Current Topics in Medicinal Chemistry

Author(s): Jie Li and Junwei Zhang*

DOI: 10.2174/1568026621666211111160332

The Antibacterial Activity of 1,2,3-triazole- and 1,2,4-Triazole-containing Hybrids against Staphylococcus aureus: An Updated Review (2020- Present)

Page: [41 - 63] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Staphylococcus aureus (S. aureus), a prominent, highly contagious nosocomial and community- acquired bacterial pathogen, can cause a broad spectrum of diseases. Antibiotic-resistant S. aureus strains, which pose potential causes of morbidity and mortality, have continuously emerged in recent years, calling for novel anti-S. aureus agents. 1,2,3-triazole and 1,2,4-triazole, the bioisostere of amides, esters, and carboxylic acids, are potent inhibitors of DNA gyrase, topoisomerase IV, efflux pumps, filamentous temperature-sensitive protein Z, and penicillin-binding protein. In particular, 1,2,3-triazole- and 1,2,4-triazole-containing hybrids have the potential to exert dual or multiple antibacterial mechanisms of action. Moreover, 1,2,3-triazole-cephalosporin hybrid cefatrizine, 1,2,3- triazole-oxazolidinone hybrid radezolid, and 1,2,4-triazolo[1,5-a]pyrimidine hybrid essramycin, have already been used in clinical practice to treat bacterial infections. Hence, 1,2,3-triazole- and 1,2,4- triazole-containing hybrids possess promising broad-spectrum antibacterial activity against diverse clinically significant organisms, including drug-resistant forms. This review is an update on the latest development of 1,2,3-triazole- and 1,2,4-triazole-containing hybrids with anti-S. aureus activity, covering articles published between January 2020 and July 2021.

Keywords: 1, 2, 3-triazole, 1, 4-triazole, Hybrid compounds, Antibacterial, Staphylococcus aureus, Synthesis.

Graphical Abstract

[1]
Malak, H.A.; Abulreesh, H.H.; Organji, S.R.; Elbanna, K.; Shaaban, M.R. Samreen; Ahmad, I.; Shami, A.; Alshehri, W.; Kalel, A.; Aburresh, H.H.; Asiri, F.H.; Aldosari, M.S.; Almalki, M.H.K. Immune system evasion mechanisms in Staphylococcus aureus: Current understanding. J. Pure Appl. Microbiol., 2020, 14(4), 2219-2234.
[http://dx.doi.org/10.22207/JPAM.14.4.01]
[2]
Horino, T.; Hori, S. Metastatic infection during Staphylococcus aureus bacteremia. J. Infect. Chemother., 2020, 26(2), 162-169.
[http://dx.doi.org/10.1016/j.jiac.2019.10.003] [PMID: 31676266]
[3]
Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[http://dx.doi.org/10.1128/CMR.00134-14] [PMID: 26016486]
[4]
Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence, 2021, 12(1), 547-569.
[http://dx.doi.org/10.1080/21505594.2021.1878688] [PMID: 33522395]
[5]
Miller, L.S.; Fowler, V.G.; Shukla, S.K.; Rose, W.E.; Proctor, R.A. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev., 2020, 44(1), 123-153.
[http://dx.doi.org/10.1093/femsre/fuz030] [PMID: 31841134]
[6]
Crossref, L.Z. A review of Staphylococcus aureus and the emergence of drug-resistant problem. Adv. Microb. Physiol., 2018, 8, 65-76.
[http://dx.doi.org/10.4236/aim.2018.81006]
[7]
Kumar, S.; Khokra, S.L.; Yadav, A. Triazole analogues as potential pharmacological agents: a brief review. Future J. Pharm. Sci., 2021, 7(1), 106.
[http://dx.doi.org/10.1186/s43094-021-00241-3] [PMID: 34056014]
[8]
Kumar, S.; Sharma, B.; Mehra, V.; Kumar, V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur. J. Med. Chem., 2021, 212113069
[http://dx.doi.org/10.1016/j.ejmech.2020.113069] [PMID: 33388593]
[9]
Ge, X.; Xu, Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch. Pharm. (Weinheim), 2021, 354(1)e2000223
[http://dx.doi.org/10.1002/ardp.202000223] [PMID: 32985011]
[10]
Strzelecka, M.; Świątek, P. 1,2,4-triazoles as important antibacterial agents. Pharmaceuticals (Basel), 2021, 14(3)e224
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[11]
Sebaaly, J.; Woods, J.A.; Wargo, K.A. A review of ceftolozane/tazobactam for the treatment of infections caused by multidrug-resistant pathogens. Infect. Dis. Clin. Pract., 2018, 26(4), 198-203.
