Connectivity and Patterns of Regional Cerebral Blood Flow, Cerebral Glucose Uptake, and Aβ-Amyloid Deposition in Alzheimer's Disease (Early and Late-Onset) Compared to Normal Ageing

Page: [646 - 655] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Purpose: The aim of this study was to investigate the differences in early (EOAD) and late (LOAD) onset of Alzheimer´s disease, as well as glucose uptake, regional cerebral blood flow (R1), amyloid depositions, and functional brain connectivity between normal young (YC) and Old Controls (OC).

Methodology: The study included 22 YC (37 ± 5 y), 22 OC (73 ± 5.9 y), 18 patients with EOAD (63 ± 9.5 y), and 18 with LOAD (70.6 ± 7.1 y). Patients underwent FDG and PIB PET/CT. R1 images were obtained from the compartmental analysis of the dynamic PIB acquisitions. Images were analyzed by a voxel-wise and a VOI-based approach. Functional connectivity was studied from the R1 and glucose uptake images.

Results: OC had a significant reduction of R1 and glucose uptake compared to YC, predominantly at the dorsolateral and mesial frontal cortex. EOAD and LOAD vs. OC showed a decreased R1 and glucose uptake at the posterior parietal cortex, precuneus, and posterior cingulum. EOAD vs. LOAD showed a reduction in glucose uptake and R1 at the occipital and parietal cortex and an increased at the mesial frontal and temporal cortex. There was a mild increase in an amyloid deposition at the frontal cortex in LOAD vs. EOAD. YC presented higher connectivity than OC in R1 but lower connectivity considering glucose uptake. Moreover, EOAD and LOAD showed a decreased connectivity compared to controls that were more pronounced in glucose uptake than R1.

Conclusion: Our results demonstrated differences in amyloid deposition and functional imaging between groups and a differential pattern of functional connectivity in R1 and glucose uptake in each clinical condition. These findings provide new insights into the pathophysiological processes of AD and may have an impact on patient diagnostic evaluation.

Keywords: Alzheimer's disease, glucose uptake, regional cerebral blood flow, amyloid depositions, functional brain connectivity, EOAD, LOAD.

