Association of Oxidative Stress with Neurological Disorders

Page: [1046 - 1072] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Backgorund: Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson’s, Alzheimer’s, and Huntington’s diseases.

Objectives: In this study, we explored the involvement of OS in neurodegenerative diseases.

Methods: We used different search terms like “oxidative stress and neurological disorders” “free radicals and neurodegenerative disorders” “oxidative stress, free radicals, and neurological disorders” and “association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS.

Results: Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress.

Conclusion: More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.

Keywords: Oxidative stress (OS), neurological disorders, Reactive oxygen species (ROS), brain, free radicals, oxidation.

Graphical Abstract

[1]
Aiken, C.T.; Kaake, R.M.; Wang, X.; Huang, L. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics, 2011, 10(5), 006924.
[http://dx.doi.org/10.1074/mcp.M110.006924] [PMID: 21543789]
[2]
Ienco, E.C.; LoGerfo, A.; Carlesi, C.; Orsucci, D.; Ricci, G.; Mancuso, M.; Siciliano, G. Oxidative stress treatment for clinical trials in neurodegenerative diseases. J. Alzheimers Dis., 2011, 24(Suppl. 2), 111-126.
[http://dx.doi.org/10.3233/JAD-2011-110164] [PMID: 21422516]
[3]
Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol., 2010, 2010, 214074.
[http://dx.doi.org/10.1155/2010/214074] [PMID: 20182529]
[4]
Martin, L.J. Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel), 2010, 3(4), 839-915.
[http://dx.doi.org/10.3390/ph3040839] [PMID: 21258649]
[5]
Hathazi, D.; Scurtu, F.; Bischin, C.; Mot, A.; Attia, A.A.A.; Kongsted, J.; Silaghi-Dumitrescu, R. The reaction of oxy hemoglobin with nitrite: Mechanism, antioxidant-modulated effect, and implications for blood substitute evaluation. Molecules, 2018, 23(2), 350.
[http://dx.doi.org/10.3390/molecules23020350] [PMID: 29414908]
[6]
Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. Atherosclerosis: risks, mechanisms, and therapies; Wang, H; Patterson, C., Ed.; John Wiley & Sons Inc: Hoboken, NJ, 2015, pp. 379-392.
[7]
Mani, S. Production of reactive oxygen species and its implication in human diseases. Free radicals in human health and disease; Rani, V; Yadav, U.C., Ed.; Springer: New Delhi, 2015, pp. 3-15.
[http://dx.doi.org/10.1007/978-81-322-2035-0_1]
[8]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[9]
Rosca, A.E.; Iesanu, M.I.; Zahiu, C.D.M.; Voiculescu, S.E.; Paslaru, A.C.; Zagrean, A.M. Capsaicin and gut microbiota in health and disease. Molecules, 2020, 25(23), 5681.
[http://dx.doi.org/10.3390/molecules25235681] [PMID: 33276488]
[10]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[11]
Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem., 2005, 12(10), 1161-1208.
[http://dx.doi.org/10.2174/0929867053764635] [PMID: 15892631]
[12]
Malekmohammad, K.; Sewell, R.D.E.; Rafieian-Kopaei, M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules, 2019, 9(8), 301.
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[13]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483-495.
[http://dx.doi.org/10.1016/j.cell.2005.02.001] [PMID: 15734681]
[14]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[15]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[16]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[17]
Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Aaseth, J.; Peana, M. Metals, autoimmunity, and neuroendocrinology: Is there a connection? Environ. Res., 2020, 187, 109541.
[http://dx.doi.org/10.1016/j.envres.2020.109541] [PMID: 32445945]
[18]
Engedal, N.; Žerovnik, E.; Rudov, A.; Galli, F.; Olivieri, F.; Procopio, A.D.; Rippo, M.R.; Monsurrò, V.; Betti, M.; Albertini, M.C. From oxidative stress damage to pathways, networks, and autophagy via microRNAs. Oxid. Med. Cell. Longev., 2018, 2018, 4968321.
[http://dx.doi.org/10.1155/2018/4968321] [PMID: 29849898]
[19]
Grimm, A.; Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem., 2017, 143(4), 418-431.
[http://dx.doi.org/10.1111/jnc.14037] [PMID: 28397282]
[20]
Patten, D.A.; Germain, M.; Kelly, M.A.; Slack, R.S. Reactive oxygen species: stuck in the middle of neurodegeneration. J. Alzheimers Dis., 2010, 20(2)(Suppl. 2), S357-S367.
[http://dx.doi.org/10.3233/JAD-2010-100498] [PMID: 20421690]
[21]
Lassmann, H. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J. Neural Transm. (Vienna), 2011, 118(5), 747-752.
[http://dx.doi.org/10.1007/s00702-011-0607-8] [PMID: 21373761]
[22]
Higgins, G.C.; Beart, P.M.; Shin, Y.S.; Chen, M.J.; Cheung, N.S.; Nagley, P. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J. Alzheimers Dis., 2010, 20(2)(Suppl. 2), S453-S473.
[http://dx.doi.org/10.3233/JAD-2010-100321] [PMID: 20463398]
[23]
Ma, M.W.; Wang, J.; Dhandapani, K.M.; Wang, R.; Brann, D.W. NADPH oxidases in traumatic brain injury - Promising therapeutic targets? Redox Biol., 2018, 16, 285-293.
[http://dx.doi.org/10.1016/j.redox.2018.03.005] [PMID: 29571125]
[24]
Babior, B.M. NADPH oxidase. Curr. Opin. Immunol., 2004, 16(1), 42-47.
[http://dx.doi.org/10.1016/j.coi.2003.12.001] [PMID: 14734109]
[25]
Buvelot, H.; Jaquet, V.; Krause, K.H. Mammalian NADPH Oxidases. Methods Mol. Biol., 2019, 1982, 17-36.
[http://dx.doi.org/10.1007/978-1-4939-9424-3_2] [PMID: 31172464]
[26]
Song, P.; Zou, M.H. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic. Biol. Med., 2012, 52(9), 1607-1619.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.025] [PMID: 22357101]
[27]
Burtenshaw, D.; Hakimjavadi, R.; Redmond, E.M.; Cahill, P.A. Nox, reactive oxygen species and regulation of vascular cell fate. Antioxidants, 2017, 6(4), 90.
[http://dx.doi.org/10.3390/antiox6040090] [PMID: 29135921]
[28]
Hiramoto, K.; Yamate, Y.; Sato, E.F. Gp91phox NADPH oxidase modulates litter size by regulating mucin1 in the uterus of mice. Syst Biol Reprod Med, 2017, 63(2), 130-139.
[http://dx.doi.org/10.1080/19396368.2017.1282063] [PMID: 28301257]
[29]
Altenhöfer, S.; Radermacher, K.A.; Kleikers, P.W.; Wingler, K.; Schmidt, H.H. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Signal., 2015, 23(5), 406-427.
[http://dx.doi.org/10.1089/ars.2013.5814] [PMID: 24383718]
[30]
Roy, K.; Wu, Y.; Meitzler, J.L.; Juhasz, A.; Liu, H.; Jiang, G.; Lu, J.; Antony, S.; Doroshow, J.H. NADPH oxidases and cancer. Clin. Sci. (Lond.), 2015, 128(12), 863-875.
[http://dx.doi.org/10.1042/CS20140542] [PMID: 25818486]
[31]
Muñoz, M.; López-Oliva, M.E.; Rodríguez, C.; Martínez, M.P.; Sáenz-Medina, J.; Sánchez, A.; Climent, B.; Benedito, S.; García-Sacristán, A.; Rivera, L.; Hernández, M.; Prieto, D. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol., 2020, 28, 101330.
[http://dx.doi.org/10.1016/j.redox.2019.101330] [PMID: 31563085]
[32]
Kim, Y.M.; Kim, S.J.; Tatsunami, R.; Yamamura, H.; Fukai, T.; Ushio-Fukai, M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am. J. Physiol. Cell Physiol., 2017, 312(6), C749-C764.
[http://dx.doi.org/10.1152/ajpcell.00346.2016] [PMID: 28424170]
[33]
Morel, F.; Rousset, F.; Vu Chuong Nguyen, M.; Trocme, C.; Grange, L.; Lardy, B. NADPH oxidase Nox4, a putative therapeutic target in osteoarthritis. Bull. Acad Natl. Med., 2015, 199(4-5), 673-686.
[http://dx.doi.org/10.1016/S0001-4079(19)30941-0] [PMID: 27509686]
[34]
Montezano, A.C.; Touyz, R.M. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin. Pharmacol. Toxicol., 2012, 110(1), 87-94.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00785.x] [PMID: 21883939]
[35]
Reyes-Martinez, C.; Nguyen, Q.M.; Kassan, M.; Gonzalez, A.A. (Pro)renin receptor-dependent induction of profibrotic factors is mediated by COX-2/EP4/NOX-4/Smad pathway in collecting duct cells. Front. Pharmacol., 2019, 10, 803.
[http://dx.doi.org/10.3389/fphar.2019.00803] [PMID: 31396082]
[36]
Jiang, J.; Huang, K.; Xu, S.; Garcia, J.G.N.; Wang, C.; Cai, H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol., 2020, 36, 101638.
[http://dx.doi.org/10.1016/j.redox.2020.101638] [PMID: 32863203]
[37]
Dasuri, K.; Zhang, L.; Keller, J.N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med., 2013, 62, 170-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.016] [PMID: 23000246]
[38]
Furuhashi, M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am. J. Physiol. Endocrinol. Metab., 2020, 319(5), E827-E834.
[http://dx.doi.org/10.1152/ajpendo.00378.2020] [PMID: 32893671]
[39]
Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxid. Med. Cell. Longev., 2016, 2016, 3527579.
[http://dx.doi.org/10.1155/2016/3527579] [PMID: 26823950]
[40]
Bhandary, B.; Marahatta, A.; Kim, H.R.; Chae, H.J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci., 2012, 14(1), 434-456.
[http://dx.doi.org/10.3390/ijms14010434] [PMID: 23263672]
[41]
Higa, A.; Chevet, E. Redox signaling loops in the unfolded protein response. Cell. Signal., 2012, 24(8), 1548-1555.
[http://dx.doi.org/10.1016/j.cellsig.2012.03.011] [PMID: 22481091]
[42]
Dandekar, A.; Mendez, R.; Zhang, K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol. Biol., 2015, 1292, 205-214.
[http://dx.doi.org/10.1007/978-1-4939-2522-3_15] [PMID: 25804758]
[43]
Vallée, A.; Lecarpentier, Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol., 2018, 9, 745.
[http://dx.doi.org/10.3389/fimmu.2018.00745] [PMID: 29706964]
[44]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[45]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[46]
Masood, A.; Nadeem, A.; Mustafa, S.J.; O’Donnell, J.M. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J. Pharmacol. Exp. Ther., 2008, 326(2), 369-379.
[http://dx.doi.org/10.1124/jpet.108.137208] [PMID: 18456873]
[47]
Salim, S.; Asghar, M.; Taneja, M.; Hovatta, I.; Chugh, G.; Vollert, C.; Vu, A. Potential contribution of oxidative stress and inflammation to anxiety and hypertension. Brain Res., 2011, 1404, 63-71.