[http://dx.doi.org/10.1097/IPC.0000000000000638]
[12]
Zheng, J.X.; Chen, Z.; Xu, Z.C.; Chen, J.W.; Xu, G.J.; Sun, X.; Yu, Z.J.; Qu, D. In vitro evaluation of the antibacterial activities of radezolid and linezolid for Streptococcus agalactiae. Microb. Pathog., 2020, 139103866
[http://dx.doi.org/10.1016/j.micpath.2019.103866] [PMID: 31715321]
[13]
El-Gendy, M.M.; Shaaban, M.; Shaaban, K.A.; El-Bondkly, A.M.; Laatsch, H. Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J. Antibiot. (Tokyo), 2008, 61(3), 149-157.
[http://dx.doi.org/10.1038/ja.2008.124] [PMID: 18503193]
[14]
Neto, J.S.S.; Zeni, G. A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord. Chem. Rev., 2020, 409e213217
[http://dx.doi.org/10.1016/j.ccr.2020.213217]
[15]
Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: Recent advances and applications. Tetrahedron Lett., 2015, 56, 2853-2859.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.136]
[16]
Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Alkaloids and isoprenoids modification by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry): Toward new functions and molecular architectures. Chem. Rev., 2016, 116(10), 5689-5743.
[http://dx.doi.org/10.1021/acs.chemrev.5b00302] [PMID: 27115045]
[17]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[18]
Kuar, P.; Kuar, R.; Goswami, M. A review on methods of synthesis of 1,2,4-triazole derivatives. Int. Res. J. Pharm., 2018, 9(1), 1-35.
[http://dx.doi.org/10.7897/2230-8407.097121]
[19]
Al-Masoudi, J.A.; Al-Soud, Y.A.; Al-Salihi, N.J.; Al-Masoudi, N.A. 1,2,4-Triazoles: Synthetic approaches and pharmacological importance. Chem. Heterocycl. Compd., 2006, 42(11), 1377-1403.
[http://dx.doi.org/10.1007/s10593-006-0255-3]
[20]
Gao, Y.; Na, L.X.; Xu, Z.; Zhang, S.; Wang, A.P.; Lü, K.; Guo, H.Y.; Liu, M.L. Design, synthesis and antibacterial evaluation of 1-[(1R,2S)-2-fluorocyclopropyl]ciprofloxacin-1,2,4-triazole-5(4H)-thione hybrids. Chem. Biodivers., 2018, 15(10)e1800261
[http://dx.doi.org/10.1002/cbdv.201800261] [PMID: 29987907]
[21]
Gonnet, L.; Baron, M.; Baltas, M. Synthesis of biologically relevant 1,2,3-and 1,3,4-triazoles: From classical pathway to green chemistry. Molecules, 2021, 26(18)e5667
[http://dx.doi.org/10.3390/molecules26185667] [PMID: 34577138]
[22]
Zhang, Z.; Li, K.; Zhang, G.Y.; Tang, Y.Z.; Jin, Z. Design, synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. Eur. J. Med. Chem., 2020, 204112604
[http://dx.doi.org/10.1016/j.ejmech.2020.112604] [PMID: 32731187]
[23]
Zhang, G.Y.; Zhang, Z.; Li, K.; Liu, J.; Li, B.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Design, synthesis and biological evaluation of novel pleuromutilin derivatives containing piperazine and 1,2,3-triazole linker. Bioorg. Chem., 2020, 105104398
[http://dx.doi.org/10.1016/j.bioorg.2020.104398] [PMID: 33137559]
[24]
Huang, S.Y.; Wang, X.; Shen, D.Y.; Chen, F.; Zhang, G.Y.; Zhang, Z.; Li, K.; Jin, Z.; Du, D.; Tang, Y.Z. Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg. Med. Chem., 2021, 38116138
[http://dx.doi.org/10.1016/j.bmc.2021.116138] [PMID: 33857737]
[25]
Li, B.; Zhang, Z.; Zhang, J.F.; Liu, J.; Zuo, X.Y.; Chen, F.; Zhang, G.Y.; Fang, H.Q.; Jin, Z.; Tang, Y.Z. Design, synthesis and biological evaluation of pleuromutilin-Schiff base hybrids as potent anti-MRSA agents in vitro and in vivo. Eur. J. Med. Chem., 2021, 223113624
[http://dx.doi.org/10.1016/j.ejmech.2021.113624] [PMID: 34153574]
[26]
Yan, M.; Xu, L.; Wang, Y.; Wan, J. Chenchen.; Li, Q.; Wang, R. Synthesis and antibacterial activity of 11,12-cyclic carbonate 4″-O-aralkylacetylhydrazineacyl azithromycin derivatives. Bioorg. Med., 2020, 94103475
[http://dx.doi.org/10.1016/j.bioorg.2019.103475] [PMID: 31791683]
[27]
Qin, Y.; Song, D.; Teng, Y.; Liu, X.; Zhang, P.; Zhang, N.; Zhang, N.; Chen, W.; Ma, S. Design, synthesis and structure-activity relationships of novel N11-, C12- and C13-substituted 15-membered homo-aza-clarithromycin derivatives against various resistant bacteria. Bioorg. Chem., 2021, 113104992
[http://dx.doi.org/10.1016/j.bioorg.2021.104992] [PMID: 34051415]
[28]
Teng, Y.; Qin, Y.; Song, D.; Liu, X.; Ma, Y.; Zhang, P.; Ma, S. A novel series of 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing 1,2,3-triazole group: Design, synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett., 2020, 30(2)126850
[http://dx.doi.org/10.1016/j.bmcl.2019.126850] [PMID: 31836439]
[29]
Aarjane, M.; Amine, A.; Slassi, S. Synthesis, antibacterial evaluation and computational studies of new acridone-1,2,3-triazole hybrids. J. Mol. Struct., 2021, 1241e130636
[http://dx.doi.org/10.1016/j.molstruc.2021.130636]
[30]
Aarjane, M.; Slassi, S.; Tazi, B.; Maouloua, M.; Amine, A. Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone-1,2,3-triazole derivatives. Struct. Chem., 2020, 31(4), 1523-1531.
