Active Capsule Endoscope Robot: Current Status and Future Perspectives

Article ID: e181121198084 Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: China is a big country with a vast territory, in which gastropathy has become a common high-incidence disease in daily life. Gastroscopy is an important means of diagnosis of gastropathy, but the use of a gastroscope causes a lot of pain to patients. A cable-free, non-invasive and painless diagnosis and treatment tool, an active capsule endoscope robot, can solve this problem very well. Capsule robot has become a new development hotspot.

Objective: The study aims to provide an overview of the active endoscope capsule robot and introduce its classification, characteristics and development.

Methods: This paper summarizes various scientific research achievements of the active endoscope capsule robot. The structural characteristics, advantages and disadvantages of various active endoscope capsule robots are introduced.

Results: The active endoscope capsule robot has been analyzed and compared to other models. Its typical characteristics have been summarized. The main problems in its development are analyzed, its development trend is prospected, and the research status and future of active endoscope capsule robot are discussed.

Conclusion: The active capsule robot is classified into two categories: bionic and non-bionic. The analysis shows that the capsule robot is an effective and safe initiative and has a very broad application prospect for various gastrointestinal tests compared to gastroscope, and helps alleviate the pain of patients.

Keywords: Active capsule endoscopy robot, earthworm capsule robot, gastrointestinal, inchworm type, in vivo diagnosis, leg capsule robot, tadpole capsule robot.

Graphical Abstract

[1]
S. Sharma, and M. Thomson, "Gastritis and gastropathy", In: R.M. Peek, Ed., Practical Pediatric Gastrointestinal Endoscopy., 3rd ed Wiley Online Library, 2021, pp. 201-206.
[2]
K.K. Jani, and R. Srivastava, "a survey on medical image analysis in capsule endoscopy", Curr. Med. Imaging Rev., vol. 15, no. 7, pp. 622-636, 2019.
[http://dx.doi.org/10.2174/1573405614666181102152434] [PMID: 32008510]
[3]
J. Zhao, and H.F. Li, "Capsule endoscope", Dig. Tech. App., vol. 11, p. 38, 2011.
[4]
P.R. Carr, K. Weigl, D. Edelmann, L. Jansen, J. Chang-Claude, H. Brenner, and M. Hoffmeister, "Estimation of absolute risk of colorectal cancer based on healthy lifestyle, genetic risk, and colonoscopy status in a population-based study", Gastroenterology, vol. 159, no. 1, pp. 129-138.e9, 2020.
[http://dx.doi.org/10.1053/j.gastro.2020.03.016] [PMID: 32179093]
[5]
G.D. Meron, "The development of the swallowable video capsule (M2A)", Gastrointest. Endosc., vol. 52, no. 6, pp. 817-819, 2000.
[http://dx.doi.org/10.1067/mge.2000.110204] [PMID: 11115933]
[6]
Jinshan Holdings Co, Available from: http://www.jinshangroup.com [Accessed: Sept. 18, 2019].
[7]
A.J. Watras, J.J. Kim, J. Ke, H. Liu, J.A. Greenberg, C.P. Heise, Y.H. Hu, and H. Jiang, "Large-field-of-view visualization with small blind spots utilizing tilted micro-camera array for laparoscopic surgery", Micromachines (Basel), vol. 11, no. 5, p. 448, 2020.
[http://dx.doi.org/10.3390/mi11050488] [PMID: 32397580]
[8]
X. Xu, Z. Huo, J. Guo, H. Liu, X. Qi, and Z. Wu, "Micromotor-derived composites for biomedicine delivery and other related purposes", Biodes. Manuf., vol. 3, pp. 133-147, 2020.
[http://dx.doi.org/10.1007/s42242-020-00072-w]
[9]
X. Qiao, C. Xiaolong, C. Zhen, M. Shunqi, and J. Qiaoling, "Torque calculation model and structural optimisation of axial magnetic drive mechanism", Int. J. Wireless Mob. Comping., vol. 20, pp. 1-8, 2021.
[http://dx.doi.org/10.1504/IJWMC.2021.113215]
[10]
F.L. Qiu, Z.M. Xu, W.X. Lin, and K.Y. Huang, "Beam forming strategy of wireless information and energy transmission system based on magnetic resonance", J. Sen. Tech., vol. 6, pp. 1-10, 2020.