[http://dx.doi.org/10.1016/j.brainres.2011.06.024] [PMID: 21704983]
[48]
Patki, G.; Allam, F.H.; Atrooz, F.; Dao, A.T.; Solanki, N.; Chugh, G.; Asghar, M.; Jafri, F.; Bohat, R.; Alkadhi, K.A.; Salim, S. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One, 2013, 8(9), e74522.
[http://dx.doi.org/10.1371/journal.pone.0074522] [PMID: 24040270]
[49]
Solanki, N.; Alkadhi, I.; Atrooz, F.; Patki, G.; Salim, S. Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutr. Res., 2015, 35(1), 65-75.
[http://dx.doi.org/10.1016/j.nutres.2014.11.008] [PMID: 25533441]
[50]
Sousa, N.; Lukoyanov, N.V.; Madeira, M.D.; Almeida, O.F.; Paula-Barbosa, M.M. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience, 2000, 97(2), 253-266.
[http://dx.doi.org/10.1016/S0306-4522(00)00050-6] [PMID: 10799757]
[51]
McEwen, B.S. Understanding the potency of stressful early life experiences on brain and body function. Metabolism, 2008, 57(2)(Suppl. 2), S11-S15.
[http://dx.doi.org/10.1016/j.metabol.2008.07.006] [PMID: 18803958]
[52]
Chang, B.J.; Jang, B.J.; Son, T.G.; Cho, I.H.; Quan, F.S.; Choe, N.H.; Nahm, S.S.; Lee, J.H. Ascorbic acid ameliorates oxidative damage induced by maternal low-level lead exposure in the hippocampus of rat pups during gestation and lactation. Food Chem. Toxicol., 2012, 50(2), 104-108.
[http://dx.doi.org/10.1016/j.fct.2011.09.043] [PMID: 22056337]
[53]
Huang, T.T.; Zou, Y.; Corniola, R. Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency. Semin. Cell Dev. Biol., 2012, 23(7), 738-744.
[http://dx.doi.org/10.1016/j.semcdb.2012.04.003] [PMID: 22521481]
[54]
Huang, Y.; Coupland, N.J.; Lebel, R.M.; Carter, R.; Seres, P.; Wilman, A.H.; Malykhin, N.V. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biol. Psychiatry, 2013, 74(1), 62-68.
[http://dx.doi.org/10.1016/j.biopsych.2013.01.005] [PMID: 23419546]
[55]
Ng, L.H.L.; Huang, Y.; Han, L.; Chang, R.C.; Chan, Y.S.; Lai, C.S.W. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl. Psychiatry, 2018, 8(1), 272.
[http://dx.doi.org/10.1038/s41398-018-0321-5] [PMID: 30531859]
[56]
Leuner, B.; Shors, T.J. Stress, anxiety, and dendritic spines: what are the connections? Neuroscience, 2013, 251, 108-119.
[http://dx.doi.org/10.1016/j.neuroscience.2012.04.021] [PMID: 22522470]
[57]
Liston, C.; McEwen, B.S.; Casey, B.J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl. Acad. Sci. USA, 2009, 106(3), 912-917.
[http://dx.doi.org/10.1073/pnas.0807041106] [PMID: 19139412]
[58]
Haxaire, C.; Turpin, F.R.; Potier, B.; Kervern, M.; Sinet, P.M.; Barbanel, G.; Mothet, J.P.; Dutar, P.; Billard, J.M. Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation. Aging Cell, 2012, 11(2), 336-344.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00792.x] [PMID: 22230264]
[59]
Rai, S.; Kamat, P.K.; Nath, C.; Shukla, R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J. Neuroimmunol., 2013, 254(1-2), 1-9.
[http://dx.doi.org/10.1016/j.jneuroim.2012.08.008] [PMID: 23021418]
[60]
Bertini, I.; Cavallaro, G. Metals in the “omics” world: copper homeostasis and cytochrome c oxidase assembly in a new light. J. Biol. Inorg. Chem., 2008, 13(1), 3-14.
[http://dx.doi.org/10.1007/s00775-007-0316-9] [PMID: 17987327]
[61]
Mills, E.; Dong, X.P.; Wang, F.; Xu, H. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med. Chem., 2010, 2(1), 51-64.
[http://dx.doi.org/10.4155/fmc.09.140] [PMID: 20161623]
[62]
Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol., 2008, 12(2), 222-228.
[http://dx.doi.org/10.1016/j.cbpa.2008.02.019] [PMID: 18342639]
[63]
Halliwell, B. The wanderings of a free radical. Free Radic. Biol. Med., 2009, 46(5), 531-542.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.008] [PMID: 19111608]
[64]
Halliwell, B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging, 2001, 18(9), 685-716.
[http://dx.doi.org/10.2165/00002512-200118090-00004] [PMID: 11599635]
[65]
Hassan, W.; Noreen, H.; Rehman, S.; Gul, S.; Kamal, M.A.; Kamdem, J.P.; Zaman, B.; da Rocha, J.B.T.J. B.T.da.Rocha. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr. Top. Med. Chem., 2017, 17(12), 1336-1370.
[http://dx.doi.org/10.2174/1568026617666170102125648] [PMID: 28049396]
[66]
Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater., 2014, 275, 121-135.
[http://dx.doi.org/10.1016/j.jhazmat.2014.04.054] [PMID: 24857896]
[67]
Patel, M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol. Sci., 2016, 37(9), 768-778.
[http://dx.doi.org/10.1016/j.tips.2016.06.007] [PMID: 27491897]
[68]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2016, 15(1), 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[69]
Ścibior, A. Vanadium (V) and magnesium (Mg) - In vivo interactions: A review. Chem. Biol. Interact., 2016, 258, 214-233.
[http://dx.doi.org/10.1016/j.cbi.2016.09.007] [PMID: 27620816]
[70]
Neal, A.P.; Guilarte, T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. (Camb.), 2013, 2(2), 99-114.
[http://dx.doi.org/10.1039/c2tx20064c] [PMID: 25722848]
[71]
Ke, Y.; Qian, Z.M. Brain iron metabolism: neurobiology and neurochemistry. Prog. Neurobiol., 2007, 83(3), 149-173.
[http://dx.doi.org/10.1016/j.pneurobio.2007.07.009] [PMID: 17870230]
[72]
Belaidi, A.A.; Bush, A.I. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J. Neurochem., 2016, 139(1)(Suppl. 1), 179-197.
[http://dx.doi.org/10.1111/jnc.13425] [PMID: 26545340]
[73]
Salvador, G.A.; Uranga, R.M.; Giusto, N.M. Iron and mechanisms of neurotoxicity. Int. J. Alzheimers Dis., 2010, 2011, 720658.
[PMID: 21234369]
[74]
Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A.L.; Binder, C.J.; Stöckl, J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal., 2010, 12(8), 1009-1059.
[http://dx.doi.org/10.1089/ars.2009.2597] [PMID: 19686040]
[75]
Sedelnikova, O.A.; Redon, C.E.; Dickey, J.S.; Nakamura, A.J.; Georgakilas, A.G.; Bonner, W.M. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat. Res., 2010, 704(1-3), 152-159.
[http://dx.doi.org/10.1016/j.mrrev.2009.12.005] [PMID: 20060490]
[76]
Adibhatla, R.M.; Hatcher, J.F. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2010, 12(1), 125-169.
[http://dx.doi.org/10.1089/ars.2009.2668] [PMID: 19624272]
[77]
Kura, B.; Szeiffova Bacova, B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int. J. Mol. Sci., 2020, 21(1), 358.
[http://dx.doi.org/10.3390/ijms21010358] [PMID: 31948131]
[78]
Peña-Bautista, C.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Lipid peroxidation in neurodegeneration. Clin. Chim. Acta, 2019, 497, 178-188.
[http://dx.doi.org/10.1016/j.cca.2019.07.037] [PMID: 31377127]
[79]
Ma, F.; Wu, T.; Zhao, J.; Ji, L.; Song, A.; Zhang, M.; Huang, G. Plasma homocysteine and serum folate and vitamin b12 levels in mild cognitive impairment and Alzheimer’s disease: A case-control study. Nutrients, 2017, 9(7), 725.
[http://dx.doi.org/10.3390/nu9070725] [PMID: 28698453]
[80]
Tong, B.C.; Wu, A.J.; Li, M.; Cheung, K.H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11 Pt B), 1745-1760.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.018] [PMID: 30059692]
[81]
Abarikwu, S.O.; Pant, A.B.; Farombi, E.O. 4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells. Basic Clin. Pharmacol. Toxicol., 2012, 110(5), 441-448.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00834.x] [PMID: 22118713]
[82]
Bruce-Keller, A.J.; Li, Y.J.; Lovell, M.A.; Kraemer, P.J.; Gary, D.S.; Brown, R.R.; Markesbery, W.R.; Mattson, M.P. 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J. Neuropathol. Exp. Neurol., 1998, 57(3), 257-267.
[http://dx.doi.org/10.1097/00005072-199803000-00007] [PMID: 9600218]
[83]
Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem., 2019, 294(51), 19683-19708.
[http://dx.doi.org/10.1074/jbc.REV119.006217] [PMID: 31672919]
[84]
Reeg, S.; Grune, T. Protein oxidation in aging: Does it play a role in aging progression? Antioxid. Redox Signal., 2015, 23(3), 239-255.
[http://dx.doi.org/10.1089/ars.2014.6062] [PMID: 25178482]
[85]
Hauck, A.K.; Huang, Y.; Hertzel, A.V.; Bernlohr, D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem., 2019, 294(4), 1083-1088.
[http://dx.doi.org/10.1074/jbc.R118.003214] [PMID: 30563836]
[86]
Levine, R.L.; Williams, J.A.; Stadtman, E.R.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol., 1994, 233, 346-357.
[http://dx.doi.org/10.1016/S0076-6879(94)33040-9] [PMID: 8015469]
[87]
Smith, M.A.; Sayre, L.M.; Anderson, V.E.; Harris, P.L.; Beal, M.F.; Kowall, N.; Perry, G. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem., 1998, 46(6), 731-735.
[http://dx.doi.org/10.1177/002215549804600605] [PMID: 9603784]
[88]
Korolainen, M.A.; Nyman, T.A.; Nyyssönen, P.; Hartikainen, E.S.; Pirttilä, T. Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin. Chem., 2007, 53(4), 657-665.
[http://dx.doi.org/10.1373/clinchem.2006.078014] [PMID: 17289803]
[89]
Lovell, M.A.; Markesbery, W.R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res., 2007, 35(22), 7497-7504.
[http://dx.doi.org/10.1093/nar/gkm821] [PMID: 17947327]
[90]
Kieroń, M.; Żekanowski, C.; Falk, A.; Wężyk, M. Oxidative DNA damage signalling in neural stem cells in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2019, 2019, 2149812.
[http://dx.doi.org/10.1155/2019/2149812] [PMID: 31814869]
[91]
Peña-Bautista, C.; Tirle, T.; López-Nogueroles, M.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Oxidative damage of DNA as early marker of Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(24), 6136.
