Discovery of Natural Product Inspired 3-Phenyl-1H-isochromen-1-ones as Highly Potent Antioxidant and Antiplatelet Agents: Design, Synthesis, Biological Evaluation, SAR and In Silico Studies

Page: [829 - 840] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Several natural/synthetic molecules having a structure similar to 1H-isochromen- 1-ones have been reported to display promising antioxidants and platelet aggregation inhibitory activity. Isocoumarin (1H-2-benzopyran-1-one) skeleton, either whole or as a part of the molecular framework, has been explored for its antioxidant or antiplatelet activities.

Introduction: Based on the literature, a new prototype, i.e., 3-phenyl-1H-isochromen-1-ones based compounds, has been rationalized to possess both antioxidant as well as antiplatelet activities. Consequently, no reports are available regarding its inhibition either by cyclooxygenase-1 (COX-1) enzyme or by arachidonic acid (AA)-induced platelet aggregation. This prompted us to investigate 3-phenyl-1H-isochromen-1-ones towards antioxidant and antiplatelet agents.

Methods: The goal of this work was to identify new 3-phenyl-1H-isochromen-1-ones based compounds via synthesis of a series of analogues, followed by performing in vitro antioxidant as well as AA-induced antiplatelet activities. Then, identification of potent compounds by SAR and molecular docking studies was carried out.

Results: Out of all synthesized 3-phenyl-1H-isochromen-1-ones analogues, five compounds showed 7-fold to 16-fold more highly potent antioxidant activities than ascorbic acid. Altogether, ten 3-phenyl-1H-isochromen- 1-one analogues displayed antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Almost all the 3-phenyl-1H-isochromen-1-one analogues exhibited potent AA-induced antiplatelet activity; few of them displayed 7-folds more activity as compared to aspirin. Further, in silico analysis validated the wet results.

Conclusion: We disclose the first detailed study for the identification of 3-phenyl-1H-isochromen-1-one analogues as highly potent antioxidant as well as antiplatelet agents. The article describes the scaffold designing, synthesis, bioevaluation, structure-activity relationship, and in silico studies of a pharmaceutically privileged bioactive 3-phenyl-1H-isochromen-1-one class of heterocycles.

Keywords: 3-Phenyl-1H-isochromen-1-one, Sonogashira coupling, 6-endo-dig cyclization, antioxidant, DPPH, antiplatelet, arachidonic acid, structure-activity relationship.

[1]
Noor AO, Almasri DM, Bagalagel AA, et al. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 2020; 25(2): 395.
[http://dx.doi.org/10.3390/molecules25020395] [PMID: 31963586]
[2]
a) Saikia P, Gogoi S. Isocoumarins: General aspects and recent advances in their synthesis. Adv Synth Catal 2018; 360: 2063-75.
[http://dx.doi.org/10.1002/adsc.201800019] ; b) Shabir G, Saeed A, El-Seedi HR. Natural isocoumarins: Structural styles and biological activities, the revelations carry on. Phytochemistry 2021; 181: 112568.
[http://dx.doi.org/10.1016/j.phytochem.2020.112568] [PMID: 33166749]
[3]
a) Abid O-R, Khalid M, Hussain MT, et al. Synthesis and anti- cancer, anti-metastatic evaluation of some new fluorinated isocoumarins and 3,4-dihydroisocoumarins. J Fluor Chem 2012; 135: 240-5.
[http://dx.doi.org/10.1016/j.jfluchem.2011.11.011] ; b) Umehara K, Matsumoto M, Nakamura M, Miyase T, Kuroyanagi M, Noguchi H. Differentiation inducing activities of isocoumarins from Hydrangea Dulcis Folium. Chem Pharm Bull (Tokyo) 2000; 48(4): 566-7.
[http://dx.doi.org/10.1248/cpb.48.566] [PMID: 10783081] ; c) Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, et al. Azaphilone and isocoumarin derivatives from the endophytic fungus Penicillium sclerotiorum PSU-A13. Chem Pharm Bull (Tokyo) 2010; 58(8): 1033-6.