[http://dx.doi.org/10.1007/s11224-020-01512-0]
[31]
Awolade, P.; Cele, N.; Kerru, N.; Singh, P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline-1H-1,2,3-triazole molecular hybrids. Mol. Divers., 2021, 25(4), 2201-2218.
[http://dx.doi.org/10.1007/s11030-020-10112-3] [PMID: 32507981]
[32]
Awolade, P.; Cele, N.; Ebenezer, O.; Kerru, N.; Gummidi, L.; Gu, L.; Palma, G.; Kaur, M.; Singh, P. Synthesis of 1H-1,2,3-triazole-linked quinoline-isatin molecular hybrids as anti-breast cancer and anti-methicillin-resistant Staphylococcus aureus (MRSA) agents. Anticancer. Agents Med. Chem., 2021, 21(10), 1228-1239.
[http://dx.doi.org/10.2174/1871520620666200929153138] [PMID: 32990543]
[33]
Hofny, H.A.; Mohamed, M.F.A.; Gomaa, H.A.M.; Abdel-Aziz, S.A.; Youssif, B.G.M.; El-Koussi, N.A.; Aboraia, A.S. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg. Chem., 2021, 112104920
[http://dx.doi.org/10.1016/j.bioorg.2021.104920] [PMID: 33910078]
[34]
D’Souza, V.T.; Nayak, J.; D’Mello, D.E.; Dayananda, P. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives. J. Mol. Struct., 2021, 1229e129503
[http://dx.doi.org/10.1016/j.molstruc.2020.129503]
[35]
Upadhyay, R.; Kumar, R.; Jangra, M.; Rana, R.; Nayal, O.S.; Nandanwar, H.; Maurya, S.K. Synthesis of bioactive complex small molecule-ciprofloxacin conjugates and evaluation of their antibacterial activity. ACS Comb. Sci., 2020, 22(9), 440-445.
[http://dx.doi.org/10.1021/acscombsci.0c00060] [PMID: 32691584]
[36]
Guo, H.; Diao, Q.P. Gatifloxacin-1,2,3-triazole-isatin hybrids tethered through methylene and acetyl and their antibacterial activities. Rev. Roum. Chim., 2020, 65(3), 239-246.
[http://dx.doi.org/10.33224/rrch.2020.65.3.03]
[37]
Andrade, M.M.S.; Protti, Í.F.; Maltarollo, V.G.; da Costa, Y.F.G.; de Moraes, W.G.; Moreira, N.F.; Garcla, G.G.; Garan, G.F.; Ottoni, F.M.; Alves, R.J.; Morelra, C.P.S.; Martins, H.R.; Alves, M.S.; de Oliveira, R.B. Synthesis of arylfuran derivatives as potential antibacterial agents. Med. Chem. Res., 2021, 30(5), 1074-1086.
[http://dx.doi.org/10.1007/s00044-021-02711-y]
[38]
Ahmad, Z.; Ahmed, S.; Chohan, Z.H.; Khalid, M.; Raza, M.A.; Sahrish, I.; Sumrra, S.H.; Zafar, M.N. Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatsh. Chem., 2020, 151, 549-557.