[http://dx.doi.org/10.3390/ijms20246136] [PMID: 31817451]
[92]
Ke, S.; Yang, Z.; Yang, F.; Wang, X.; Tan, J.; Liao, B. Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer’s disease. Med. J., 2019, 60(7), 640-650.
[http://dx.doi.org/10.3349/ymj.2019.60.7.640] [PMID: 31250578]
[93]
Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 271-281.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[94]
Ahmad, W.; Ijaz, B.; Shabbiri, K.; Ahmed, F.; Rehman, S. Oxidative toxicity in diabetes and Alzheimer’s disease: mechanisms behind ROS/RNS generation. J. Biomed. Sci., 2017, 24(1), 76.
[http://dx.doi.org/10.1186/s12929-017-0379-z] [PMID: 28927401]
[95]
Smith, M.A.; Perry, G.; Richey, P.L.; Sayre, L.M.; Anderson, V.E.; Beal, M.F.; Kowall, N. Oxidative damage in Alzheimer’s. Nature, 1996, 382(6587), 120-121.
[http://dx.doi.org/10.1038/382120b0] [PMID: 8700201]
[96]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[97]
Greene, A.E.; Todorova, M.T.; Seyfried, T.N. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J. Neurochem., 2003, 86(3), 529-537.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01862.x] [PMID: 12859666]
[98]
Hyder, F.; Rothman, D.L.; Bennett, M.R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3549-3554.
[http://dx.doi.org/10.1073/pnas.1214912110] [PMID: 23319606]
[99]
Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777.
[http://dx.doi.org/10.1016/j.neuron.2012.08.019] [PMID: 22958818]
[100]
Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab., 2001, 21(10), 1133-1145.
[http://dx.doi.org/10.1097/00004647-200110000-00001] [PMID: 11598490]
[101]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 20(7), 550-561.
[102]
Cragnolini, A.B.; Lampitella, G.; Virtuoso, A.; Viscovo, I.; Panetsos, F.; Papa, M.; Cirillo, G. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen. Res., 2020, 15(5), 838-842.
[http://dx.doi.org/10.4103/1673-5374.268897] [PMID: 31719244]
[103]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[104]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[105]
Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2001, 344(22), 1688-1700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[106]
Mueller, S.G.; Stables, L.; Du, A.T.; Schuff, N.; Truran, D.; Cashdollar, N.; Weiner, M.W. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol. Aging, 2007, 28(5), 719-726.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.03.007] [PMID: 16713659]
[107]
Bura, V.; Caglic, I.; Snoj, Z.; Sushentsev, N.; Berghe, A.S.; Priest, A.N.; Barrett, T. MRI features of the normal prostatic peripheral zone: the relationship between age and signal heterogeneity on T2WI, DWI, and DCE sequences. Eur. Radiol., 2021, 31(7), 4908-4917.
[http://dx.doi.org/10.1007/s00330-020-07545-7] [PMID: 33398421]
[108]
Vornov, J.J.; Park, J.; Thomas, A.G. Regional vulnerability to endogenous and exogenous oxidative stress in organotypic hippocampal culture. Exp. Neurol., 1998, 149(1), 109-122.
[http://dx.doi.org/10.1006/exnr.1997.6673] [PMID: 9454620]
[109]
Wang, X.; Pal, R.; Chen, X.W.; Limpeanchob, N.; Kumar, K.N.; Michaelis, E.K. High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region. Brain Res. Mol. Brain Res., 2005, 140(1-2), 120-126.
[http://dx.doi.org/10.1016/j.molbrainres.2005.07.018] [PMID: 16137784]
[110]
Wang, X.; Zaidi, A.; Pal, R.; Garrett, A.S.; Braceras, R.; Chen, X.W.; Michaelis, M.L.; Michaelis, E.K. Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress. BMC Neurosci., 2009, 10, 12.
[http://dx.doi.org/10.1186/1471-2202-10-12] [PMID: 19228403]
[111]
McCormack, A.L.; Atienza, J.G.; Langston, J.W.; Di Monte, D.A. Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience, 2006, 141(2), 929-937.
[http://dx.doi.org/10.1016/j.neuroscience.2006.03.069] [PMID: 16677770]
[112]
Semra, Y.K.; Wang, M.; Peat, N.J.; Smith, N.C.; Shotton, H.R.; Lincoln, J. Selective susceptibility of different populations of sympathetic neurons to diabetic neuropathy in vivo is reflected by increased vulnerability to oxidative stress in vitro. Neurosci. Lett., 2006, 407(3), 199-204.
[http://dx.doi.org/10.1016/j.neulet.2006.08.045] [PMID: 16973273]
[113]
Mattiasson, G.; Friberg, H.; Hansson, M.; Elmér, E.; Wieloch, T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J. Neurochem., 2003, 87(2), 532-544.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02026.x] [PMID: 14511130]
[114]
Morel, Y.; Barouki, R. Repression of gene expression by oxidative stress. Biochem. J., 1999, 342(Pt 3), 481-496.
[http://dx.doi.org/10.1042/bj3420481] [PMID: 10477257]
[115]
Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci., 2000, 3(12), 1301-1306.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[116]
Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002, 40(2), 133-139.
[http://dx.doi.org/10.1002/glia.10154] [PMID: 12379901]
[117]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615.
[http://dx.doi.org/10.1016/j.tips.2008.09.001] [PMID: 18838179]
[118]
Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 316523.
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
[119]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[120]
Bosco, D.A.; Fowler, D.M.; Zhang, Q.; Nieva, J.; Powers, E.T.; Wentworth, P., Jr; Lerner, R.A.; Kelly, J.W. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol., 2006, 2(5), 249-253.
[http://dx.doi.org/10.1038/nchembio782] [PMID: 16565714]
[121]
Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019, 18(6), e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[122]
Smeyne, M.; Smeyne, R.J. Glutathione metabolism and Parkinson’s disease. J. Free Radic. Biol. Med., 2013, 62, 13-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.001] [PMID: 23665395]
[123]
Puspita, L.; Chung, S.Y.; Shim, J.W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain, 2017, 10(1), 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9] [PMID: 29183391]
[124]
Hemmerle, A.M.; Herman, J.P.; Seroogy, K.B. Stress, depression and Parkinson’s disease. Exp. Neurol., 2012, 233(1), 79-86.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.035] [PMID: 22001159]
[125]
Richardson, J.R.; Quan, Y.; Sherer, T.B.; Greenamyre, J.T.; Miller, G.W. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol. Sci., 2005, 88(1), 193-201.
[http://dx.doi.org/10.1093/toxsci/kfi304] [PMID: 16141438]
[126]
Callio, J.; Oury, T.D.; Chu, C.T. Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J. Biol. Chem., 2005, 280(18), 18536-18542.
[http://dx.doi.org/10.1074/jbc.M413224200] [PMID: 15755737]
[127]
Vila, M.; Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(5), 365-375.
[http://dx.doi.org/10.1038/nrn1100] [PMID: 12728264]
[128]
Perier, C.; Bové, J.; Vila, M.; Przedborski, S. The rotenone model of Parkinson’s disease. Trends Neurosci., 2003, 26(7), 345-346.
[http://dx.doi.org/10.1016/S0166-2236(03)00144-9] [PMID: 12850429]
[129]
Fukushima, T.; Gao, T.; Tawara, T.; Hojo, N.; Isobe, A.; Yamane, Y. Inhibitory effect of nicotinamide to paraquat toxicity and the reaction site on complex I. Arch. Toxicol., 1997, 71(10), 633-637.
[http://dx.doi.org/10.1007/s002040050437] [PMID: 9332700]
[130]
Zatta, P.; Lucchini, R.; van Rensburg, S.J.; Taylor, A. The role of metals in neurodegenerative processes: Aluminum, manganese, and zinc. Brain Res. Bull., 2003, 62(1), 15-28.
[http://dx.doi.org/10.1016/S0361-9230(03)00182-5] [PMID: 14596888]
[131]
Torres-Vega, A.; Pliego-Rivero, B.F.; Otero-Ojeda, G.A.; Gómez-Oliván, L.M.; Vieyra-Reyes, P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr. Rev., 2012, 70(12), 679-692.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00521.x] [PMID: 23206282]
[132]
Brown, D.R. Metals in neurodegenerative disease. Metallomics, 2011, 3(3), 226-228.
[http://dx.doi.org/10.1039/c1mt90005f] [PMID: 21327191]
[133]
Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The transition metals copper and iron in neurodegenerative diseases. Chem. Biol. Interact., 2010, 186(2), 184.
[http://dx.doi.org/10.1016/j.cbi.2010.04.010]
[134]
Hands, S.L.; Mason, R.; Sajjad, M.U.; Giorgini, F.; Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem. Soc. Trans., 2010, 38(2), 552-558.
[http://dx.doi.org/10.1042/BST0380552] [PMID: 20298220]
[135]
Squadrone, S.; Brizio, P.; Abete, M.C.; Brusco, A. Trace elements profile in the blood of Huntington’ disease patients. J. Trace Elem. Med. Biol., 2020, 57, 18-20.
[http://dx.doi.org/10.1016/j.jtemb.2019.09.006] [PMID: 31546208]
[136]
Duran, R.; Barrero, F.J.; Morales, B.; Luna, J.D.; Ramirez, M.; Vives, F. Oxidative stress and plasma aminopeptidase activity in Huntington’s disease. J. Neural Transm. (Vienna), 2010, 117(3), 325-332.
[http://dx.doi.org/10.1007/s00702-009-0364-0] [PMID: 20094738]
[137]
Essa, M.M.; Moghadas, M.; Ba-Omar, T.; Walid Qoronfleh, M.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Ray, B.; Bhat, A.; Chidambaram, S.B.; Fernandes, A.J.; Song, B.J.; Akbar, M. Protective effects of antioxidants in Huntington’s disease: An extensive review. Neurotox. Res., 2019, 35(3), 739-774.
[http://dx.doi.org/10.1007/s12640-018-9989-9] [PMID: 30632085]
[138]
Cunha-Oliveira, T.; Montezinho, L.; Mendes, C.; Firuzi, O.; Saso, L.; Oliveira, P.J.; Silva, F.S.G. Oxidative stress in amyotrophic lateral sclerosis: Pathophysiology and opportunities for pharmacological intervention. Oxid. Med. Cell. Longev., 2020, 2020, 5021694.
[http://dx.doi.org/10.1155/2020/5021694] [PMID: 33274002]
[139]
Riancho, J.; Gonzalo, I.; Ruiz-Soto, M.; Berciano, J. Why do motor neurons degenerate? Actualization in the pathogenesis of amyotrophic lateral sclerosis. Berciano J. Neurologia, 2019, 34(1), 27-37.
[http://dx.doi.org/10.1016/j.nrleng.2015.12.019] [PMID: 26853842]
[140]
Walker, A.K.; Atkin, J.D. Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life, 2011, 63(9), 754-763.
[http://dx.doi.org/10.1002/iub.520] [PMID: 21834058]
[141]
Niebrój-Dobosz, I.; Dziewulska, D.; Kwieciński, H. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS). Folia Neuropathol., 2004, 42(3), 151-156.