[http://dx.doi.org/10.1248/cpb.58.1033] [PMID: 20686255] ; d) Shang S-Z, Xu W-X, Li L, et al. Antiviral isocoumarins from the roots and stems of Nicotiana tabacum. Phytochem Lett 2015; 11: 53-6.
[http://dx.doi.org/10.1016/j.phytol.2014.11.008] ; e) Zhang H, Matsuda H, Kumahara A, Ito Y, Nakamura S, Yoshikawa M. New type of anti-diabetic compounds from the processed leaves of Hydrangea macrophylla var. thunbergii (Hydrangeae Dulcis Folium). Bioorg Med Chem Lett 2007; 17(17): 4972-6.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.027] [PMID: 17609121] ; f) Cai R, Wu Y, Chen S, et al. Peniisocoumarins A–J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel. J Nat Prod 2018; 81(6): 1376-83.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01018] [PMID: 29792702] ; g) Shimojima Y, Hayashi H, Ooka T, Shibukawa M, Iitaka Y. (Studies on AI-77s, microbial products with pharmacological activity) structures and the chemical nature of AI-77s. Tet Lett 1982; 23: 5435-8.
[http://dx.doi.org/10.1016/S0040-4039(00)85861-X] ; h) Yoshikawa M, Harada E, Naitoh Y, et al. Development of bioactive functions in hydrangeae dulcis folium. III. On the antiallergic and antimicrobial principles of hydrangeae dulcis folium. (1). Thunberginols A, B, and F. Chem Pharm Bull (Tokyo) 1994; 42(11): 2225-30.
[http://dx.doi.org/10.1248/cpb.42.2225] [PMID: 7532114] ; i) Nozawa K, Yamada M, Tsuda Y, Kawai K, Nakajima S. Antifungal activity of oosponol, oospolactone, phyllodulcin, hydrangenol, and some other related compounds. Chem Pharm Bull (Tokyo) 1981; 29(9): 2689-91.
[http://dx.doi.org/10.1248/cpb.29.2689] [PMID: 7349286] ; j) Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J Nat Prod 2011; 74(1): 79-81.
[http://dx.doi.org/10.1021/np1003752] [PMID: 21174408] ; k) Furuta T, Fukuyama Y, Asakawa Y. Polygonolide, an isocoumarin from polygonum hydropiper possessing anti-inflammatory activity. Phytochemistry 1986; 25: 517-20.
[http://dx.doi.org/10.1016/S0031-9422(00)85513-2] ; l) Manivel P, Roopan SM, Kumar DP, Khan FN. Isocoumarin thioanalogues as potential antibacterial agents. Phosphorus Sulfur Silicon Relat Elem 2009; 184: 2576-82.
[http://dx.doi.org/10.1080/10426500802529507] ; m) Guimarães KG, de Freitas RP, Ruiz ALTG, et al. Synthesis, antiproliferative activities, and computational evaluation of novel isocoumarin and 3,4-dihydroisocoumarin derivatives. Eur J Med Chem 2016; 111: 103-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.051] [PMID: 26859070] ; n) Lee JH, Park YJ, Kim HS, Hong YS, Kim K-W, Lee JJ. Anti-angiogenic activities of novel isocoumarins, AGI-7 and sescandelin. J Antibiot (Tokyo) 2001; 54(5): 463-6.
[http://dx.doi.org/10.7164/antibiotics.54.463] [PMID: 11480892] ; o) Matsuda H, Shimoda H, Yamahara J, Yoshikawa M. Immunomodulatory activity of thunberginol A and related compounds isolated from Hydrangeae Dulcis Folium on splenocyte proliferation activated by mitogens. Bioorg Med Chem Lett 1998; 8(3): 215-20.
[http://dx.doi.org/10.1016/S0960-894X(97)10221-9] [PMID: 9871657] ; p) Meepagala KM, Briscoe WE, Techen N, Johnson RD, Clausen BM, Duke SO. Isolation of a phytotoxic isocoumarin from Diaporthe eres-infected Hedera helix (English ivy) and synthesis of its phytotoxic analogs. Pest Manag Sci 2018; 74(1): 37-45.
[http://dx.doi.org/10.1002/ps.4712] [PMID: 28834621] ; q) Mercier J, Arul J, Julien C. Effect of food preparation on the isocoumarin, 6-methoxymellein, content of UV-treated carrots. Food Res 1994; 27: 401-4.