[http://dx.doi.org/10.1007/s00706-020-02571-z]
[39]
Tafelska-Kaczmarek, A.; Kołodziejska, R.; Kwit, M.; Stasiak, B.; Wypij, M.; Golińska, P. Synthesis, absolute configuration, antibacterial, and antifungal activities of novel benzofuryl β-amino alcohols. Materials (Basel), 2020, 13(18)e4080
[http://dx.doi.org/10.3390/ma13184080] [PMID: 32937873]
[40]
Dincel, E.D.; Ulusoy-Güzeldemirci, N.; Şatana, D.; Küçükbasmacı, Ö. Design, synthesis, characterization and antimicrobial evaluation of some novel hydrazinecarbothioamide, 4-thiazolidinone and 1,2,4-triazole-3-thione derivatives. J. Heterocycl. Chem., 2021, 58(1), 195-205.
[http://dx.doi.org/10.1002/jhet.4159]
[41]
Singla, N.; Singh, G.; Bhatia, R.; Kumar, A.; Kuar, R.; Kuar, S. Design, synthesis and antimicrobial evaluation of 1,3,4-oxadiazole/1,2,4-triazole-substituted thiophenes. ChemisrtySelect, 2020, 5, 3835-3842.
[http://dx.doi.org/10.1002/slct.202000191]
[42]
Abdel-Aziz, H.A.; Azzam, R.A.; Hussein, H.S.; Masoud, D.M.; Mekawey, A.A.I. Synthesis of some novel substituted nicotines and evaluation of their antimicrobial activity. Egypt. J. Chem., 2020, 63(3), 791-803.
[43]
Chandramohan, V.; Govindaiah, S.; Khan, G.; Shetty, P.R.; Sreenivasa, S. Synthesis, biological screening, in silico study and fingerprint applications of novel 1,2,4-triazole derivatives. J. Heterocycl. Chem., 2020, 57(4), 2010-2023.
[http://dx.doi.org/10.1002/jhet.3929]
[44]
El Azab, I.H.; Elkanzi, N.A.A. Design, synthesis, and antimicrobial evaluation of new annelated pyrimido[2,1-c][1,2,4]triazolo[3,4-f][1,2,4]triazines. Molecules, 2020, 25(6)e1339
[http://dx.doi.org/10.3390/molecules25061339] [PMID: 32183502]
[45]
Srinivas, S.; Neeraja, P.; Banothu, V.; Kumar Dubey, P.; Mukkanti, K.; Pal, S. Synthesis, biological evaluation and in silico studies of compounds based on tryptophan-naproxen-triazole hybrids. ChemistrySelect, 2020, 5(46), 14741-14746.
[http://dx.doi.org/10.1002/slct.202003786]
[46]
Mokariya, J.A.; Kalola, A.G.; Prasad, P.; Patel, M.P. Simultaneous ultrasound- and microwave-assisted one-pot ‘click’ synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Mol. Divers., 2021. [Epub ahead of print].
[http://dx.doi.org/10.1007/s11030-021-10212-8] [PMID: 33834361]
[47]
Prashanthi, M.; Buba, H.R.; Rani, J.U. Design, synthesis and molecular docking studies of novel indole-isoxazole-triazole conjugates as potent antibacterial agents. Russ. J. Bioorganic Chem., 2021, 47(2), 601-608.
[http://dx.doi.org/10.1134/S1068162021020217]
[48]
Chahal, M.; Kaushik, C.P. Synthesis and antibacterial activity of benzothiazole and benzoxazole-appended substituted 1,2,3-triazoles. J. Chem. Sci., 2020, 132(1)e142
[http://dx.doi.org/10.1007/s12039-020-01844-8]
[49]
Bitla, S.; Sagurthi, S.R.; Dhanavath, R.; Puchakayala, M.R.; Birudaraju, S.; Gayatri, A.A.; Bhukya, M.K.; Atcha, K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and antifungal agents. J. Mol. Struct., 2020, 1220e128705
[http://dx.doi.org/10.1016/j.molstruc.2020.128705]
[50]
Nayak, S.G.; Poojary, B. Design, synthesis, in silico docking studies, and antibacterial activity of some thiadiazines and 1,2,4-triazole-3-thiones bearing pyrazole moiety. Russ. J. Bioorganic Chem., 2020, 46(1), 97-106.
[http://dx.doi.org/10.1134/S1068162020010069]
[51]
Jagadale, S.M.; Abhale, Y.K.; Pawar, H.R.; Shinde, A.; Bobade, V.D.; Chavan, A.P.; Sarkar, D.; Mhaske, P.C. Synthesis of new thiazole and pyrazole clubbed 1,2,3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycycl. Aromat. Compd., 2021. Epub ahead of print
[http://dx.doi.org/10.1080/10406638.2020.1857272]]
[52]
Nagaraja, M.; Kalluraya, B.; Asma, A.; Shreenkanth, T.K.; Kumar, M.S. Synthesis of chalcone precursor via Cu(I) catalyzed 1,3-dipolar reaction of functionalized acetylene and pyrazole embedded dipole. J. Heterocycl. Chem., 2020, 57(10), 3642-3652.