[PMID: 15535033]
[142]
Mitsumoto, H.; Garofalo, D.C.; Santella, R.M.; Sorenson, E.J.; Oskarsson, B.; Fernandes, J.A.M., Jr; Andrews, H.; Hupf, J.; Gilmore, M.; Heitzman, D.; Bedlack, R.S.; Katz, J.S.; Barohn, R.J.; Kasarskis, E.J.; Lomen-Hoerth, C.; Mozaffar, T.; Nations, S.P.; Swenson, A.J.; Factor-Litvak, P. Plasma creatinine and oxidative stress biomarkers in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2020, 21(3-4), 263-272.
[http://dx.doi.org/10.1080/21678421.2020.1746810] [PMID: 32276554]
[143]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[144]
D’Amico, E.; Factor-Litvak, P.; Santella, R.M.; Mitsumoto, H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med., 2013, 65, 509-527.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.029] [PMID: 23797033]
[145]
Yeo, W.S.; Kim, Y.J.; Kabir, M.H.; Kang, J.W.; Ahsan-Ul-Bari, M.; Kim, K.P. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. Mass Spectrom. Rev., 2015, 34(2), 166-183.
[http://dx.doi.org/10.1002/mas.21429] [PMID: 24889964]
[146]
Abe, K.; Pan, L.H.; Watanabe, M.; Kato, T.; Itoyama, Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett., 1995, 199(2), 152-154.
[http://dx.doi.org/10.1016/0304-3940(95)12039-7] [PMID: 8584246]
[147]
Babu, G.N.; Kumar, A.; Chandra, R.; Puri, S.K.; Singh, R.L.; Kalita, J.; Misra, U.K. Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem. Int., 2008, 52(6), 1284-1289.
[http://dx.doi.org/10.1016/j.neuint.2008.01.009] [PMID: 18308427]
[148]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[149]
Schulz, J.B.; Dehmer, T.; Schöls, L.; Mende, H.; Hardt, C.; Vorgerd, M.; Bürk, K.; Matson, W.; Dichgans, J.; Beal, M.F.; Bogdanov, M.B. Oxidative stress in patients with Friedreich ataxia. Neurology, 2000, 55(11), 1719-1721.
[http://dx.doi.org/10.1212/WNL.55.11.1719] [PMID: 11113228]
[150]
Emond, M.; Lepage, G.; Vanasse, M.; Pandolfo, M. Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology, 2000, 55(11), 1752-1753.
[http://dx.doi.org/10.1212/WNL.55.11.1752] [PMID: 11113241]
[151]
Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem., 2006, 97(6), 1634-1658.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03907.x] [PMID: 16805774]
[152]
Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative stress: major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 689-695.
[http://dx.doi.org/10.2174/1871527317666180627120501] [PMID: 29952272]
[153]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[154]
Jeggo, P.A.; Tesmer, J.; Chen, D.J. Genetic analysis of ionising radiation sensitive mutants of cultured mammalian cell lines. Mutat. Res., 1991, 254(2), 125-133.
[http://dx.doi.org/10.1016/0921-8777(91)90003-8] [PMID: 2002809]
[155]
Cantoni, O.; Murray, D.; Meyn, R.E. Induction and repair of DNA single-strand breaks in EM9 mutant CHO cells treated with hydrogen peroxide. Chem. Biol. Interact., 1987, 63(1), 29-38.
[http://dx.doi.org/10.1016/0009-2797(87)90102-5] [PMID: 3115605]
[156]
Narciso, L.; Parlanti, E.; Racaniello, M.; Simonelli, V.; Cardinale, A.; Merlo, D.; Dogliotti, E. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast., 2016, 2016, 3619274.
[http://dx.doi.org/10.1155/2016/3619274] [PMID: 26942017]
[157]
Frappart, P.O.; McKinnon, P.J. Ataxia-telangiectasia and related diseases. Neuromol. Med., 2006, 8(4), 495-511.
[http://dx.doi.org/10.1385/NMM:8:4:495] [PMID: 17028372]
[158]
Perlman, S.; Becker-Catania, S.; Gatti, R.A. Ataxia-telangiectasia: diagnosis and treatment. Semin. Pediatr. Neurol., 2003, 10(3), 173-182.
[http://dx.doi.org/10.1016/S1071-9091(03)00026-3] [PMID: 14653405]
[159]
Sedgwick, R.P.; Boder, E. Handbook of Clinical Neurology; Vinken, P.; Bruyn, G; Klawans, H., Ed.; Elsevier: New York, 1991, pp. 347-423.
[160]
Carney, J.P.; Maser, R.S.; Olivares, H.; Davis, E.M.; Le Beau, M.; Yates, J.R., III; Hays, L.; Morgan, W.F.; Petrini, J.H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell, 1998, 93(3), 477-486.
[http://dx.doi.org/10.1016/S0092-8674(00)81175-7] [PMID: 9590181]
[161]
Stewart, G.S.; Maser, R.S.; Stankovic, T.; Bressan, D.A.; Kaplan, M.I.; Jaspers, N.G.; Raams, A.; Byrd, P.J.; Petrini, J.H.; Taylor, A.M. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell, 1999, 99(6), 577-587.
[http://dx.doi.org/10.1016/S0092-8674(00)81547-0] [PMID: 10612394]
[162]
Taylor, A.M.; Groom, A.; Byrd, P.J. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst.), 2004, 3(8-9), 1219-1225.
[http://dx.doi.org/10.1016/j.dnarep.2004.04.009] [PMID: 15279810]
[163]
Cleaver, J.E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer, 2005, 5(7), 564-573.
[http://dx.doi.org/10.1038/nrc1652] [PMID: 16069818]
[164]
Nouspikel, T. Nucleotide excision repair and neurological diseases. DNA Repair (Amst.), 2008, 7(7), 1155-1167.
[http://dx.doi.org/10.1016/j.dnarep.2008.03.015] [PMID: 18456575]
[165]
Compe, E.; Malerba, M.; Soler, L.; Marescaux, J.; Borrelli, E.; Egly, J.M. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nat. Neurosci., 2007, 10(11), 1414-1422.
[http://dx.doi.org/10.1038/nn1990] [PMID: 17952069]
[166]
Kraemer, K.H.; Patronas, N.J.; Schiffmann, R.; Brooks, B.P.; Tamura, D.; DiGiovanna, J.J. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience, 2007, 145(4), 1388-1396.
[http://dx.doi.org/10.1016/j.neuroscience.2006.12.020] [PMID: 17276014]
[167]
Kulkarni, S.R.; Ravindra, K.P.; Rataboli, P. Levels of plasma testosterone, antioxidants and oxidative stress in alcoholic patients attending de-addiction centre. Biol. Med. (Aligarh), 2009, 1(4), 11-20.
[168]
Cardoso, S.M.; Santana, I.; Swerdlow, R.H.; Oliveira, C.R. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J. Neurochem., 2004, 89(6), 1417-1426.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02438.x] [PMID: 15189344]
[169]
Guzik, B.; Sagan, A.; Ludew, D.; Mrowiecki, W.; Chwała, M.; Bujak-Gizycka, B.; Filip, G.; Grudzien, G.; Kapelak, B.; Zmudka, K.; Mrowiecki, T.; Sadowski, J.; Korbut, R.; Guzik, T.J. Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int. J. Cardiol., 2013, 168(3), 2389-2396.
[http://dx.doi.org/10.1016/j.ijcard.2013.01.278] [PMID: 23506637]
[170]
Suk-Yee, Li.; Zhong-Jie, Fu.; Huan, Ma. Wai-Chi, Jang. Effect of lutein on retinal neurons and oxidative stress in a model of acute retinal ischemia/reperfusion. Invest. Ophthalmol. Vis. Sci., 2009, 50, 2.
[171]
Golechha, M.; Bhatia, J.; Arya, D.S. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J. Environ. Biol., 2012, 33(1), 95-100.
[PMID: 23033650]
[172]
Furukawa, Y.; Fu, R.; Deng, H.X.; Siddique, T.; O’Halloran, T.V. Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc. Natl. Acad. Sci. USA, 2006, 103(18), 7148-7153.
[http://dx.doi.org/10.1073/pnas.0602048103] [PMID: 16636274]
[173]
Cemil, B.; Kurt, G.; Aydın, C.; Akyurek, N.; Erdogan, B.; Ceviker, N. Evaluation of tenoxicam on prevention of arachnoiditis in rat laminectomy model. Eur. Spine J., 2011, 20(8), 1255-1258.
[http://dx.doi.org/10.1007/s00586-011-1706-9] [PMID: 21327813]
[174]
Castejón, O.J.; Arismendi, G.J. Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies. J. Submicrosc. Cytol. Pathol., 2004, 36(3-4), 273-283.
[PMID: 15906602]
[175]
Parellada, M.; Moreno, C.; Mac-Dowell, K.; Leza, J.C.; Giraldez, M.; Bailón, C.; Castro, C.; Miranda-Azpiazu, P.; Fraguas, D.; Arango, C. Plasma antioxidant capacity is reduced in Asperger syndrome. J. Psychiatr. Res., 2012, 46(3), 394-401.
[http://dx.doi.org/10.1016/j.jpsychires.2011.10.004] [PMID: 22225920]
[176]
Cotticelli, M.G.; Crabbe, A.M.; Wilson, R.B.; Shchepinov, M.S. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol., 2013, 1(1), 398-404.
[http://dx.doi.org/10.1016/j.redox.2013.06.004] [PMID: 25499576]
[177]
Zhan, H.; Suzuki, T.; Aizawa, K.; Miyagawa, K.; Nagai, R. Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence. J. Biol. Chem., 2010, 285(38), 29662-29670.
[http://dx.doi.org/10.1074/jbc.M110.125138] [PMID: 20639198]
[178]
Ceylan, M.F.; Sener, S.; Bayraktar, A.C.; Kavutcu, M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin. Neurosci., 2012, 66(3), 220-226.
[http://dx.doi.org/10.1111/j.1440-1819.2012.02330.x] [PMID: 22443244]
[179]
Chauhan, A.; Chauhan, V.; Brown, W.T.; Cohen, I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci., 2004, 75(21), 2539-2549.
[http://dx.doi.org/10.1016/j.lfs.2004.04.038] [PMID: 15363659]
[180]
Andreazza, A.C.; Shao, L.; Wang, J.F.; Young, L.T. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry, 2010, 67(4), 360-368.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.22] [PMID: 20368511]
[181]
Cheng, X.; Liu, F.L.; Zhang, J.; Wang, L.L.; Li, F.L.; Liu, S.; Zhou, L.H. EGb761 protects motoneurons against avulsion-induced oxidative stress in rats. J. Brachial Plex. Peripher. Nerve Inj., 2010, 5, 12.
[PMID: 20497551]
[182]
Chen, H.; Song, Y.S.; Chan, P.H. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J. Cereb. Blood Flow Metab., 2009, 29(7), 1262-1272.
