási AL, Sharma A. Human symptoms-disease network. Nat Commun 2014; 5(1): 4212.
[http://dx.doi.org/10.1038/ncomms5212] [PMID: 24967666]
[117]
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks arXiv preprint. Machine Learn 2016; 2016https://arxiv.org/abs/1609.02907 arXiv:1609.02907.
[118]
Wang B, Lyu X, Qu J, Sun H, Pan Z, Tang Z. GNDD: A graph neural network-based method for drug-disease association prediction.IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2021 Dec. 9-12; San Diego USA. 2019; 1253-5.
[http://dx.doi.org/10.1109/BIBM47256.2019.8983257]
[119]
Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug-disease associations through layer attention graph convolutional network. Brief Bioinform 2021; 22(4): 1-11.
[http://dx.doi.org/10.1093/bib/bbaa243] [PMID: 33078832]
[120]
Lamb J, Crawford ED, Peck D, et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313(5795): 1929-35.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[121]
Lamb J. The connectivity map: A new tool for biomedical research. Nat Rev Cancer 2007; 7(1): 54-60.
[http://dx.doi.org/10.1038/nrc2044] [PMID: 17186018]
[122]
Wei WQ, Cronin RM, Xu H, Lasko TA, Bastarache L, Denny JC. Development and evaluation of an ensemble resource linking medica-tions to their indications. J Am Med Inform Assoc 2013; 20(5): 954-61.
[http://dx.doi.org/10.1136/amiajnl-2012-001431] [PMID: 23576672]
[123]
Ferdousi R, Safdari R, Omidi Y. Computational prediction of drug-drug interactions based on drugs functional similarities. J Biomed Inform 2017; 70: 54-64.
[http://dx.doi.org/10.1016/j.jbi.2017.04.021] [PMID: 28465082]
[124]
Yan C, Duan G, Zhang Y, Wu FX, Pan Y, Wang J. Predicting drug-drug interactions based on integrated similarity and semi-supervised learning. IEEE/ACM Trans Comput Biol Bioinform 2020; 2020: 1-12.
[125]
Bi X, Ma H, Li J, Ma Y, Chen D. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interac-tions discovery. J Ambient Intell Humaniz Comput 2018; 22: 1-2.
[http://dx.doi.org/10.1007/s12652-018-0960-7]
[126]
Huang G, Song S, Gupta JN, Wu C. Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 2014; 44(12): 2405-17.
[http://dx.doi.org/10.1109/TCYB.2014.2307349] [PMID: 25415946]
[127]
Olayan RS, Ashoor H, Bajic VB. DDR: Efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics 2018; 34(7): 1164-73.
[http://dx.doi.org/10.1093/bioinformatics/btx731] [PMID: 29186331]
[128]
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014; 11(3): 333-7.
[http://dx.doi.org/10.1038/nmeth.2810] [PMID: 24464287]
[129]
Zhou B, Wang R, Wu P, Kong DX. Drug repurposing based on drug-drug interaction. Chem Biol Drug Des 2015; 85(2): 137-44.
[http://dx.doi.org/10.1111/cbdd.12378] [PMID: 24934184]
[130]
Munir A, Elahi S, Masood N. Clustering based drug-drug interaction networks for possible repositioning of drugs against EGFR muta-tions: Clustering based DDI networks for EGFR mutations. Comput Biol Chem 2018; 75: 24-31.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.011] [PMID: 29730365]
[131]
Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag 2006; 6(3): 21-45.
[http://dx.doi.org/10.1109/MCAS.2006.1688199]
[132]
Peng B, Ning X. Deep learning for high-order drug-drug interaction prediction. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls USA. 2019; pp. 197-206.
[http://dx.doi.org/10.1145/3307339.3342136]
[133]
Lin X, Quan Z, Wang ZJ, Ma T, Zeng X. KGNN: Knowledge graph neural network for drug-drug interaction prediction. Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama Japan. 2020; pp. 2739-45.
[http://dx.doi.org/10.24963/ijcai.2020/380]
[134]
Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007; 76(3): 391-6.https://www.aafp.org/afp/2007/0801/p391.html
[PMID: 17708140]
[135]
Chu Y, Kaushik AC, Wang X, et al. DTI-CDF: A cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform 2021; 22(1): 451-62.
[http://dx.doi.org/10.1093/bib/bbz152] [PMID: 31885041]
[136]
Zhou ZH, Feng J. Deep forest Machine Learn 2017; 2017https://arxiv.org/abs/1702.08835 arXiv: 1702.08835.
[137]
Lin YT, Sheu SY, Lin CC. Prediction of drug-protein interaction and drug repositioning using machine learning model. bioRxiv 2020; 2020; 218826v1.
[http://dx.doi.org/10.1101/2020.07.29.218826v1]
[138]
Zong N, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target asso-ciations. Bioinformatics 2017; 33(15): 2337-44.
[http://dx.doi.org/10.1093/bioinformatics/btx160] [PMID: 28430977]
[139]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5): e1002503.
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[140]
Liu H, Sun J, Guan J, Zheng J, Zhou S. Improving compound-protein interaction prediction by building up highly credible negative sam-ples. Bioinformatics 2015; 31(12): i221-9.
[http://dx.doi.org/10.1093/bioinformatics/btv256] [PMID: 26072486]
[141]
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33(1): 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[142]
You J, McLeod RD, Hu P. Predicting drug-target interaction network using deep learning model. Comput Biol Chem 2019; 80: 90-101.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.03.016] [PMID: 30939415]
[143]
Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011; 32(7): 1466-74.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[144]
Kawashima S, Kanehisa M. AAindex: Amino acid index database. Nucleic Acids Res 2000; 28(1): 374-4.
[http://dx.doi.org/10.1093/nar/28.1.374] [PMID: 10592278]
[145]
Michel M, Menéndez Hurtado D, Elofsson A. PconsC4: Fast, accurate and hassle-free contact predictions. Bioinformatics 2019; 35(15): 2677-9.
[http://dx.doi.org/10.1093/bioinformatics/bty1036] [PMID: 30590407]
[146]
Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J Chem Inf Model 2019; 59(9): 3981-8.
[http://dx.doi.org/10.1021/acs.jcim.9b00387] [PMID: 31443612]
[147]
Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017; 171(6): 1437-1452.e17.
[http://dx.doi.org/10.1016/j.cell.2017.10.049] [PMID: 29195078]
[148]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[149]
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27(12): 1739-40.
[http://dx.doi.org/10.1093/bioinformatics/btr260] [PMID: 21546393]
[150]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[151]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[152]
Liu B, Dai Y, Li X, Lee WS, Yu PS. Building text classifiers using positive and unlabeled examples. Third IEEE International Conference on Data Mining. 2003 Nov, 22; Melbourne, FL, USA.
[http://dx.doi.org/10.1109/ICDM.2003.1250918]
[153]
Lan W, Wang J, Li M, et al. Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing 2016; 206: 50-7.
[http://dx.doi.org/10.1016/j.neucom.2016.03.080]
[154]
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 2019; 1(5): 206-15.
[http://dx.doi.org/10.1038/s42256-019-0048-x]