[11]
B. Gamus, L. Salem, A.D. Gat, and Y. Or, "Understanding inchworm crawling for soft-robotics", IEEE Robot. Autom. Lett., vol. 5, pp. 1397-1404, 2020.
[http://dx.doi.org/10.1109/LRA.2020.2966407]
[12]
W. Lin, and G.Z. Yan, "A study on anchoring ability of three-leg micro intestinal robot", Engineering (Lond.), vol. 4, pp. 477-483, 2012.
[http://dx.doi.org/10.4236/eng.2012.48062]
[13]
N. Xiao, and M.K. Michael, "A review of mechanical seals heat transfer augmentation techniques", Recent Pat. Mech. Eng., vol. 6, p. 87, 2013.
[http://dx.doi.org/10.2174/2212797611306020001]
[14]
C.G. Li, G.Z. Yan, K.D. Wang, and P.P. Jiang, "Research on active controlled endoscope capsule robot", Meas. Ctrl. Tech., vol. 29, pp. 90-93, 2010.
[15]
Y.P. Chen, Z.J. Sun, X.D. K, and S.K. Gao, "The invention relates to the structure design of a capsule robot", S. Far. Mac., vol. 332, p. 148, 2019.
[16]
Z.B. Song, and W.J. Zhang, "An inchworm like pneumatic micro capsule robot and its motion method", CN Patent 11,047,784,5a, 2019.
[17]
E.K. Mustafa, C. Eugene, L. Jiwoon, and M. Sitti, "Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives", Life Sys. Mod. Int. Comp., vol. 6330, pp. 246-253, 2010.
[18]
M.K. Raj, and S. Chakraborty, "PDMS microfluidics: A mini review", J. App. Polr. Sci., vol. 137, p. 48958, 2020.
[http://dx.doi.org/10.1002/app.48958]
[19]
A.R. Muhammad, "Patents on superelastic shape memory alloy", Recent Pat. Mech. Eng., vol. 1, pp. 65-67, 2008.
[http://dx.doi.org/10.2174/2212797610801010065]
[20]
M. Mehrshad, and C.B. Hossein, "MEMS applications of NiTi based shape memory alloys: A review", Micro Nanosyst., vol. 8, pp. 79-81, 2016.
[21]
T.L. Heath, A history of Greek mathematics., Adamant Media Corporation Press: Boston, 1921.
[22]
W. Chen, G. Yan, Z. Wang, P. Jiang, and H. Liu, "A wireless capsule robot with spiral legs for human intestine", Int. J. Med. Robot., vol. 10, no. 2, pp. 147-161, 2014.
[http://dx.doi.org/10.1002/rcs.1520] [PMID: 23843276]
[23]
J. Gao, and G. Yan, "Locomotion analysis of an inchworm-like capsule robot in the intestinal tract", IEEE Trans. Biomed. Eng., vol. 63, no. 2, pp. 300-310, 2016.
[http://dx.doi.org/10.1109/TBME.2015.2456103] [PMID: 26186765]
[24]
J. Gao, Z. Zhang, and G. Yan, "Development of a capsule robot for exporing the colon", Micromachines (Basel), vol. 10, no. 7, p. 456, 2019.
[http://dx.doi.org/10.3390/mi10070456] [PMID: 31284610]
[25]
J.Y. Gao, Z.L. Zhang, R.H. Xue, and Z.H. Zhang, "The invention relates to an electromagnetic mechanical compound capsule robot for the whole digestive tract examination", CN Patent 20,191,072,726,3, 2019.
[26]
A. Kandhari, Y. Wang, H.J. Chiel, R.D. Quinn, and K.A. Daltorio, "An analysis of peristaltic locomotion for maximizing velocity or minimizing cost of transport of earthworm-like robots", Soft Robot., vol. 8, no. 4, pp. 485-505, 2021.
[http://dx.doi.org/10.1089/soro.2020.0021] [PMID: 32846113]
[27]
D. Sannohe, Y. Morishita, S. Hodi, and T. Nakamura, "Development crawling robot moving between two narrow, vertical planes", In: IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics., Rome, Italy, 2012, pp. 1635-1370.
[http://dx.doi.org/10.1109/BioRob.2012.6290726]
[28]
T. Nakamura, N. Saga, and K. Yaegashi, "Development of pneumatic artificial muscle based on biomechanical characteristics", In: Proceedings of IEEE International Conference on Industrial Technology, Maribor, Slovenia, 2003, pp. 729-734.