[http://dx.doi.org/10.1038/jcbfm.2009.47] [PMID: 19417757]
[183]
Rajaraman, P.; Hutchinson, A.; Rothman, N.; Black, P.M.; Fine, H.A.; Loeffler, J.S.; Selker, R.G.; Shapiro, W.R.; Linet, M.S.; Inskip, P.D. Oxidative response gene polymorphisms and risk of adult brain tumors. Neuro-oncol., 2008, 10(5), 709-715.
[http://dx.doi.org/10.1215/15228517-2008-037] [PMID: 18682580]
[184]
Pederzolli, C.D.; Mescka, C.P.; Scapin, F.; Rockenbach, F.J.; Sgaravatti, A.M.; Sgarbi, M.B. N-acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. Int. J. Dev. Neurosci., 2007, 25(5), 317-324.
[185]
Capgras, M.S.T. Syndrome and its relationship to neurodegenerative disease. Arch. Neurol., 2007, 64(12), 1762-1766.
[PMID: 18071040]
[186]
Kim, J.K.; Koh, Y.D.; Kim, J.S.; Hann, H.J.; Kim, M.J.J. Oxidative stress in subsynovial connective tissue of idiopathic carpal tunnel syndrome. Orthop. Res., 2010, 28(11), 1463-1468.
[http://dx.doi.org/10.1002/jor.21163] [PMID: 20872582]
[187]
Eisenberg, E.; Shtahl, S.; Geller, R.; Reznick, A.Z.; Sharf, O.; Ravbinovich, M.; Erenreich, A.; Nagler, R.M. Serum and salivary oxidative analysis in complex regional pain syndrome. Pain, 2008, 138(1), 226-232.
[http://dx.doi.org/10.1016/j.pain.2008.04.019] [PMID: 18539395]
[188]
Meeus, M.; Nijs, J.; Hermans, L.; Goubert, D.; Calders, P. The role of mitochondrial dysfunctions due to oxidative and nitrosative stress in the chronic pain or chronic fatigue syndromes and fibromyalgia patients: peripheral and central mechanisms as therapeutic targets? Expert Opin. Ther. Targets, 2013, 17(9), 1081-1089.
[http://dx.doi.org/10.1517/14728222.2013.818657] [PMID: 23834645]
[189]
Vallurupalli, S.; Huesmann, G.; Gregory, J.; Jakoby, M.G., IV Levofloxacin-associated hypoglycaemia complicated by pontine myelinolysis and quadriplegia. Diabet. Med., 2008, 25(7), 856-859.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02465.x] [PMID: 18644072]
[190]
Witherspoon, J.W.; Meilleur, K.G. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol. Commun., 2016, 4(1), 121.
[191]
Starke, R.M.; Chalouhi, N.; Ali, M.S.; Jabbour, P.M.; Tjoumakaris, S.I.; Gonzalez, L.F.; Rosenwasser, R.H.; Koch, W.J.; Dumont, A.S. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr. Neurovasc. Res., 2013, 10(3), 247-255.
[http://dx.doi.org/10.2174/15672026113109990003] [PMID: 23713738]
[192]
Aliev, J.L.; Puchowicz, M.; Siedlak, S.L.; Obrenovich, M.E.; Shenk, J.C.; Smith, M.A. Does the oxidative stress and cerebral atherosclerosis initiate brain hypoperfusion and the development of alzheimer disease? Atheroscler. Suppl., 2008, 9(1), 154.
[http://dx.doi.org/10.1016/S1567-5688(08)70622-6]
[193]
Bleich, S.; Spilker, K.; Kurth, C.; Degner, D.; Quintela-Schneider, M.; Javaheripour, K.; Rüther, E.; Kornhuber, J.; Wiltfang, J. Oxidative stress and an altered methionine metabolism in alcoholism. Neurosci. Lett., 2000, 293(3), 171-174.
[http://dx.doi.org/10.1016/S0304-3940(00)01505-6] [PMID: 11036188]
[194]
Formichi, P.; Radi, E.; Battisti, C.; Di Maio, G.; Tarquini, E.; Leonini, A.; Di Stefano, A.; Dotti, M.T.; Federico, A. Apoptosis in CADASIL: An in vitro study of lymphocytes and fibroblasts from a cohort of Italian patients. J. Cell. Physiol., 2009, 219(2), 494-502.
[http://dx.doi.org/10.1002/jcp.21695] [PMID: 19180562]
[195]
Schoendorfer, N.C.; Vitetta, L.; Sharp, N.; DiGeronimo, M.; Wilson, G.; Coombes, J.S.; Boyd, R.; Davies, P.S. Micronutrient, antioxidant, and oxidative stress status in children with severe cerebral palsy. JPEN J. Parenter. Enteral Nutr., 2013, 37(1), 97-101.
[http://dx.doi.org/10.1177/0148607112447200] [PMID: 22610980]
[196]
Quinn, M.T.; Schepetkin, I.A. Role of NADPH oxidase in formation and function of multinucleated giant cells. J. Innate Immun., 2009, 1(6), 509-526.
[http://dx.doi.org/10.1159/000228158] [PMID: 20375608]
[197]
Niemann, A.; Huber, N.; Wagner, K.M.; Somandin, C.; Horn, M.; Lebrun-Julien, F.; Angst, B.; Pereira, J.A.; Halfter, H.; Welzl, H.; Feltri, M.L.; Wrabetz, L.; Young, P.; Wessig, C.; Toyka, K.V.; Suter, U. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. Brain, 2014, 137(Pt 3), 668-682.
[http://dx.doi.org/10.1093/brain/awt371] [PMID: 24480485]
[198]
Andrea, C.; Giuseppe, M.; Paolina, S.; Federico, C.; Paolo, C.; Cristina, C.; Antonio, A. NADPH oxidases (NOX) enzymes induced oxidative stress in CIDP patients (P1.070). Neurology, 2014, 82(10) P1.070.
[199]
Nwankow, E.I.; Francesco, A.; Lorenzo, D.C.M.; Alessandra, P.; Laura, B.; Carla, G.; Seyed, K.T. thioctic acid enantiomers prevent central nervous system changes occurring in a model of compressive neuropathy. Ital. J. Anat. Embryol., 2011, 116(1), 4.
[200]
Vázquez, M.C.; Balboa, E.; Alvarez, A.R.; Zanlungo, S. Oxidative stress: A pathogenic mechanism for Niemann-Pick type C disease. Oxid. Med. Cell. Longev., 2012, 2012, 205713.
[201]
Borkowski, A.; Younge, B.R.; Szweda, L.; Mock, B.; Björnsson, J.; Moeller, K.; Goronzy, J.J.; Weyand, C.M. Reactive nitrogen intermediates in giant cell arteritis: selective nitration of neocapillaries. Am. J. Pathol., 2002, 161(1), 115-123.
[http://dx.doi.org/10.1016/S0002-9440(10)64163-6] [PMID: 12107096]
[202]
Bleich, S.; Kropp, S.; Degner, D.; Zerr, I.; Pilz, J.; Gleiter, C.H.; Otto, M.; Rüther, E.; Kretzschmar, H.A.; Wiltfang, J.; Kornhuber, J.; Poser, S. Creutzfeldt-Jakob disease and oxidative stress. Acta Neurol. Scand., 2000, 101(5), 332-334.
[http://dx.doi.org/10.1034/j.1600-0404.2000.9s290a.x] [PMID: 10987323]
[203]
Karamouzis, I.; Berardelli, R.; D’Angelo, V.; Fussotto, B.; Zichi, C.; Giordano, R.; Settanni, F.; Maccario, M.; Ghigo, E.; Arvat, E. Enhanced oxidative stress and platelet activation in patients with Cushing’s syndrome. Clin. Endocrinol. (Oxf.), 2015, 82(4), 517-524.
[http://dx.doi.org/10.1111/cen.12524] [PMID: 24923553]
[204]
Weis, M.; Kledal, T.N.; Lin, K.Y.; Panchal, S.N.; Gao, S.Z.; Valantine, H.A.; Mocarski, E.S.; Cooke, J.P. Cytomegalovirus infection impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation, 2004, 109(4), 500-505.
[http://dx.doi.org/10.1161/01.CIR.0000109692.16004.AF] [PMID: 14732750]
[205]
Caksen, H.; Ozkan, M.; Cemek, M.; Cemek, F. Oxidant and antioxidant status in children with subacute sclerosing panencephalitis. Child Neurol., 2014, 29(11), 1448-1452.
[http://dx.doi.org/10.1177/0883073813494475] [PMID: 23872915]
[206]
Mao, P. Oxidative stress and its clinical applications in dementia. J. Neurodegener. Dis., 2013, 2013, 319898.
[http://dx.doi.org/10.1155/2013/319898] [PMID: 26316986]
[207]
Baechler, E.C.; Bauer, J.W.; Slattery, C.A.; Ortmann, W.A.; Espe, K.J.; Novitzke, J.; Ytterberg, S.R.; Gregersen, P.K.; Behrens, T.W.; Reed, A.M. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med., 2007, 13(1-2), 59-68.
[http://dx.doi.org/10.2119/2006-00085.Baechler] [PMID: 17515957]
[208]
Mohit, C.; Kirti, K.; Joanna, T.; Ruhul, C.; Eva, M.K.; Rakesh, C. Oxidative stress in diabetic neuropathy: source of reactive oxygen species. Endocrinol. stud., 2012, 2(2), 6.
[209]
Cruz-Dominguez, M.D.P.; Olga, M.C.; Daniel, M. Plasma oxidative stress in patients with diffuse systemic sclerosis versus control group. Arthritis Rheum., 2009, 60(10), 1715.
[210]
Amparo, G.; José, L.G-G.; Laura, A.; Nuria, T.; Pilar, A.; Francisco, D.; Federico, V.P. Decreased cell proliferation and higher oxidative stress in fibroblasts from down syndrome fetuses. Preliminary study. Biochim. Biophys. Acta (BBA). Mol. Basis Dis., 2014, 1842(1), 116-125.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.014]
[211]
Pal, R.; Palmieri, M.; Loehr, J.A.; Li, S.; Abo-Zahrah, R.; Monroe, T.O.; Thakur, P.B.; Sardiello, M.; Rodney, G.G. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat. Commun., 2014, 5, 4425.
[http://dx.doi.org/10.1038/ncomms5425] [PMID: 25028121]
[212]
Xia, H.; Suda, S.; Bindom, S.; Feng, Y.; Gurley, S.B.; Seth, D.; Navar, L.G.; Lazartigues, E. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One, 2011, 6(7), e22682.
[http://dx.doi.org/10.1371/journal.pone.0022682] [PMID: 21818366]
[213]
Burger, M.E.; Alves, A.; Callegari, L.; Athayde, F.R.; Nogueira, C.W.; Zeni, G.; Rocha, J.B. Ebselen attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(1), 135-140.
[http://dx.doi.org/10.1016/S0278-5846(02)00344-5] [PMID: 12551736]
[214]
Kuner, R.; Teismann, P.; Trutzel, A.; Naim, J.; Richter, A.; Schmidt, N.; von Ahsen, O.; Bach, A.; Ferger, B.; Schneider, A. TorsinA protects against oxidative stress in COS-1 and PC12 cells. Neurosci. Lett., 2003, 350(3), 153-156.