[http://dx.doi.org/10.1002/jhet.4083]
[53]
Sapijanskaitė-Banevič, B.; Šovkovaja, B.; Vaickelionienė, R.; Šiugždaitė, J.; Mickevičiūtė, E. Synthesis, characterization and bioassay of novel substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines. Molecules, 2020, 25(10)e2433
[http://dx.doi.org/10.3390/molecules25102433] [PMID: 32456041]
[54]
Pathak, P.; Novak, J.; Shukla, P.K.; Grishina, M.; Potemkin, V.; Verma, A. Design, synthesis, antibacterial evaluation, and computational studies of hybrid oxothiazolidin-1,2,4-triazole scaffolds. Arch. Pharm. (Weinheim), 2021, 354(6)e2000473
[http://dx.doi.org/10.1002/ardp.202000473] [PMID: 33656194]
[55]
Saravanan, V.; Rajakumar, P. Synthesis, characterization, antibacterial activity and molecular docking studies on triazolophanes with benzophenone and S(-)-BINOL functionalization at the intra annular position. Synth. Commun., 2020, 50(16), 2461-2477.
[http://dx.doi.org/10.1080/00397911.2020.1781182]
[56]
Insa, S.; Alioune, F.; Aicha, B.L.; Fama, N.S.; Seydou, K.; Abdoulaye, D.; Ismaïla, C.; Abda, B.; Amadou, D.; Sadibou, B.C.; Generosa, G.; Yagamare, F.; Matar, S. Synthesis, characterization and antimicrobial activities of 1,4-disubstituted 1,2,3-triazole compounds. Curr. Top. Med. Chem., 2020, 20(25), 2289-2299.
[http://dx.doi.org/10.2174/1568026620666200819143029] [PMID: 32814526]
[57]
Sapijanskaitė-Banevič, B.; Palskys, V.; Vaickelionienė, R.; Šiugždaitė, J.; Kavaliauskas, P.; Grybaitė, B.; Mickevičius, V. Synthesis and antibacterial activity of new azole, diazole and triazole derivatives based on p-aminobenzoic acid. Molecules, 2021, 26(9)e2597
[http://dx.doi.org/10.3390/molecules26092597] [PMID: 33946936]
[58]
Bitla, S.; Gayatri, A.A.; Puchakayala, M.R.; Kumar Bhukya, V.; Vannada, J.; Dhanavath, R.; Kuthati, B.; Kothula, D.; Sagurthi, S.R.; Atcha, K.R. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorg. Med. Chem. Lett., 2021, 41128004
[http://dx.doi.org/10.1016/j.bmcl.2021.128004] [PMID: 33811989]
[59]
Assy, M.G.; El-Sayed, H.A.; Mohamed, A.S. An efficient synthesis and antimicrobial activity of N-bridged triazolo[3,4-b]thiadiazine and triazolo[3,4-b]thiadiazole derivatives under microwave irradiation. Synth. Commun., 2020, 50(7), 997-1007.
[http://dx.doi.org/10.1080/00397911.2020.1726397]
[60]
Gondru, R.; Kanugala, S.; Raj, S.; Ganesh Kumar, C.; Pasupuleti, M.; Banothu, J.; Bavantula, R. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett., 2021, 33127746
[http://dx.doi.org/10.1016/j.bmcl.2020.127746] [PMID: 33333162]
[61]
Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc., 2020, 24(2), 251-266.
[http://dx.doi.org/10.1016/j.jscs.2019.12.001]
[62]
Koparir, P.; Sarac, K.; Omar, R.A. Synthesis, molecular characterization, biological and computational studies of new molecule contain 1,2,4-triazole, and coumarin bearing 6,8-dimethyl. Biointerface Res. Appl. Chem., 2022, 12(1), 809-823.
[63]
Chen, Q.M.; Li, Z.; Tian, G.X.; Chen, Y.; Wu, X.H. 1,2,3-Triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation. J. Chem. Res., 2021, 45(3-4), 258-264.
[http://dx.doi.org/10.1177/1747519820966971]
[64]
Malah, T.E.; Soliman, H.A.; Hemdan, B.A.; Mageid, E.E.A.; Nour, H.F. Synthesis and antibiofilm activity of 1,2,3-triazolepyridine hybrids against methicillin-resistant Staphylococcus aureus (MRSA). New J. Chem., 2021, 45, 10822-10830.