[http://dx.doi.org/10.1109/ICIT.2003.1290746]
[29]
S. Yong, S. Liu, J.X. Che, J.Y. Lian, Z.L. Li, and Q.L. Shi, "A pneumatic artificial muscle bionic Kangaroo leg suspension", Recent Pat. Mech. Eng., vol. 12, pp. 357-366, 2019.
[http://dx.doi.org/10.2174/2212797612666190808100422]
[30]
T. Nakamura, and H. Shinohara, "Position and force control based on mathematical models of pneumatic artificial muscle reinforced by straight glass fibers", In: Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy, 2007, pp. 4361-4366.
[http://dx.doi.org/10.1109/ROBOT.2007.364151]
[31]
K. Adachi, M. Yokojima, Y. Hidaka, and T. Nakamura, "Development of multistage type endoscopic robot based on peristaltic crawling for inspecting the small intestine", In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 2011, pp. 904-909.
[http://dx.doi.org/10.1109/AIM.2011.6027001]
[32]
D.P. Furman, and T.A. Bukharina, "How Drosophila melano-gaster forms its mechanoreceptors", Curr. Genomics, vol. 9, no. 5, pp. 312-323, 2008.
[http://dx.doi.org/10.2174/138920208785133271] [PMID: 19471605]
[33]
C. Jee, S. Yoon, B. Kim, and J.H. Park, "An earthworm-like locomotive mechanism for capsule endoscopes using pzt actuator", Trans. Kr. Soc. Mec. Eng. A., vol. 30, pp. 84-89, 2006.
[http://dx.doi.org/10.3795/KSME-A.2006.30.1.084]
[34]
D. Hosokawa, T. Ishikawa, H. Morikawa, Y. Imai, and T. Yamaguchi, "Development of a biologically inspired locomotion system for a capsule robot endoscope", Int. Med. Rob. Comp. Ass. Surg., vol. 5, p. 5, 2009.
[35]
V. Consumi, L. Lindenroth, D. Stoyanov, and A. Stilli, "SoftSCREEN–soft shape-shifting capsule robot for endoscopy based on eversion navigation", 10th Conference on New Technologies for Computer/Robot Assisted Surgery, 2020. Barcelona, Spain Available from: https://cras-eu.org/wp-content/uploads/2020/09/CRAS_2020_proceedings.pdf
[36]
A.F. Tabak, and S. Yesilyurt, "Experiments on in-channel swimming of an untethered biomomentic robot with different helical tails", In: IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics., Rome, Italy, 2012, pp. 556-561.
[37]
H. Choi, S. Jeong, and C. Lee, "Biomimetic swimming tadpole microrobot using 3-pairs helmholtz coils", In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, San Paulo, Brazil, 2014, pp. 841-844.
[http://dx.doi.org/10.1109/BIOROB.2014.6913884]
[38]
Y.S. Guan, J.H. Lian, X.M. Zhang, C. Hu, and H. Zhang, "Screw type active propulsion capsule robot", CN Patent 20,191,208,4U, 2011.
[39]
Z. Li, Z.R. She, and R.X. Du, "Capsule endoscope for examination of digestive tract", CN 10,499,747,9A, 2014.
[40]
L. Wang, Research on propulsive optimization of IPMC artificial muscle driven capsule robotM.S. thesis, Nanjing University of Aeronautics and Astronautics, NanJing, China, 2017.
[41]
N. Minaian, Z.J. Olsen, and K.J. Kim, "Ionic Polymer-Metal Composite (IPMC) artificial muscles in underwater environments: Review of actuation, sensing, controls, and applications to soft robotics", In: Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems., Springer: Cham, 2021, pp. 117-139.
[http://dx.doi.org/10.1007/978-3-030-50476-2_6]
[42]
S. Liu, Z.J. Sun, and H.H. Zhang, "The invention relates to a capsule robot for digestive tract endoscopy and its control system", CN Patent 10,325,136,9A, 2013.
[43]
L. Kim, S.C. Tang, and S. Yoo, "Prototype modular capsule robots for capsule endoscopies", In: 13th International Conference on Control., Automation and Systems: Gwangju, 2013, pp. 350-354.