[http://dx.doi.org/10.1016/0963-9969(94)90196-1] ; r) Park E-J, Oh H, Kang T-H, Sohn D-H, Kim Y-C. An isocoumarin with hepatoprotective activity in Hep G2 and primary hepatocytes from Agrimonia pilosa. Arch Pharm Res 2004; 27(9): 944-6.
[http://dx.doi.org/10.1007/BF02975848] [PMID: 15473665] ; s) McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP. Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 1991; 54(3): 785-95.
[http://dx.doi.org/10.1021/np50075a006] [PMID: 1955881] ; t) Cheng F, Deng Z, Guo Z, Chen J, Zou K. Machilusmarin, a new neuroprotective isocoumarin dimer from the stems of Machilus ichangensis Rehd. et Wils. Nat Prod Res 2013; 27(17): 1542-7.
[http://dx.doi.org/10.1080/14786419.2012.733392] [PMID: 23082968] ; u) Kiang F-M, Chang S-J, Wu C-L. Naphthalene and isocoumarin derivatives from the liverwort Wettsteinia inversa. Phytochemistry 1994; 37: 1459-61.
[http://dx.doi.org/10.1016/S0031-9422(00)90433-3] ; v) Chen M, Shao C-L, Wang K-L, Xu Y, She Z-G, Wang C-Y. Dihydroisocoumarin derivatives with antifouling activities from a gorgonian-derived Eurotium sp. Fungus Tetrahedron 2014; 70: 9132-8.
[http://dx.doi.org/10.1016/j.tet.2014.08.055] ; w) Qadeer G, Rama NH, Fan Z-J, Liu B, Liu X-F. Synthesis, herbicidal, fungicidal and insecticidal evaluation of 3-(dichlorophenyl)-isocoumarins and (±)-3-(dichlorophenyl)-3, 4-dihydroisocoumarins. J Braz Chem Soc 2007; 18: 1176-82.
[http://dx.doi.org/10.1590/S0103-50532007000600011]
[4]
a) Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ. Dietary anthocyanins against obesity and inflammation. Nutrients 2017; 9(10): 1049.
[http://dx.doi.org/10.3390/nu9101089] [PMID: 28974032] ; b) Huang L, Ding L, Li X, et al. New dihydroisocoumarin root growth inhibitors from the sponge-derived fungus aspergillus sp. NBUF87. Front Microbiol 2019; 10: 2846.
[http://dx.doi.org/10.3389/fmicb.2019.02846] [PMID: 31921029] ; c) Kihampa C, Nkunya MHH, Joseph CC, et al. Anti-mosquito and antimicrobial nor-halimanoids, isocoumarins and an anilinoid from Tessmannia densiflora. Phytochemistry 2009; 70(10): 1233-8.
[http://dx.doi.org/10.1016/j.phytochem.2009.07.024] [PMID: 19699496] ; d) Pochet L, Frédérick R, Masereel B. Coumarin and isocoumarin as serine protease inhibitors. Curr Pharm Des 2004; 10(30): 3781-96.
[http://dx.doi.org/10.2174/1381612043382684] [PMID: 15579071] ; e) Ramanan M, Sinha S, Sudarshan K, Aidhen IS, Doble M. Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins. Eur J Med Chem 2016; 124: 428-34.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.066] [PMID: 27597418] ; f) Kimura M, Waki I, Kokubo M. Inhibition of compound 48/80- mediated histamine release from isolated rat mast cells by oosponol-related compounds (4-acyl-isocoumarins). Jpn J Pharmacol 1978; 28(5): 693-7.
[http://dx.doi.org/10.1254/jjp.28.693] [PMID: 82631]
[5]
a) Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol 2009; 157(7): 1097-110.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00282.x] [PMID: 19508394] ; b) Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 2013; 57(1): 114-25.
[http://dx.doi.org/10.1002/mnfr.201200608] [PMID: 23293044] ; c) Devienne KF, Cálgaro-Helena AF, Dorta DJ, et al. Antioxidant activity of isocoumarins isolated from Paepalanthus bromelioides on mitochondria. Phytochemistry 2007; 68(7): 1075-80.