[http://dx.doi.org/10.1016/S0304-3940(03)00904-2] [PMID: 14550917]
[215]
Miyata, R.; Tanuma, N.; Hayashi, M.; Imamura, T.; Takanashi, J.; Nagata, R.; Okumura, A.; Kashii, H.; Tomita, S.; Kumada, S.; Kubota, M. Oxidative stress in patients with clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS). Brain Dev., 2012, 34(2), 124-127.
[http://dx.doi.org/10.1016/j.braindev.2011.04.004] [PMID: 21576007]
[216]
Sudarsanam, A.; Ardern-Holmes, S.L. Sturge-Weber syndrome: from the past to the present. Eur. J. Paediatr. Neurol., 2014, 18(3), 257-266.
[http://dx.doi.org/10.1016/j.ejpn.2013.10.003] [PMID: 24275166]
[217]
Mareš, J.; Stopka, P.; Nohejlová, K.; Rokyta, R. Oxidative stress induced by epileptic seizure and its attenuation by melatonin. Physiol. Res., 2013, 62(1)(Suppl. 1), S67-S74.
[http://dx.doi.org/10.33549/physiolres.932576] [PMID: 24329705]
[218]
Müller, K.B.; Galdieri, L.C.; Pereira, V.G.; Martins, A.M.; D’Almeida, V. Evaluation of oxidative stress markers and cardiovascular risk factors in fabry disease patients. Genet. Mol. Biol., 2012, 35(2), 418-423.
[http://dx.doi.org/10.1590/S1415-47572012005000031] [PMID: 22888289]
[219]
Huang, Y.J.; Zhou, Z.W.; Xu, M.; Ma, Q.W.; Yan, J.B.; Wang, J.Y.; Zhang, Q.Q.; Huang, M.; Bao, L. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope. Pediatr. Cardiol., 2015, 36(3), 475-480.
[http://dx.doi.org/10.1007/s00246-014-1036-x] [PMID: 25367286]
[220]
Atorino, L.; Silvestri, L.; Koppen, M.; Cassina, L.; Ballabio, A.; Marconi, R.; Langer, T.; Casari, G. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol., 2003, 163(4), 777-787.
[http://dx.doi.org/10.1083/jcb.200304112] [PMID: 14623864]
[221]
Abuhandan, M.; Calik, M.; Taskin, A.; Yetkin, I.; Selek, S.; Iscan, A. The oxidative and antioxidative status of simple febrile seizure patients. J. Pak. Med. Assoc., 2013, 63(5), 594-597.
[PMID: 23757987]
[222]
Ghabaee, M.; Jabedari, B.; Al-E-Eshagh, N.; Ghaffarpour, M.; Asadi, F. Serum and cerebrospinal fluid antioxidant activity and lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int. J. Neurosci., 2010, 120(4), 301-304.
[http://dx.doi.org/10.3109/00207451003695690] [PMID: 20374079]
[223]
Brocardo, P.S.; Boehme, F.; Patten, A.; Cox, A.; Gil-Mohapel, J.; Christie, B.R. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise. Neuropharmacology, 2012, 62(4), 1607-1618.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.006] [PMID: 22019722]
[224]
el Bekay, R.; Romero-Zerbo, Y.; Decara, J.; Sanchez-Salido, L.; Del Arco-Herrera, I.; Rodríguez-de Fonseca, F.; de Diego-Otero, Y. Enhanced markers of oxidative stress, altered antioxidants and NADPH-oxidase activation in brains from Fragile X mental retardation 1-deficient mice, a pathological model for Fragile X syndrome. Eur. J. Neurosci., 2007, 26(11), 3169-3180.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05939.x] [PMID: 18005058]
[225]
Ross-Inta, C.; Omanska-Klusek, A.; Wong, S.; Barrow, C.; Garcia-Arocena, D.; Iwahashi, C.; Berry-Kravis, E.; Hagerman, R.J.; Hagerman, P.J.; Giulivi, C. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J., 2010, 429(3), 545-552.
[http://dx.doi.org/10.1042/BJ20091960] [PMID: 20513237]
[226]
Moraitou, M.; Dimitriou, E.; Dekker, N.; Monopolis, I.; Aerts, J.; Michelakakis, H. Gaucher disease: plasmalogen levels in relation to primary lipid abnormalities and oxidative stress. Blood Cells Mol. Dis., 2014, 53(1-2), 30-33.
[http://dx.doi.org/10.1016/j.bcmd.2014.01.005] [PMID: 24521822]
[227]
Isidro, F.; Margarita, C.; Rosa, B.; Maria, J.R. Recio, R.M. San Segundo. Gerstmann-Straüssler-Scheinker PRNP P102L-129V mutation. Transl. Neurosci., 2011, 2(1), 23-32.
[228]
Lee, Y.L.; Liu, C.E.; Cho, W.L.; Kuo, C.L.; Cheng, W.L.; Huang, C.S.; Liu, C.S. Presence of cytomegalovirus DNA in leucocytes is associated with increased oxidative stress and subclinical atherosclerosis in healthy adults. Biomarkers, 2014, 19(2), 109-113.
[http://dx.doi.org/10.3109/1354750X.2013.877967] [PMID: 24446591]
[229]
Hawkins-Salsbury, J.A.; Qin, E.Y.; Reddy, A.S.; Vogler, C.A.; Sands, M.S. Oxidative stress as a therapeutic target in globoid cell leukodystrophy. Exp. Neurol., 2012, 237(2), 444-452.
[http://dx.doi.org/10.1016/j.expneurol.2012.07.013] [PMID: 22849820]
[230]
Takano, T.; Akahori, S.; Takeuchi, Y.; Ohno, M. Neuronal apoptosis and gray matter heterotopia in microcephaly produced by cytosine arabinoside in mice. Brain Res., 2006, 1089(1), 55-66.
[http://dx.doi.org/10.1016/j.brainres.2006.03.047] [PMID: 16638609]
[231]
Sakai, T.; Inoue, A.; Koh, C.S.; Ikeda, S. [A study of free radical defense and oxidative stress in the sera of patients with neuroimmunological disorders]. Arerugi, 2000, 49(1), 12-18.
[PMID: 10707474]
[232]
Kaya, M.C.; Bez, Y.; Karababa, I.F.; Emhan, A.; Aksoy, N.; Bulut, M.; Guneş, M.; Atli, A.; Selek, S. Decreased serum sulphydryl levels as a sign of increased oxidative stress in generalized anxiety disorder. Psychiatry Investig., 2013, 10(3), 281-285.
[http://dx.doi.org/10.4306/pi.2013.10.3.281] [PMID: 24302952]
[233]
Nishiyama, K.; Murayama, S.; Nishimura, Y.; Asayama, K.; Kanazawa, I. Superoxide dismutase-like immunoreactivity in spheroids in Hallervorden-Spatz disease. Acta Neuropathol., 1997, 93(1), 19-23.
[http://dx.doi.org/10.1007/s004010050578] [PMID: 9006653]
[234]
Shohami, E.; Beit-Yannai, E.; Horowitz, M.; Kohen, R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J. Cereb. Blood Flow Metab., 1997, 17(10), 1007-1019.
[http://dx.doi.org/10.1097/00004647-199710000-00002] [PMID: 9346425]
[235]
Vurucu, S.; Karaoglu, A.; Paksu, M.S.; Yesilyurt, O.; Oz, O.; Unay, B.; Akin, R. Relationship between oxidative stress and chronic daily headache in children. Hum. Exp. Toxicol., 2013, 32(2), 113-119.
[http://dx.doi.org/10.1177/0960327112459204] [PMID: 23315275]
[236]
Aoto, K.; Shikata, Y.; Higashiyama, D.; Shiota, K.; Motoyama, J. Fetal ethanol exposure activates protein kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res. A Clin. Mol. Teratol., 2008, 82(4), 224-231.
[http://dx.doi.org/10.1002/bdra.20447] [PMID: 18338389]
[237]
Chen, C.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med. J., 2011, 34(2), 135-152.
[PMID: 21539755]
[238]
Socci, D.J.; Bjugstad, K.B.; Jones, H.C.; Pattisapu, J.V.; Arendash, G.W. Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp. Neurol., 1999, 155(1), 109-117.
[http://dx.doi.org/10.1006/exnr.1998.6969] [PMID: 9918710]
[239]
Tomiyama, A.J.; Epel, E.S.; McClatchey, T.M.; Poelke, G.; Kemeny, M.E.; McCoy, S.K.; Daubenmier, J. Associations of weight stigma with cortisol and oxidative stress independent of adiposity. Health Psychol., 2014, 33(8), 862-867.
[http://dx.doi.org/10.1037/hea0000107] [PMID: 25068456]
[240]
Patterson, A.J.; Xiao, D.; Xiong, F.; Dixon, B.; Zhang, L. Hypoxia-derived oxidative stress mediates epigenetic repression of PKCε gene in foetal rat hearts. Cardiovasc. Res., 2012, 93(2), 302-310.
[http://dx.doi.org/10.1093/cvr/cvr322] [PMID: 22139554]
[241]
Askanas, V.; Engel, W.K. Inclusion-body myositis: A myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology, 2006, 66(2), S39-S48.
[http://dx.doi.org/10.1212/01.wnl.0000192128.13875.1e] [PMID: 16432144]
[242]
Ohkawa, N.; Okumura, A.; Miyata, R.; Tanuma, N.; Hayashi, M.; Sato, H.; Shimizu, T. Cerebrospinal fluid oxidative stress marker levels and cytokine concentrations in a neonate with incontinentia pigmenti. Pediatr. Neurol., 2014, 51(5), 737-740.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.07.023] [PMID: 25238668]
[243]
Dalazen, G.R.; Terra, M.; Jacques, C.E.; Coelho, J.G.; Freitas, R.; Mazzola, P.N.; Dutra-Filho, C.S. Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab. Brain Dis., 2014, 29(1), 175-183.
[http://dx.doi.org/10.1007/s11011-013-9466-3] [PMID: 24338030]
[244]
Galanopoulou, A.S.; Moshé, S.L. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol. Dis., 2015, 79, 135-149.
[http://dx.doi.org/10.1016/j.nbd.2015.04.015] [PMID: 25968935]
[245]
Renjini, R.N.; Narayanappa, G.; Sudha, M.; Balaraju, S.; Rajeswarababu, M. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: Implications for muscular dystrophy and related muscle pathologies. J. Biochem., 289(1), 485-509.
[246]
Hall, S.R.; Wang, L.; Milne, B.; Hong, M. Left ventricular dysfunction after acute intracranial hypertension is associated with increased hydroxyl free radical production, cardiac ryanodine hyperphosphorylation, and troponin I degradation. J. Heart Lung Transplant., 2005, 24(10), 1639-1649.
[http://dx.doi.org/10.1016/j.healun.2004.11.004] [PMID: 16210142]
[247]
Mubaidin, A.; Roberts, E.; Hampshire, D.; Dehyyat, M.; Shurbaji, A.; Mubaidien, M.; Jamil, A.; Al-Din, A.; Kurdi, A.; Woods, C.G. Karak syndrome: A novel degenerative disorder of the basal ganglia and cerebellum. J. Med. Genet., 2003, 40(7), 543-546.