[http://dx.doi.org/10.1109/ICCAS.2013.6703922]
[44]
M. Quirini, R.J. Webster, A. Menciassi, and P. Dario, "Design of a pill-sized 12-legged endoscopic capsule robot", In: Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, pp. 1856-1862.
[http://dx.doi.org/10.1109/ROBOT.2007.363592]
[45]
P. Vadastri, J. Robert, C. Quaglia, M. Quirini, A. Menciassi, and P. Dario, "A new mechanism for mesoscale legged loco-motion in compliant tubular environments", IEEE Trans. Robot., vol. 25, pp. 1047-1057, 2009.
[http://dx.doi.org/10.1109/TRO.2009.2014127]
[46]
J. Norton, A. Hood, A. Neville, J. David, C. Peter, A. Alazmani, and J. Boyle, "RollerBall: A mobile robot for intraluminal locomotion", In: 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore, Singapore, 2016, pp. 254-259.
[http://dx.doi.org/10.1109/BIOROB.2016.7523634]
[47]
A. Menciassi, C. Stefanini, S. Gorini, G. Pemorio, and J.O. Park, "Legged locomotion in the gastrointestinal tract", In: International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 937-942.
[48]
M. Quirini, A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, and P. Dario, "Development of a legged capsule for the gastrointestinal tract: An experimental set-up", In: 2005 IEEE International Conference on Robotics and Biomimetics-ROBIO, Shatin, China, 2005, pp. 151-167.
[http://dx.doi.org/10.1109/ROBIO.2005.246256]
[49]
A. Menciassi, C. Stefanini, G. Orlandi, M. Quirini, and P. Darioet, "Towards active capsular endoscopy: Preliminary results on a legged platform", In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, NY, USA, 2006, pp. 2215-2218.
[http://dx.doi.org/10.1109/IEMBS.2006.260385]
[50]
V. Manikandaprabu, and R. Ambigai, "Design and fabrication of a four-legged robot for fertilizer spraying", Int. J. Appl. Eng. Res., vol. 10, pp. 22249-22263, 2005.
[51]
R.J. Quirini, A. Webster, A. Menciassi, and P. Dario, "Teleoperated endoscopic capsule", US Patent 80,666,32B,2, 2005.
[52]
M. Quirini, A. Menciassi, S. Scapellato, C. Stefanini, and P. Dario, "Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract", IEEE/ASME Trans. Mechatron., vol. 13, pp. 169-179, 2008.
[http://dx.doi.org/10.1109/TMECH.2008.918491]
[53]
P. Dario, C. Stefanini, and A. Menciassi, "Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment", In: Experimental Robotics IX., Springer: Berlin, Heidelberg, 2006, pp. 165-174.
[http://dx.doi.org/10.1007/11552246_16]
[54]
S. Praveenkumar, P.A. Sridhar, D. Lingaraja, and R.G. Dinesh, "Design and computational modeling of spiral micro-fluidic channel for sorting and separating the biomolecules", Curr. Signal Transduct. Ther., vol. 15, p. 252, 2020.
[http://dx.doi.org/10.2174/1574362413666181029110920]
[55]
M. Quirini, A. Menciassi, S. Scapellato, P. Dario, F. Rieber, C.N. Ho, S. Schostek, and M.O. Schurr, "Feasibility proof of a legged locomotion capsule for the GI tract", Gastr. Endy, vol. 67, no. 7, pp. 1153-1158, 2008.
[http://dx.doi.org/10.1016/j.gie.2007.11.052] [PMID: 18513557]
[56]
Y.S. Zhang, K. Zhang, and L.Y. Zhang, "Spiral drive characteristics of a micro robot inside human body", Robot, vol. 28, pp. 560-564, 2006.
[57]
A. Chiba, M. Sendoh, K. Ishiyama, and I. Arai, "Magnetic actuator for capsule endoscope navigation system", In: 2005 IEEE International Magnetics Conference (INTERMAG), Nagoya, Japan, 2005, pp. 1251-1252.
[http://dx.doi.org/10.1109/INTMAG.2005.1464055]
[58]
D. Chen, C. Hu, L. Wang, Q. Max, and H. Meng, "Active actuation system of wireless capsule endoscope based on magnetic field", In: Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp. 99-103.
[http://dx.doi.org/10.1109/ROBIO.2007.4522142]
[59]
J. Chen, X.R. Zhu, and C.X. Qiu, "Locomotion and steering design of an active capsulerobot for endoscopic inspection", In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 2009, pp. 2344-2348.