[1]
Isik AT. Late onset Alzheimer’s disease in older people. Clin Interv Aging 2010; 5: 307-11.
[http://dx.doi.org/10.2147/CIA.S11718] [PMID: 21103401]
[2]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[3]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[4]
Kalpouzos G, Eustache F, de la Sayette V, Viader F, Chételat G, Desgranges B. Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients. J Neurol 2005; 252(5): 548-58.
[http://dx.doi.org/10.1007/s00415-005-0685-3] [PMID: 15726251]
[5]
Kim EJ, Cho SS, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 2005; 128(Pt 8): 1790-801.
[http://dx.doi.org/10.1093/brain/awh539] [PMID: 15888536]
[6]
Rabinovici GD, Furst AJ, Alkalay A, et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 2010; 133(Pt 2): 512-28.
[http://dx.doi.org/10.1093/brain/awp326] [PMID: 20080878]
[7]
Arbizu J, García-Ribas G, Carrió I, Garrastachu P, Martínez-Lage P, Molinuevo JL. Recomendaciones para la utilización de biomarcadores de imagen PET en el proceso diagnóstico de las enfermedades neurodegenerativas que cursan con demencia: Documento de consenso SEMNIM y SEN. Rev Esp Med Nucl Imagen Mol 2015; 34(5): 303-13.
[http://dx.doi.org/10.1016/j.remn.2015.03.002] [PMID: 26099942]
[8]
Frisoni GB, Bocchetta M, Chételat G, et al. Imaging markers for Alzheimer disease: which vs how. Neurology 2013; 81(5): 487-500.
[http://dx.doi.org/10.1212/WNL.0b013e31829d86e8] [PMID: 23897875]
[9]
Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s association. Alzheimers Dement 2013; 9(1): e-1-e-16.
[http://dx.doi.org/10.1016/j.jalz.2013.01.002] [PMID: 23360977]
[10]
Schöll M, Damián A, Engler H. Fluorodeoxyglucose PET in neurology and psychiatry. PET Clin 2014; 9(4): 371-390, v.
[http://dx.doi.org/10.1016/j.cpet.2014.07.005] [PMID: 26050943]
[11]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[12]
Blomquist G, Engler H, Nordberg A, et al. Unidirectional influx and net accumulation of PIB. Open Neuroimaging J 2008; 2: 114-25.
[http://dx.doi.org/10.2174/1874440000802010114] [PMID: 19526073]
[13]
Forsberg A, Engler H, Blomquist G, Långström B, Nordberg A. The use of PIB-PET as a dual pathological and functional biomarker in AD. Biochim Biophys Acta 2012; 1822(3): 380-5.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.006] [PMID: 22115832]
[14]
Meyer PT, Hellwig S, Amtage F, et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med 2011; 52(3): 393-400.
[http://dx.doi.org/10.2967/jnumed.110.083683] [PMID: 21321269]
[15]
Sojkova J, Goh J, Bilgel M, et al. Voxelwise relationships between distribution volume ratio and cerebral blood flow: Implications for analysis of β-amyloid images. Jorunal Nucl Med 2015; 56(7): 1042-7.
[http://dx.doi.org/10.2967/jnumed.114.151480] [PMID: 25977462]
[16]
Chen YJ, Rosario BL, Mowrey W, et al. Relative 11C-PiB delivery as a proxy of relative CBF: Quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med 2015; 56(8): 1199-205.
[http://dx.doi.org/10.2967/jnumed.114.152405] [PMID: 26045309]
[17]
Peretti DE, Vállez García D, Reesink FE, et al. Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer’s disease. EJNMMI Res 2019; 9(1): 59.
[http://dx.doi.org/10.1186/s13550-019-0528-3] [PMID: 31273465]
[18]
Tiepolt S, Hesse S, Patt M, et al. Early [(18)F]florbetaben and [(11)C]PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2016; 43(9): 1700-9.
[http://dx.doi.org/10.1007/s00259-016-3353-1] [PMID: 27026271]
[19]
Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med 2011; 52(2): 173-9.
[http://dx.doi.org/10.2967/jnumed.110.082057] [PMID: 21233181]
[20]
Oliveira FPM, Moreira AP, de Mendonça A, et al. Can 11C-PiB-PET relative delivery R1 or 11C-PiB-PET perfusion replace 18F-FDG-PET in the assessment of brain neurodegeneration? J Alzheimers Dis 2018; 65(1): 89-97.
[http://dx.doi.org/10.3233/JAD-180274] [PMID: 30056421]
[21]
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996; 4(3 Pt 1): 153-8.
[http://dx.doi.org/10.1006/nimg.1996.0066] [PMID: 9345505]
[22]
Marchal G, Rioux P, Petit-Taboué MC, et al. Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 1992; 49(10): 1013-20.
[http://dx.doi.org/10.1001/archneur.1992.00530340029014] [PMID: 1417508]
[23]
Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997; 6(4): 279-87.
[http://dx.doi.org/10.1006/nimg.1997.0303] [PMID: 9417971]
[24]
Matsuda H, Mizumura S, Nemoto K, et al. Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer Disease. AJNR Am J Neuroradiol 2012; 33(6): 1109-14.
[http://dx.doi.org/10.3174/ajnr.A2935] [PMID: 22300935]
[25]
Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 2014; 12(4): 575-93.
[http://dx.doi.org/10.1007/s12021-014-9235-4] [PMID: 24952892]
[26]
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38(1): 95-113.
[http://dx.doi.org/10.1016/j.neuroimage.2007.07.007] [PMID: 17761438]
[27]
Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 2013; 8(7): e68910.