[http://dx.doi.org/10.1039/D1NJ00773D]
[65]
Drozd, M.; Ginalska, G.; Karczmarzyk, Z.; Kowalczuk, D.; Morawiak, M.; Pitucha, M.; Swatko-Ossor, M.; Urbanczyk-Lipkowska, Z.; Wysocki, W. Synthesis and structural study of some N-acyl-4-allylsemicarbazides and the product of their cyclization with a potential antimicrobial activity. J. Mol. Struct., 2020, 1219e128552
[http://dx.doi.org/10.1016/j.molstruc.2020.128552]
[66]
Ankit, A.; Wang, T.; Veedu, R.N.; Abdmouleh, F.; Arbi, M.E.; Kumar, S. Synthesis and biological evaluation of triazolylnucleosides as antibacterial and anticancer agents. Chem. Data Collect., 2020, 28e100429
[http://dx.doi.org/10.1016/j.cdc.2020.100429]
[67]
Maddila, S.; Nagaraju, K.; Jonnalagadda, S.B. Synthesis and antimicrobial evaluation of novel pyrano[2,3-d]-pyrimidine bearing 1,2,3-triazoles. Chem. Data Collect., 2020, 28e100486
[http://dx.doi.org/10.1016/j.cdc.2020.100486]
[68]
Kaushik, C.P.; Luxmi, R. Synthesis, antibacterial, and antioxidant activities of naphthyl-linked disubstituted 1,2,3-triazoles. J. Heterocycl. Chem., 2020, 57(6), 2400-2409.
[http://dx.doi.org/10.1002/jhet.3956]
[69]
Kosikowska, U.; Wujec, M.; Trotsko, N.; Płonka, W.; Paneth, P.; Paneth, A. Antibacterial activity of fluorobenzoylthiosemicarbazides and their cyclic analogues with 1,2,4-triazole scaffold. Molecules, 2020, 26(1)e170
[http://dx.doi.org/10.3390/molecules26010170] [PMID: 33396536]
[70]
Naveen, N.; Tittal, R.K.; Ghule, V.D.; Yadav, P.; Lal, K.; Kumar, A. Synthesis, antimicrobial potency with in silico study of Boc-leucine-1,2,3-triazoles. Steroids, 2020, 161108675
[http://dx.doi.org/10.1016/j.steroids.2020.108675] [PMID: 32531313]
[71]
Agelidis, Ne.; Altevogt, L.; Baro, A.; Bilitewski, U.; Bugdayci, B.; Icik, E.; Jolly, A.; Löffler, P.; Laschat, S. Synthesis and biological evaluation of a library of AGE-related amino acid triazole crosslinkers. Eur. J. Org. Chem., 2020, 2020, 5368-5379.
[http://dx.doi.org/10.1002/ejoc.202000811]
[72]
Banothu, V.; Dubey, P.K.; Mukkanti, K.; Pal, S.; Papigani, N.; Suryapeta, S. Synthesis, biological evaluation, and docking study of a series of 1,4-disubstituted 1,2,3-triazole derivatives with an indole-triazole-peptide conjugate. J. Heterocycl. Chem., 2020, 57, 3126-3140.
[http://dx.doi.org/10.1002/jhet.4020]
[73]
Srinivas, S.; Neeraja, P.; Naveen, K.; Banothu, V.; Dubey, P.K.; Mukkanti, K.; Pal, S. Synthesis, chemotherapeutic screening and docking studies of NSAID inserted peptide-triazole hybrid molecules. ChemistrySelect, 2020, 5(22), 6786-6791.
[http://dx.doi.org/10.1002/slct.202000492]
[74]
Pineda-Castañeda, H.M.; Bonilla-Velásquez, L.D.; Leal-Castro, A.L.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Use of click chemistry for obtaining an antimicrobial chimeric peptide containing the LfcinB and Buforin II minimal antimicrobial motifs. ChemistrySelect, 2020, 5(5), 1655-1657.
[http://dx.doi.org/10.1002/slct.201903834]
[75]
Reddyrajula, R.; Dalimba, U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: Synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2020, 30(2)126846
[http://dx.doi.org/10.1016/j.bmcl.2019.126846] [PMID: 31839540]
[76]
Kaushik, C.P.; Chahal, M.; Luxmi, R.; Kumar, D.; Kumar, A.; Kumar, M.; Singh, D. Synthesis, characterization and biological activities of sulfonamide tagged 1,2,3-triazoles. Synth. Commun., 2020, 50(22), 3443-3461.
[http://dx.doi.org/10.1080/00397911.2020.1802758]
[77]
He, S.C.; Zhang, H.Z.; Zhang, H.J.; Sun, Q.; Zhou, C.H. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med. Chem., 2020, 16(1), 104-118.