[http://dx.doi.org/10.1016/j.phytochem.2007.01.014] [PMID: 17337023] ; d) Wu J-F, Chen S-B, Gao J-C, et al. Antioxidants and a new dihydroisocoumarins from Polygala hongkongensis Hemsl. Nat Prod Res 2007; 21(7): 580-4.
[http://dx.doi.org/10.1080/14786410701369391] [PMID: 17613814]
[6]
a) Schrör K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost 1997; 23(4): 349-56.
[http://dx.doi.org/10.1055/s-2007-996108] [PMID: 9263351] ; b) Wilson TW, Quest DW. Ridogrel: An antiplatelet agent with antihypertensive properties. Cardiovasc Drug Rev 2000; 18: 222-31.
[http://dx.doi.org/10.1111/j.1527-3466.2000.tb00045.x] ; c) Fraj J, Valero A, Vives R, et al. Safety of triflusal (antiplatelet drug) in patients with aspirin-exacerbated respiratory diseases. Allergy 2008; 63(1): 112-5.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01473.x] [PMID: 18053020] ; d) Chang Y, Chen W-F, Lin K-H, et al. Novel bioactivity of ellagic Acid in inhibiting human platelet activation. Evid Based Complement Alternat Med 2013; 2013: 595128.
[http://dx.doi.org/10.1155/2013/595128] [PMID: 23533502] ; e) Teng CM, Hsu SY, Lin CH, et al. Antiplatelet action of dehydrokawain derivatives isolated from Alpinia speciosa rhizoma. Chin J Physiol 1990; 33(1): 41-8.
[PMID: 2376215] ; f) Cole LB, Kilpatrick JM, Chu N, Babu YS. Structure of 3,4-dichloroisocoumarin-inhibited factor D. Acta Crystallogr D Biol Crystallogr 1998; 54(Pt 5): 711-7.
[http://dx.doi.org/10.1107/S0907444997010457] [PMID: 9757085] ; g) Isocoumarin derivatives and use there of in drugs. United States Patent, Patent Number: 6,020,363, 2000.; h) Mehta SK, Gowder SJT. Members of antioxidant machinery and their functions. In: Gowder S J T, Ed. Basic Principles and Clinical Significance of Oxidative Stress. IntechOpen 2015. Available from:https://www.intechopen.com/books/basic-principles-and-clinical-significance-of-oxidative-stress/
[http://dx.doi.org/10.5772/61884.]
[7]
a) Saeed A, Haroon M, Muhammad F, Larik FA, Hesham E-S. Channar. P. A. Advances in transition-metal-catalyzed synthesis of 3-substituted isocoumarins. J Org Chem 2017; 834: 88-103.
[http://dx.doi.org/10.1016/j.jorganchem.2017.02.016] ; b) Braca A, Bader A, De Tommasi N. Chapter 7-plant and fungi 3,4-dihydroisocoumarins: structures, biological activity, and taxonomic relationships. Stud Nat Prod Chem 2012; 37: 191-215.
[http://dx.doi.org/10.1016/B978-0-444-59514-0.00007-9] ; c) Şahin H, Sarı A, Özsoy N, Özbek Çelik B, Koyuncu O. Two new phenolic compounds and some biological activities of Scorzonera pygmaea Sibth. & Sm. subaerial parts. Nat Prod Res 2018; 34(5): 1-8.
[PMID: 30445831] ; d) Xiao Z, Chen S, Cai R, Lin S, Hong K, She Z. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J Org Chem 2016; 12: 2077-85.
[http://dx.doi.org/10.3762/bjoc.12.196] [PMID: 27829913] ; e) Saher L, Makhloufi-Chebli M, Dermeche L, et al. 10-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-3-methyl-1H,10H-pyrano[4,3- b]chromen-1-ones from a pseudo-multicomponent reaction and evaluation of their antioxidant activity. Tetrahedron 2018; 74(8): 872-9.
[http://dx.doi.org/10.1016/j.tet.2018.01.009]
[8]
Kam C-M, Kerrigan JE, Plaskon RR, et al. Mechanism-based isocoumarin inhibitors for blood coagulation serine proteases. Effect of the 7-substituent in 7-amino-4-chloro-3-(isothioureidoalkoxy)isocoumarins on inhibitory and anticoagulant potency. J Med Chem 1994; 37(9): 1298-306.