[http://dx.doi.org/10.1136/jmg.40.7.543] [PMID: 12843330]
[248]
Holloman, C.M.; Wolfe, L.A.; Gahl, W.A.; Boerkoel, C.F. Kearns-Sayre syndrome presenting as isolated growth failure. BMJ Case Rep., 2013, 2013, 7272.
[http://dx.doi.org/10.1136/bcr-2012-007272] [PMID: 23420719]
[249]
Romá-Mateo, C.; Aguado, C.; García-Giménez, J.L.; Ibáñez-Cabellos, J.S.; Seco-Cervera, M.; Pallardó, F.V.; Knecht, E.; Sanz, P. Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol. Neurobiol., 2015, 51(3), 932-946.
[http://dx.doi.org/10.1007/s12035-014-8747-0] [PMID: 24838580]
[250]
Aiguo Wu, ; Zhe Ying, ; Gomez-Pinilla, F. Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil. Neural Repair, 2010, 24(3), 290-298.
[http://dx.doi.org/10.1177/1545968309348318] [PMID: 19841436]
[251]
Baertling, F.; Rodenburg, R.J.; Schaper, J.; Smeitink, J.A.; Koopman, W.J.; Mayatepek, E.; Morava, E.; Distelmaier, F. A guide to diagnosis and treatment of Leigh syndrome. J. Neurol. Neurosurg. Psychiatry, 2014, 85(3), 257-265.
[http://dx.doi.org/10.1136/jnnp-2012-304426] [PMID: 23772060]
[252]
Masaharu, H.; Naoyuki, T.; Rie, M. The Involvement of Oxidative Stress in Epilepsy. Department of Clinical Neuropathology, , 305-318.
[253]
Visser, J.E.; Smith, D.W.; Moy, S.S.; Breese, G.R.; Friedmann, T.; Rothstein, J.D.; Jinnah, H.A. Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. Brain Res. Dev. Brain Res., 2002, 133(2), 127-139.
[http://dx.doi.org/10.1016/S0165-3806(02)00280-8] [PMID: 11882343]
[254]
Powers, J.M.; Pei, Z.; Heinzer, A.K.; Deering, R.; Moser, A.B.; Moser, H.W.; Watkins, P.A.; Smith, K.D. Adreno-leukodystrophy: oxidative stress of mice and men. J. Neuropathol. Exp. Neurol., 2005, 64(12), 1067-1079.
[http://dx.doi.org/10.1097/01.jnen.0000190064.28559.a4] [PMID: 16319717]
[255]
Tabet, N.; Walker, Z.; Mantle, D.; Costa, D.; Orrell, M. In vivo dopamine pre-synaptic receptors and antioxidant activities in patients with Alzheimer’s disease, dementia with Lewy bodies and in controls. A preliminary report. Dement. Geriatr. Cogn. Disord., 2003, 16(1), 46-51.
[http://dx.doi.org/10.1159/000069993] [PMID: 12714800]
[256]
Hou, G.; Lu, H.; Chen, M.; Yao, H.; Zhao, H. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs. Arch. Gerontol. Geriatr., 2014, 59(3), 665-669.
[http://dx.doi.org/10.1016/j.archger.2014.07.002] [PMID: 25081833]
[257]
Pacheco, L.S.; da Silveira, A.F.; Trott, A.; Houenou, L.J.; Algarve, T.D.; Belló, C.; Lenz, A.F.; Mânica-Cattani, M.F.; da Cruz, I.B. Association between Machado-Joseph disease and oxidative stress biomarkers. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 757(2), 99-103.
[http://dx.doi.org/10.1016/j.mrgentox.2013.06.023] [PMID: 23994570]
[258]
Calabrese, V.; Cornelius, C.; Maiolino, L.; Luca, M.; Chiaramonte, R.; Toscano, M.A.; Serra, A. Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of vitagenes. Neurochem. Res., 2010, 35(12), 2208-2217.
[http://dx.doi.org/10.1007/s11064-010-0304-2] [PMID: 21042850]
[259]
Barichello, T.; Generoso, J.S.; Simões, L.R.; Elias, S.G.; Quevedo, J. Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxid. Med. Cell. Longev., 2013, 2013, 371465.
[http://dx.doi.org/10.1155/2013/371465] [PMID: 23766853]
[260]
Rotilio, G.; Carrì, M.T.; Rossi, L.; Ciriolo, M.R. Copper-dependent oxidative stress and neurodegeneration. IUBMB Life, 2000, 50(4-5), 309-314.
[http://dx.doi.org/10.1080/15216540051081074] [PMID: 11327325]
[261]
Liu, B.; Chen, X.; Wang, Z.Q.; Tong, W.M. DNA damage and oxidative injury are associated with hypomyelination in the corpus callosum of newborn Nbn(CNS-del) mice. J. Neurosci. Res., 2014, 92(2), 254-266.
[http://dx.doi.org/10.1002/jnr.23313] [PMID: 24272991]
[262]
Marilita, M.M.; Eirini, N.; Irini, P.C.; Constantinos, A.D. Age-related macular degeneration: Pathogenesis, geneticbackground, and the role of nutritional supplements. J. Chem., 2014, 2014, 9.
[263]
Bernecker, C.; Ragginer, C.; Fauler, G.; Horejsi, R.; Möller, R.; Zelzer, S.; Lechner, A.; Wallner-Blazek, M.; Weiss, S.; Fazekas, F.; Bahadori, B.; Truschnig-Wilders, M.; Gruber, H.J. Oxidative stress is associated with migraine and migraine-related metabolic risk in females. Eur. J. Neurol., 2011, 18(10), 1233-1239.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03414.x] [PMID: 21518147]
[264]
Dogonadze, S.I.; Ninua, N.G.; Gordeziani, M.G.; Kavlashvili, M.S.; Sanikidze, T.V. The role of oxidative stress in pathogenesis of GBS. Georgian Med. News, 2006, 140(140), 43-47.
[PMID: 17179587]
[265]
Jaspreet, K.; Sarika, A.; Bhawna, S.; Thakur, L.C.; Gambhir, J. Role of oxidative stress in pathophysiology of transient ischemic attack and stroke. Int. J. Biol. Med. Res., 2011, 2(3), 611-615.
[266]
Tritschler, H.J.; Packer, L.; Medori, R. Oxidative stress and mitochondrial dysfunction in neurodegeneration. Biochem. Mol. Biol. Int., 1994, 34(1), 169-181.
[PMID: 7849618]
[267]
Cookson, M.R.; Shaw, P.J. Oxidative stress and motor neurone disease. Brain Pathol., 1999, 9(1), 165-186.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00217.x] [PMID: 9989458]
[268]
Stigger, F.; Lovatel, G.; Marques, M.; Bertoldi, K.; Moysés, F.; Elsner, V.; Siqueira, I.R.; Achaval, M.; Marcuzzo, S. Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia. Int. J. Dev. Neurosci., 2013, 31(8), 820-827.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.10.003] [PMID: 24140242]
[269]
Filippon, L.; Vanzin, C.S.; Biancini, G.B.; Pereira, I.N.; Manfredini, V.; Sitta, A. Peralba, Mdo, C.; Schwartz, I.V.; Giugliani, R.; Vargas, C.R. Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy. Mol. Genet. Metab., 2011, 103(2), 121-127.
[http://dx.doi.org/10.1016/j.ymgme.2011.02.016] [PMID: 21420339]
[270]
Huang, J.L.; Fu, S.T.; Jiang, Y.Y.; Cao, Y.B.; Guo, M.L.; Wang, Y.; Xu, Z. Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacol. Biochem. Behav., 2007, 86(4), 741-748.
[http://dx.doi.org/10.1016/j.pbb.2007.03.003] [PMID: 17448528]
[271]
Jonathan, W.; Alastair, W.; Neil, S.; Kevin, K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment, review article. Autoimmune Dis., 2011, 2011, 11.
[272]
Stefanova, N.; Reindl, M.; Neumann, M.; Haass, C.; Poewe, W.; Kahle, P.J.; Wenning, G.K. Oxidative stress in transgenic mice with oligodendroglial α-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am. J. Pathol., 2005, 166(3), 869-876.
[http://dx.doi.org/10.1016/S0002-9440(10)62307-3] [PMID: 15743798]
[273]
Terrill, J.R.; Radley-Crabb, H.G.; Iwasaki, T.; Lemckert, F.A.; Arthur, P.G.; Grounds, M.D. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J., 2013, 280(17), 4149-4164.
[http://dx.doi.org/10.1111/febs.12142] [PMID: 23332128]
[274]
Maes, M.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med. Sci. Monit., 2011, 17(4), SC11-SC15.
[http://dx.doi.org/10.12659/MSM.881699] [PMID: 21455120]
[275]
Fuhua, P.; Xuhui, D.; Zhiyang, Z.; Ying, J.; Yu, Y.; Feng, T.; Jia, L.; Lijia, G.; Xueqiang, H. Antioxidant status of bilirubin and uric acid in patients with Myasthenia gravis. Neuroimmunomodulation, 2012, 19(1), 43-49.
[http://dx.doi.org/10.1159/000327727] [PMID: 22067621]
[276]
Lehtinen, M.K.; Tegelberg, S.; Schipper, H.; Su, H.; Zukor, H.; Manninen, O.; Kopra, O.; Joensuu, T.; Hakala, P.; Bonni, A.; Lehesjoki, A.E. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J. Neurosci., 2009, 29(18), 5910-5915.
[http://dx.doi.org/10.1523/JNEUROSCI.0682-09.2009] [PMID: 19420257]
[277]
Dowling, J.J.; Arbogast, S.; Hur, J.; Nelson, D.D.; McEvoy, A.; Waugh, T.; Marty, I.; Lunardi, J.; Brooks, S.V.; Kuwada, J.Y.; Ferreiro, A. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain, 2012, 135(Pt 4), 1115-1127.
[http://dx.doi.org/10.1093/brain/aws036] [PMID: 22418739]
[278]
Isil, G.G.; Birgul, E.C.; Tongabay, C.M.D.; Gül, E. The evaluation of oxidative stress and depresion levels in patients with inactive Behcet’s disease. Adv. Life Sci., 2014, 4(4), 207-212.
[279]
Tong, J.J.; Schriner, S.E.; McCleary, D.; Day, B.J.; Wallace, D.C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat. Genet., 2007, 39(4), 476-485.
[http://dx.doi.org/10.1038/ng2004] [PMID: 17369827]
[280]
Kamińska, T.; Szuster-Ciesielska, A.; Wysocka, A.; Marmurowska-Michałowska, H.; Dubas-Slemp, H.; Kandefer-Szerszeń, M. Serum cytokine level and production of reactive oxygen species (ROS) by blood neutrophils from a schizophrenic patient with hypersensitivity to neuroleptics. Med. Sci. Monit., 2003, 9(7), CS71-CS75.
[PMID: 12883457]
[281]
Mollace, V.; Nottet, H.S.; Clayette, P.; Turco, M.C.; Muscoli, C.; Salvemini, D.; Perno, C.F. Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci., 2001, 24(7), 411-416.