[http://dx.doi.org/10.2174/1573406414666181106124852] [PMID: 30398118]
[78]
Iqbal, J.; Rehman, A.; Abbasi, M.A.; Siddiqui, S.Z.; Khalid, H.; Laulloo, S.J.; Chohan, T.A.; Rasool, S.; Shah, S.A.A. BSA Binding, molecular docking and in vitro biological screening of some new 1, 2, 4-triazole heterocycles bearing azinane nucleus. Pak. J. Pharm. Sci., 2020, 33(1), 149-160.
[PMID: 32122843]
[79]
Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1,3]thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47128201
[http://dx.doi.org/10.1016/j.bmcl.2021.128201] [PMID: 34139328]
[80]
Kumar, A.; Kumar, A.; Lal, K.; Poonia, N.; Rani, P. Design, synthesis, antimicrobial evaluation and docking studies of urea-triazole-amide hybrids. J. Mol. Struct., 2020, 1215e128234
[http://dx.doi.org/10.1016/j.molstruc.2020.128234]
[81]
Pinheiro, L.C.S.; Hoelz, L.V.B.; Ferreira, M.L.G.; Oliveira, L.G.; Pereira, R.F.A.; do Valle, A.M.; André, L.S.P.; Scaffo, J.; Pinheiro, F.R.; Ribeiro, T.A.N.; Sachs, D.; Pascoal, A.C.R.F.; Boechat, N.; Aguiar-Alves, F. Synthesis of benzoylthiourea derivatives and analysis of their antibacterial performance against planktonic Staphylococcus aureus and its biofilms. Lett. Appl. Microbiol., 2020, 71(6), 645-651.
[http://dx.doi.org/10.1111/lam.13359] [PMID: 32725897]
[82]
El Malah, T.; Nour, H.F.; Satti, A.A.E.; Hemdan, B.A.; El-Sayed, W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules, 2020, 25(4)e790
[http://dx.doi.org/10.3390/molecules25040790] [PMID: 32059480]
[83]
Mishra, D.R.; Nayak, S.; Raiguru, B.P.; Mohapatra, S.; Podh, M.B.; Sahoo, C.R.; Padhy, R.N. Synthesis of (4S)-4-C-spiro-glycosyl-chromeno-[3,4-d][1,2,3]triazoles: Biological evaluation and molecular docking investigation. J. Heterocycl. Chem., 2021, 58(1), 111-126.
[http://dx.doi.org/10.1002/jhet.4151]
[84]
De Ruysscher, D.; Pang, L.; Lenders, S.M.G.; Cappoen, D.; Cos, P.; Rozenski, J.; Strelkov, S.V.; Weeks, S.D.; Van Aerschot, A. Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors. Eur. J. Med. Chem., 2021, 211113021
[http://dx.doi.org/10.1016/j.ejmech.2020.113021] [PMID: 33248851]
[85]
Corona-Sánchez, R.; Sánchez-Eleuterio, A.; Negrón-Lomas, C.; Ruiz Almazan, Y.; Lomas-Romero, L.; Negrón-Silva, G.E.; Rodríguez-Sánchez, Á.C. Cu-Al mixed oxide-catalysed multi-component synthesis of gluco- and allofuranose-linked 1,2,3-triazole derivatives. R. Soc. Open Sci., 2020, 7(7)200290
[http://dx.doi.org/10.1098/rsos.200290] [PMID: 32874626]
[86]
Narsimha, S.; Nukala, S.K.; Ravinder, M.; Savitha Jyostna, T.; Srinivasa Rao, M.; Vasudeva Reddy, N. One-pot synthesis and biological evaluation of novel 4-[3-fluoro-4-(morpholin-4-yl)]phenyl-1H-1,2,3-triazole derivatives as potent antibacterial and anticancer agents. J. Heterocycl. Chem., 2020, 57, 1665-1675.
[http://dx.doi.org/10.1002/jhet.3890]
[87]
Tangadanchu, V.K.R.; Gundabathini, S.R.; Bethala, P.D.; Yedla, P.; Chityal, G.K. Isomannide monoundecenoate-based 1,2,3-triazoles: Design, synthesis, and in vitro bioactive evaluation. J. Heterocycl. Chem., 2020, 57(12), 4312-4321.