[http://dx.doi.org/10.1109/ROBIO.2009.5420751]
[60]
H. Kim, K.S. Shin, S. Hashi, and K. Ishiyama, "A pushing force mechanism of magnetic spiral-type machine for wireless wedical-robots in therapy and diagnosis", IEEE Trans. Magn., vol. 49, pp. 3488-3491, 2013.
[http://dx.doi.org/10.1109/TMAG.2012.2237544]
[61]
Y.S. Zhang, L.H. Wang, C.X. Cheng, M.L. Chi, and W.J. Bai, "Optimization of petal profile of multi-wedge effect capsule robot", Jixie Gongcheng Xuebao, vol. 51, pp. 45-52, 2015.
[62]
C.X. Chen, The invention relates to a high-performance petal-shaped capsule robot, M.S. thesis, Dalian University of Technology, DaLian, China, 2015.
[63]
C.Y. Yang, T. Song, Z. Wang, J.G. Wang, and Z. Wang, "Study on microbots of Meguiar’s bacteria", Robot, vol. 31, pp. 146-150, 2009.
[64]
C.Y. Yang, T. Song, Z. Wang, J.G. Wang, and Z. Wang, "Dynamic modeling of a novel bionic-machine", In: 2008 IEEE International Conference on Robotics, Bangkok, Thailand, 2008.
[65]
C.Y. Yang, T. Song, Z. Wang, J.G. Wang, Z. Wang, Q.M. Wang, and J.S. Xu, "Wireless measurement and control system for a bioinspired minirobot", In: 2011 IEEE International Conference on Robotics, Phuket, Thailand, 2011, pp. 920-925.
[66]
J.G. Wang, C.Y. Yang, Z. Wang, Q.M. Wang, and T. Song, "The cable-free measurement and control system of a new bionic robot", Robot, vol. 32, pp. 34-40, 2010.
[http://dx.doi.org/10.3724/SP.J.1218.2010.00034]
[67]
S.X. Guo, Y.Q. Hu, J. Guo, and Q. Fu, "Design of a Novel Micro Robot In-pipe", In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2020, pp. 1786-1791.
[http://dx.doi.org/10.1109/ICMA49215.2020.9233557]
[68]
G.J. Iddan, "Motor for an in vivo device", US patent 00,307,54, 2006.
[69]
G. Tortoa, P. Valdastri, E. Susil, A. Menciass, P. Dario, F. Rieber, and M. Schurr, "Propeller-based wireless device for active capsular endscopy in the gastric district", Mini. Inv. Ther. All. Tech., vol. 18, pp. 280-290, 2009.
[http://dx.doi.org/10.1080/13645700903201167]
[70]
J.D. Liu, I. Dukes, and S.H. Hu, "Novel mechatronics design for a robotic fish", Proceedings of International Conference on Intelligent robots and Systems, Edmonton, Canada, 2005, pp. 807-812.
[71]
B. Behkam, and M.E. Sitti, "Coli inspired propulsion for swimming microrobots", In: Proceedings of IMECE International Mechanical Engineering Conference, Anaheim, California, USA, 2004, pp. 1037-1041.
[72]
R. Burcher, and L.J. Rydill, Concepts in submarine design., Cambridge University Press: Cambridge, UK, 2014.
[73]
F. Schill, U.R. Zimmer, and J. Trumpf, "Towards optimal TDMA scheduling for robotic swarm communication", In: Proceedings of Towards Autonomous Robotic System., London, 2005, pp. 197-203.
[74]
P. Dario, A. Menciassi, P. Valdastri, and G. Tortora, "Dispositivo endoscopico wireless a propulsione autonoma per esplorazione gastrica", 2008. Available from: ITA. Patent BI865F/FMB/fpd.
[75]
S. Yang, K. Park, J. Kim, T.S. Kim, I.J. Cho, and E.S. Yoon, "Autonomous locomotion of capsule endscope in gastrointestinal tract", In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, US, 2011, pp. 6659-6663.
[76]
H.M. Kim, S. Yang, J. Kim, S. Park, J.H. Cho, J.Y. Park, T.S. Kim, E.S. Yoon, S.Y. Song, and S. Bang, "Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos)", Gastr. Endy., vol. 72, no. 2, pp. 381-387, 2010.