[http://dx.doi.org/10.1021/jm00035a009] [PMID: 8176707]
[9]
Powers JC, Kam C-M. Isocoumarins with basic substituents as serine proteases inhibitors, anticoagulants and anti-inflammatory agents. US Patent, 4,845,242, 1990.
[10]
a) Jeon YE. Evaluation of the antioxidant activity of the fruiting body of Phellinus linteus using the on-line HPLC-DPPH method. J Korean Soc Appl Biol Chem 2009; 52: 472-9.
[http://dx.doi.org/10.3839/jksabc.2009.081] ; b) Wu J-H, Tung Y-T, Chyu C-F, et al. Antioxidant activity and constituents of extracts from the root of Garcinia multiflora. J Wood Sci 2008; 54: 383-9.
[http://dx.doi.org/10.1007/s10086-008-0961-9] ; c) Patel D, Patel K, Kumar R, Gadewar M, Tahilyani V. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. Asian Pac J Trop Dis 2012; 2(2): 163-7.
[http://dx.doi.org/10.1016/S2222-1808(12)60037-1]
[11]
McGlacken GP, Fairlamb IJS. 2-Pyrone natural products and mimetics: isolation, characterisation and biological activity. Nat Prod Rep 2005; 22(3): 369-85.
[http://dx.doi.org/10.1039/b416651p] [PMID: 16010346]
[12]
Lee YY, Jang DS, Jin JL, Yun-Choi HS. Anti-platelet aggregating and anti-oxidative activities of 11-O-(4′-O-methylgalloyl)-bergenin, a new compound isolated from Crassula cv. ‘Himaturi’. Planta Med 2005; 71(8): 776-7.
[http://dx.doi.org/10.1055/s-2005-864189] [PMID: 16142645]
[13]
a) Kumar YS, Dasaradhan C, Prabakaran K, et al. Palladium catalyzed Suzuki Miyaura cross coupling of 3-chlroisochromen-1-one: Synthesis of glomellin and reticulol analogues. Tet Lett 2015; 56(7): 941-5.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.114] ; b) Chary RG, Reddy GR, Ganesh YSS, et al. Cu-catalyzed coupling-cyclization in PEG 400 under ultrasound: A highly selective and greener approach towards isocoumarins. RSC Advances 2013; 3(25): 9641-4.
[http://dx.doi.org/10.1039/c3ra40969d] ; c) Kumar MR, Irudayanathan FM, Moon JH, Lee S. Regioselective one-pot synthesis of isocoumarins and phthalides from 2-iodobenzoic acids and alkynes by temperature control. Adv Synth Catal 2013; 355(16): 3221-30.
[http://dx.doi.org/10.1002/adsc.201300561] ; d) Ge Z-Y, Fei X-D, Tang T, Zhu Y-M, Shen J-K. Synthesis of 3-substituted isocoumarins via a cascade intramolecular Ullmann-type coupling-rearrangement process. J Org Chem 2012; 77(13): 5736-43.
[http://dx.doi.org/10.1021/jo300916s] [PMID: 22676390]
[14]
Chaudhary S, Shyamlal BRK, Yadav L, Tiwari MK, Kumar K. Ag2O nanoparticle-catalyzed substrate-controlled regioselectivities: direct access to 3-ylidenephthalides and isocoumarins. RSC Advances 2018; 8: 23152-62.
[http://dx.doi.org/10.1039/C8RA03926G]
[15]
a) Shyamlal BRK, Yadav L, Tiwari MK, et al. Synthesis, bioevaluation, structure activity relationship and docking studies of natural product inspired (Z)-3-benzylideneisobenzofuran1(3H)-ones as highly potent antioxidants and antiplatelet agents. Sci Rep 2020; 10(1): 2307.
[http://dx.doi.org/10.1038/s41598-020-59218-6] [PMID: 32047204] ; b) Shyamlal BRK, Mathur M, Yadav DK, Chaudhary S. Microwave-assisted modified synthesis of C8-analogues of naturally occurring methylxanthines: Synthesis, biological evaluation and their practical applications. Fitoterapia 2020; 143: 104533.