[http://dx.doi.org/10.1371/journal.pone.0068910] [PMID: 23861951]
[28]
Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 2012; 6(DEC): 171.
[http://dx.doi.org/10.3389/fnins.2012.00171] [PMID: 23227001]
[29]
Metter EJ, Riege WH, Kameyama M, Kuhl DE, Phelps ME. Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson’s diseases. J Cereb Blood Flow Metab 1984; 4(4): 500-6.
[http://dx.doi.org/10.1038/jcbfm.1984.74] [PMID: 6238975]
[30]
Arnemann KL, Stöber F, Narayan S, Rabinovici GD, Jagust WJ. Metabolic brain networks in aging and preclinical Alzheimer’s disease. Neuroimage Clin 2017; 17: 987-99.
[http://dx.doi.org/10.1016/j.nicl.2017.12.037] [PMID: 29527500]
[31]
Kakimoto A, Ito S, Okada H, Nishizawa S, Minoshima S, Ouchi Y. Age-related sex-specific changes in brain metabolism and morphology. J Nucl Med 2016; 57(2): 221-5.
[http://dx.doi.org/10.2967/jnumed.115.166439] [PMID: 26609179]
[32]
Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res Neuroimaging 2014; 221(1): 78-85.
[http://dx.doi.org/10.1016/j.pscychresns.2013.10.009] [PMID: 24262800]
[33]
Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage 1999; 10(2): 149-62.
[http://dx.doi.org/10.1006/nimg.1999.0463] [PMID: 10417247]
[34]
Hsieh TC, Lin WY, Ding HJ, et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging 2012; 22(1): 21-7.
[http://dx.doi.org/10.1111/j.1552-6569.2010.00543.x] [PMID: 21332873]
[35]
Kalpouzos G, Chételat G, Baron JC, et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 2009; 30(1): 112-24.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.019] [PMID: 17630048]
[36]
Kim IJ, Kim SJ, Kim YK. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography. Acta Radiol 2009; 50(10): 1169-74.
[http://dx.doi.org/10.3109/02841850903258058] [PMID: 19922315]
[37]
Moeller JR, Ishikawa T, Dhawan V, et al. The metabolic topography of normal aging. J Cereb Blood Flow Metab 1996; 16(3): 385-98.
[http://dx.doi.org/10.1097/00004647-199605000-00005] [PMID: 8621743]
[38]
Willis MW, Ketter TA, Kimbrell TA, et al. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res 2002; 114(1): 23-37.
[http://dx.doi.org/10.1016/S0925-4927(01)00126-3] [PMID: 11864807]
[39]
Yanase D, Matsunari I, Yajima K, et al. Brain FDG PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging 2005; 32(7): 794-805.
[http://dx.doi.org/10.1007/s00259-005-1767-2] [PMID: 15759148]
[40]
Zuendorf G, Kerrouche N, Herholz K, Baron JC. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum Brain Mapp 2003; 18(1): 13-21.
[http://dx.doi.org/10.1002/hbm.10069] [PMID: 12454908]
[41]
Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 2007; 69(9): 871-7.
[http://dx.doi.org/10.1212/01.wnl.0000269790.05105.16] [PMID: 17724289]
[42]
Silverman DHS, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 2001; 286(17): 2120-7.
[http://dx.doi.org/10.1001/jama.286.17.2120] [PMID: 11694153]
[43]
Hiura M, Nariai T, Ishii K, et al. Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET. J Cereb Blood Flow Metab 2014; 34(3): 389-96.
[http://dx.doi.org/10.1038/jcbfm.2013.220] [PMID: 24301294]
[44]
Kemp PM, Holmes C, Hoffmann SMA, et al. Alzheimer’s disease: differences in technetium-99m HMPAO SPECT scan findings between early onset and late onset dementia. J Neurol Neurosurg Psychiatry 2003; 74(6): 715-9.
[http://dx.doi.org/10.1136/jnnp.74.6.715] [PMID: 12754337]
[45]
Sakamoto S, Ishii K, Sasaki M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J Neurol Sci 2002; 200(1-2): 27-32.
[http://dx.doi.org/10.1016/S0022-510X(02)00114-4] [PMID: 12127672]
[46]
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55(3): 306-19.
[http://dx.doi.org/10.1002/ana.20009] [PMID: 14991808]
[47]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica, 82(4), 239–259. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[48]
Cho H, Seo SW, Kim JH, et al. Amyloid deposition in early onset versus late onset Alzheimer’s disease. J Alzheimers Dis 2013; 35(4): 813-21.
[http://dx.doi.org/10.3233/JAD-121927] [PMID: 23507771]
[49]
Marshall GA, Fairbanks LA, Tekin S, Vinters HV, Cummings JL. Early-onset Alzheimer’s disease is associated with greater pathologic burden. J Geriatr Psychiatry Neurol 2007; 20(1): 29-33.
[http://dx.doi.org/10.1177/0891988706297086] [PMID: 17341768]
[50]
Ho GJ, Hansen LA, Alford MF, et al. Age at onset is associated with disease severity in Lewy body variant and Alzheimer’s disease. Neuroreport 2002; 13(14): 1825-8.
[http://dx.doi.org/10.1097/00001756-200210070-00028] [PMID: 12395133]
[51]
Ossenkoppele Rik, Jansen Willemijn J, Rabinovici Gil D, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 2015; 313(19): 1939-49.
[http://dx.doi.org/10.1001/jama.2015.4669] [PMID: 25988463]
[52]
Pasqualetti G, Harris R, Rinne J, et al. Does cerebral glucose metabolism and blood flow dissociate in early stages of Alzheimer’s Disease? Alzheimers Dement 2014; 10(4): 536.
[http://dx.doi.org/10.1016/j.jalz.2014.05.855]