[http://dx.doi.org/10.1016/j.gie.2009.12.058] [PMID: 20497903]
[77]
L. Liu, Resonant ciliary structure enteroscope, M.S. thesis, Suzhou university, Suzhou, China, 2014.
[78]
J.G. Wu, D.Q. Xiao, and J.G. Zhu, "Research development on (KxNa1-x)NbO3-based lead-free piezoelectric ceramics", Recent Pat. Mater. Sci., vol. 2, pp. 140-153, 2009.
[http://dx.doi.org/10.2174/1874464810902020140]
[79]
H.S.A. Mohd, A.H. Azrul, and Y.M. Burhanuddin, "Process development of piezoelectric micro power generator for implantable biomedical devices", Micro Nanosyst., vol. 7, pp. 180-189, 2015.
[80]
J. Kwon, S. Park, J. Park, and B. Kim, "Evaluation of the critical stroke of an earthworm-like robot for capsule endoscopes", Proc. Inst. Mech. Eng. H, vol. 221, no. 4, pp. 397-405, 2007.
[http://dx.doi.org/10.1243/09544119JEIM134] [PMID: 17605397]
[81]
S. Park, H. Park, and B. Kim, "A paddling based locomotive mechanism for capsule endoscopes", J. Mech. Sci. Technol., vol. 20, pp. 1012-1018, 2006.
[http://dx.doi.org/10.1007/BF02916000]
[82]
M.E. Karagozler, E. Cheung, J. Kwon, and M. Sitti, "Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives", In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics., Pisa, Italy, 2006, pp. 105-111.
[http://dx.doi.org/10.1109/BIOROB.2006.1639068]
[83]
G. Kaur, S. Jain, and A.K. Tiwary, "Recent approaches for colon drug delivery", Rec. Pat. Drug Del. & Form, vol. 1, no. 3, pp. 222-229, 2007.
[http://dx.doi.org/10.2174/187221107782331665] [PMID: 19075889]
[84]
Y.S. Zhang, Z.K. Su, Z.Q. Yang, W.J. Bai, and M.L. Chi, "The invention relates to an active and passive two-hemispherical capsule robot and its attitude adjustment and turning drive control method", CN. Patent 10,498,338,5A, 2015.
[85]
Y.S. Zhang, H.T. Zhou, L.X. Zhang, and H.Y. Yang, "A new double hemispherical capsule robot is presented", Jixie Gongcheng Xuebao, vol. 53, pp. 110-118, 2017.
[http://dx.doi.org/10.3901/JME.2017.15.110]
[86]
Y.S. Zhang, C.L. Xu, M.L. Chi, W.J. Bai, and C.X. Cheng, "3D gradient rotating magnetic field in capsule robot magnetic force", Jixie Gongcheng Xuebao, vol. 53, pp. 1-7, 2014.
[http://dx.doi.org/10.3901/JME.2017.19.001]
[87]
Y.W. Long, and Y.S. Zhang, "Assembly error compensation method of universal rotating magnetic vector generator", Mech. Ele. Engrg. Tech., vol. 48, pp. 9-12, 2019.
[88]
O. Hideyuki, "Effects of static magnetic fields on blood pressure in animals and humans", Curr. Hyp. Rev., vol. 4, p. 63, 2008.
[http://dx.doi.org/10.2174/157340208783497237]
[89]
S. Yim, and M. Sitti, "Design and analysis of a magenetically actuated and compliant capsule endscopic robot", In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 4810-4815.
[http://dx.doi.org/10.1109/ICRA.2011.5979819]
[90]
P.F. Sarrus, "Wikipedia", Available from: http://en.wikipedia.org/wiki/Sarrus [Accessed: Aug. 20, 2017].
[91]
A.M. Hoover, and R.S. Fearing, "Analysis of off-axis performance of compliant mechanisms with applications to mobile millirobots", In: IEEE Int. Conference, Intelligent Robots and Systems, St. Louis, USA, 2009, pp. 2772-2776.
[http://dx.doi.org/10.1109/IROS.2009.5354374]
[92]
R. Liu, Y.A. Yao, and Y. Li, "Design and analysis of a deployable tetrahedron-based mobile robot constructed by Sarrus linkages", Mec. Mace Thy., vol. 152, p. 103964, 2020.
[http://dx.doi.org/10.1016/j.mechmachtheory.2020.103964]