[http://dx.doi.org/10.1016/j.fitote.2020.104533] [PMID: 32145313] ; c) Yadav RK, Kumar Y, Chaudhary S. Metal-free, H2O2-mediated regioselective direct C-3 hydroxylation of imidazo[1,2-a]pyridines via C(sp2)–H bond functionalization. ChemistrySelect 2020; 5: 9235-9.
[http://dx.doi.org/10.1002/slct.202002219] ; d) Sharma V, Jaiswal PK, Saran M, Yadav DK. Saloni, Mathur M, Swami AK, Misra S, Kim M-H, Chaudhary S. Discovery of C-3 tethered 2-oxo-benzo[1, 4]oxazines as potent antioxidants: Bio-inspired based design, synthesis, biological evaluation, cytotoxic and Insilico molecular docking studies. Front Chem 2018; 6(56): 1-17.
[http://dx.doi.org/10.3389/fchem.2018.00056] [PMID: 29629369] ; e) Sharma V, Jaiswal PK, Yadav DK, et al. Microwave-assisted one-pot efficient synthesis of functionalized 2-oxo-2-phenylethylidenes-linked 2-oxo-benzo[1,4]oxazines and 2-oxo-quino[1,4]oxalines: Synthetic applications, antioxidant activity, SAR and cytotoxic studies. Acta Chim Slov 2017; 64(4): 988-1004.
[http://dx.doi.org/10.17344/acsi.2017.3709] [PMID: 29318312]
[16]
a) Chen K-S, Ko F-N, Teng C-M, Wu Y-C. Antiplatelet of vasorelaxing actions of some benzylisoquinoline and phenanthrene alkaloids. J Nat Prod 1996; 59(5): 531-4.
[http://dx.doi.org/10.1021/np960354x] [PMID: 8778245] ; b) Jaiswal PK, Sharma V, Saloni , et al. Non-peptide-based new class of platelet aggregation inhibitors: Design, synthesis, bioevaluation, SAR, and in silico studies. Arch Pharm (Weinheim) 2018; 351(3-4): 1-17.
[http://dx.doi.org/10.1002/ardp.201700349] ; c) Sharma V, Jaiswal PK, Kumar S, et al. Discovery of novel aporphine analogues as potential antiplatelet and antioxidant agents: Design, synthesis, SAR, biological evaluation and in silico molecular docking studies. ChemMedChem 2018; 13(17): 1817-32.
[http://dx.doi.org/10.1002/cmdc.201800318] [PMID: 30088331] ; d) Sharma V, Jaiswal PK, Kumar K, et al. An efficient synthesis and biological evaluation of novel analogues of natural product Cephalandole A: A new class of antimicrobial and antiplatelet agents. Fitoterapia 2018; 129: 13-9.
[http://dx.doi.org/10.1016/j.fitote.2018.06.003] [PMID: 29894738]
[17]
Teng C-M, Chen W-Y, Ko W-C, Ouyang C. Antiplatelet and vasorelaxing actions of some benzylisoquinoline and phenanthrene alkaloids. Biochim Biophys Acta, Gen Subj 1987; 924: 375-82.
[18]
Monteiro G, Horta BB, Pimenta DC, Augusto O, Netto LES. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci USA 2007; 104(12): 4886-91.
[http://dx.doi.org/10.1073/pnas.0700481104] [PMID: 17360337]
[19]
Hernández-Vázquez E, Castañeda-Arriaga R, Ramírez-Espinosa JJ, et al. 1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies. Eur J Med Chem 2015; 100: 106-18.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.010] [PMID: 26079087]
[20]
Yadav DK, Kumar S, Choi E-H, Sharma P, Misra S, Kim M-H. Insight into the molecular dynamic simulation studies of reactive oxygen species in native skin membrane. Front Pharmacol 2018; 9: 644.
[http://dx.doi.org/10.3389/fphar.2018.00644] [PMID: 29997501]
[21]
Copley SD, Novak WRP, Babbitt PC. Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 2004; 43(44): 13981-95.
[http://dx.doi.org/10.1021/bi048947r] [PMID: 15518547]