[http://dx.doi.org/10.1002/jhet.4138]
[88]
Kadhim, A.; Sulaiman, G.; Abdel Moneim, A.E.; Yusop, R.M.; Al-Amiery, A. Synthesis and characterization of triazol derivative as new corrosion inhibitor for mild steel in 1M HCl solution complemented with antibacterial studies. J. Phys. Conf. Ser., 2021, 1795(1)e012011
[http://dx.doi.org/10.1088/1742-6596/1795/1/012011]
[89]
Al-Baghdadi, S.B.; Kadhim, A.; Sulaiman, G.; Al-Amiery, A.A.; Abdul Amir, H.K.; Takriff, M. Anticorrosion and antibacterial effects of new Schiff base derived from hydrazine. J. Phys. Conf. Ser., 2021, 1795(1)e012021
[http://dx.doi.org/10.1088/1742-6596/1795/1/012021]
[90]
Amin, N.H.; El-Saadi, M.T.; Ibrahim, A.A.; Abdel-Rahman, H.M. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg. Chem., 2021, 111104841
[http://dx.doi.org/10.1016/j.bioorg.2021.104841] [PMID: 33798851]
[91]
Dede, B.; Gökalp, M.; Karabacak Atay, Ç.; Tilki, T. Triazole based azo molecules as potential antibacterial agents: Synthesis, characterization, DFT, ADME and molecular docking studies. J. Mol. Struct., 2020, 1212e128104
[92]
Sultan, A.; Ur Rehman, M.H.; Sajjad, N.; Irfan, A.; Ullah, I.; Mustaqeem, M.; Saleem, M.; Rubab, S.L.; Rafiq, M.; Khalid, M.; Kotwica-Mojzych, K.; Mojzych, M. A facile sonochemical protocol for synthesis of 3-amino- and 4-amino-1,2,4-triazole derived Schiff bases as potential antibacterial agents. PLoS One, 2020, 15(6)e0229891
[http://dx.doi.org/10.1371/journal.pone.0229891] [PMID: 32497076]
[93]
Telu, J.R.; Kuntala, N.; Kankanala, K.; Banothu, V.; Pal, S.; Anireddy, J.S. Novel 1,2,3-triazolo phosphonate derivatives as potential antibacterial agents. J. Heterocycl. Chem., 2021, 58(4), 969-982.
[http://dx.doi.org/10.1002/jhet.4230]
[94]
Ammar, Y.A.; Farag, A.A.; Ali, A.M.; Ragab, A.; Askar, A.A.; Elsisi, D.M.; Belal, A. Design, synthesis, antimicrobial activity and molecular docking studies of some novel di-substituted sulfonylquinoxaline derivatives. Bioorg. Chem., 2020, 104104164
[http://dx.doi.org/10.1016/j.bioorg.2020.104164] [PMID: 32896807]
[95]
Elkanzi, N.A.A.; Hrichi, H. Design and evaluation of antimicrobial activity of new pyrazole, 1,2,4-triazole, and 1,3,4-thiadiazol derivatives bearing 1,4-dihydroquinoxaline moiety. Russ. J. Bioorganic Chem., 2020, 46(5), 715-725.
[http://dx.doi.org/10.1134/S1068162020050076]
[96]
Phatak, P.S.; Bakale, R.D.; Kulkarni, R.S.; Dhumal, S.T.; Dixit, P.P.; Krishna, V.S.; Sriram, D.; Khedkar, V.M.; Haval, K.P. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg. Med. Chem. Lett., 2020, 30(22)127579
[http://dx.doi.org/10.1016/j.bmcl.2020.127579] [PMID: 32987135]
[97]
Nural, Y.; Ozdemir, S.; Doluca, O.; Demir, B.; Yalcin, M.S.; Atabey, H.; Kanat, B.; Erat, S.; Sari, H.; Seferoglu, Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone-triazole hybrids. Bioorg. Chem., 2020, 105104441
[http://dx.doi.org/10.1016/j.bioorg.2020.104441] [PMID: 33181409]
[98]
Ameryckx, A.; Pochet, L.; Wang, G.; Yildiz, E.; Saadi, B.E.; Wouters, J.; Van Bambeke, F.; Frédérick, R. Pharmacomodulations of the benzoyl-thiosemicarbazide scaffold reveal antimicrobial agents targeting d-alanyl-d-alanine ligase in bacterio. Eur. J. Med. Chem., 2020, 200112444
[http://dx.doi.org/10.1016/j.ejmech.2020.112444] [PMID: 32497961]
[99]
Agrahari, A.K.; Singh, A.K.; Singh, A.S.; Singh, M.; Maji, P.; Yadav, S.; Rajkhowa, S.; Prakash, P. TTiwari, V. K. Click inspired synthesis of p-tert-butyl calix[4]arene tethered benzotriaz. New J. Chem., 2020, 44, 19300-19302.
[http://dx.doi.org/10.1039/D0NJ02591G]
[100]
Boda, S.K.; Bommagani, M.B.; Chitneni, P.R.; Mokenapelli, S.; Yerrabelli, J.R. Novel 4-(1H-1,2,3-triazol-4-yl)methoxy)cinnolines as potent antibacterial agents: Synthesis and molecular docking study. Synth. Commun., 2020, 50(7), 1016-1025.
[http://dx.doi.org/10.1080/00397911.2020.1728333]