[http://dx.doi.org/10.1016/S0166-2236(00)01819-1] [PMID: 11410272]
[282]
Shah, D.; Mahajan, N.; Sah, S.; Nath, S.K.; Paudyal, B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J. Biomed. Sci., 2014, 21, 23.
[http://dx.doi.org/10.1186/1423-0127-21-23] [PMID: 24636579]
[283]
Wang, S.Y.; Jin, W.N.; Wu, D. Mechanisms of juvenile neuronal ceroid lipofuscinosis (JNCL). Yi Chuan, 2009, 31(8), 779-784.
[http://dx.doi.org/10.3724/SP.J.1005.2009.00779] [PMID: 19689937]
[284]
Aksenova, M.V.; Aksenov, M.Y.; Mactutus, C.F.; Booze, R.M. Cell culture models of oxidative stress and injury in the central nervous system. Curr. Neurovasc. Res., 2005, 2(1), 73-89.
[http://dx.doi.org/10.2174/1567202052773463] [PMID: 16181101]
[285]
Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol., 2014, 2, 289-295.
[http://dx.doi.org/10.1016/j.redox.2014.01.006] [PMID: 24494204]
[286]
Matsushita, M.; Kumano-Go, T.; Suganuma, N.; Adachi, H.; Yamamura, S.; Morishima, H.; Shigedo, Y.; Mikami, A.; Takeda, M.; Sugita, Y. Anxiety, neuroticism and oxidative stress: cross-sectional study in non-smoking college students. Psychiatry Clin. Neurosci., 2010, 64(4), 435-441.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02109.x] [PMID: 20653910]
[287]
Fu, R.; Yanjanin, N.M.; Bianconi, S.; Pavan, W.J.; Porter, F.D. Oxidative stress in Niemann-Pick disease, type C. Mol. Genet. Metab., 2010, 101(2-3), 214-218.
[http://dx.doi.org/10.1016/j.ymgme.2010.06.018] [PMID: 20667755]
[288]
Yamada, S.; Won, D.J.; Yamada, S.M. Pathophysiology of tethered cord syndrome: correlation with symptomatology. Neurosurg. Focus, 2004, 16(2), E6.
[http://dx.doi.org/10.3171/foc.2004.16.2.7] [PMID: 15209489]
[289]
Yamashita, T.; Ando, Y.; Obayashi, K.; Terazaki, H.; Sakashita, N.; Uchida, K.; Ohama, E.; Ando, M.; Uchino, M. Oxidative injury is present in Purkinje cells in patients with olivopontocerebellar atrophy. J. Neurol. Sci., 2000, 175(2), 107-110.
[http://dx.doi.org/10.1016/S0022-510X(00)00296-3] [PMID: 10831770]
[290]
Qi, X.; Lewin, A.S.; Sun, L.; Hauswirth, W.W.; Guy, J. Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Invest. Ophthalmol. Vis. Sci., 2007, 48(2), 681-691.
[http://dx.doi.org/10.1167/iovs.06-0553] [PMID: 17251466]
[291]
Nagata, K.; Hasegawa, T.; Hirokado, Y.; Kiyama, K.; Honda, K.; Aoyama, Y. Endocrinological stress and oxidative stress of orthostatic hypotension. Auton. Neurosci., 2007, 135(1), 44-45.
[http://dx.doi.org/10.1016/j.autneu.2007.06.060]
[292]
Rudić, M.; Milković, L.; Žarković, K.; Borović-Šunjić, S.; Sterkers, O.; Waeg, G.; Ferrary, E.; Bozorg, G.A.; Žarković, N. The effects of angiotensin II and the oxidative stress mediator 4-hydroxynonenal on human osteoblast-like cell growth: possible relevance to otosclerosis. Free Radic. Biol. Med., 2013, 57, 22-28.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.023] [PMID: 23261942]
[293]
Cutlip, R.G.; Geronilla, K.B.; Baker, B.A.; Mercer, R.R.; Hollander, M.; Alway, S.E. Mechanisms of repetitive strain injury in an aging model. NORA Symposium 2006: Research Makes a Difference!, April 18-26. 2006, pp. 256-257.
[294]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[295]
Fortunati, N.; Manti, R.; Birocco, N.; Pugliese, M.; Brignardello, E.; Ciuffreda, L.; Catalano, M.G.; Aragno, M.; Boccuzzi, G. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients. Oncol. Rep., 2007, 18(6), 1521-1527.
[http://dx.doi.org/10.3892/or.18.6.1521] [PMID: 17982639]
[296]
Lee, H.Y.; Xu, Y.; Huang, Y.; Ahn, A.H.; Auburger, G.W.; Pandolfo, M.; Kwiecinski, H.; Grimes, D.A.; Lang, A.E.; Nielsen, J.E.; Averyanov, Y.; Servidei, S.; Friedman, A.; Van Bogaert, P.; Abramowicz, M.J.; Bruno, M.K.; Sorensen, B.F.; Tang, L.; Fu, Y.H.; Ptácek, L.J. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum. Mol. Genet., 2004, 13(24), 3161-3170.
[http://dx.doi.org/10.1093/hmg/ddh330] [PMID: 15496428]
[297]
Southwood, C.M.; Fykkolodziej, B.; Dachet, F.; Gow, A. Potential for cell-mediated immune responses in mouse models of pelizaeus-merzbacher disease. Brain Sci., 2013, 3(4), 1417-1444.
[http://dx.doi.org/10.3390/brainsci3041417] [PMID: 24575297]
[298]
Auré, K.; Dubourg, O.; Jardel, C.; Clarysse, L.; Sternberg, D.; Fournier, E.; Laforêt, P.; Streichenberger, N.; Petiot, P.; Gervais-Bernard, H.; Vial, C.; Bedat-Millet, A.L.; Drouin-Garraud, V.; Bouillaud, F.; Vandier, C.; Fontaine, B.; Lombès, A. Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations. Neurology, 2013, 81(21), 1810-1818.
[http://dx.doi.org/10.1212/01.wnl.0000436067.43384.0b] [PMID: 24153443]
[299]
Carozzi, V.A.; Canta, A.; Chiorazzi, A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett., 2015, 2(596), 90-107.
[300]
Masao, K.; Hirokazu, T.; Mitsufumi, M. Evaluation of oxidative stress status in children with pervasive developmental disorder and attention deficit hyperactivity disorder using urinary-specific biomarkers. 2011, 16(1), 45-46.
[301]
Grings, M.; Tonin, A.M.; Knebel, L.A.; Zanatta, A.; Moura, A.P.; Filho, C.S.; Wajner, M.; Leipnitz, G. Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: A possible pathomechanism of cardiomyopathy in Refsum disease. Mol. Cell. Biochem., 2012, 366(1-2), 335-343.
[http://dx.doi.org/10.1007/s11010-012-1311-1] [PMID: 22527938]
[302]
Castellani, R.; Smith, M.A.; Richey, P.L.; Kalaria, R.; Gambetti, P.; Perry, G. Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Res., 1995, 696(1-2), 268-271.
[http://dx.doi.org/10.1016/0006-8993(95)00535-X] [PMID: 8574681]
[303]
Yang, X.; Jin, L.; Shimer, A.; Shen, F.; Li, X. Novel treatment of radiculopathy with fullerol nanoparticles. Global Spine J., 2014, 4, 2.
[http://dx.doi.org/10.1055/s-0034-1376537]
[304]
Zhan, X.; Desiderio, D.M. Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med. Genomics, 2010, 3, 13.
[http://dx.doi.org/10.1186/1755-8794-3-13] [PMID: 20426862]
[305]
Ziegler, D.; Sohr, C.G.; Nourooz-Zadeh, J.; Jaffar, N.Z. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care, 2004, 27(9), 2178-2183.
[http://dx.doi.org/10.2337/diacare.27.9.2178] [PMID: 15333481]
[306]
White, J.P.; Lloyd, R.E. Poliovirus unlinks TIA1 aggregation and mRNA stress granule formation. J. Virol., 2011, 85(23), 12442-12454.
[http://dx.doi.org/10.1128/JVI.05888-11] [PMID: 21957303]
[307]
Tews, D.S.; Goebel, H.H. Cell death and oxidative damage in inflammatory myopathies. Clin. Immunol. Immunopathol., 1998, 87(3), 240-247.
[http://dx.doi.org/10.1006/clin.1998.4527] [PMID: 9646833]
[308]
Gordon, T.; Hegedus, J.; Tam, S.L. Adaptive and maladaptive motor axonal sprouting in aging and motoneuron disease. Neurol. Res., 2004, 26(2), 174-185.
[http://dx.doi.org/10.1179/016164104225013806] [PMID: 15072637]
[309]
Beatriz, G.S.; Gabino, G.; Rene, D.; Fe, B.; Camilo, E. Hernández. Report of cases in patients with acute herpetic neuralgia using a Mangifera indica extract. Rev. Bras. Farmacogn., 2011, 21(6), 1111-1117.
[http://dx.doi.org/10.1590/S0102-695X2011005000125]
[310]
Anichini, C.; Lotti, F.; Longini, M.; Proietti, F.; Felici, C.; Perrone, S.; Buonocore, G. Antioxidant effects of potassium ascorbate with ribose therapy in a case with Prader Willi Syndrome. Dis. Markers, 2012, 33(4), 179-183.
[http://dx.doi.org/10.1155/2012/425205] [PMID: 22960339]
[311]
Brown, D.R. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol., 2005, 43(4), 229-243.
[PMID: 16416388]
[312]
Aoyama, K.; Matsubara, K.; Kobayashi, S. Aging and oxidative stress in progressive supranuclear palsy. Eur. J. Neurol., 2006, 13(1), 89-92.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01139.x] [PMID: 16420399]
[313]
Xin, X.; Fan, B.; Flammer, J.; Miller, N.R.; Jaggi, G.P.; Killer, H.E.; Meyer, P.; Neutzner, A. Meningothelial cells react to elevated pressure and oxidative stress. PLoS One, 2011, 6(5), e20142.
[http://dx.doi.org/10.1371/journal.pone.0020142] [PMID: 21611150]
[314]
Hübner-Woźniak, E.; Morgulec-Adamowicz, N.; Malara, M.; Lewandowski, P.; Okęcka-Szymańska, J. Effect of rugby training on blood antioxidant defenses in able-bodied and spinal cord injured players. Spinal Cord, 2012, 50(3), 253-256.
[http://dx.doi.org/10.1038/sc.2011.134] [PMID: 22124350]
[315]
Jackson, A.C.; Kammouni, W.; Fernyhough, P. Role of oxidative stress in rabies virus infection. Adv. Virus Res., 2011, 79, 127-138.
[http://dx.doi.org/10.1016/B978-0-12-387040-7.00008-1] [PMID: 21601046]
[316]
Kolberg, C.; Horst, A.; Moraes, M.S.; Duarte, F.C.; Riffel, A.P.; Scheid, T.; Kolberg, A.; Partata, W.A. Peripheral oxidative stress blood markers in patients with chronic back or neck pain treated with high-velocity, low-amplitude manipulation. J. Manipulative Physiol. Ther., 2015, 38(2), 119-129.
[http://dx.doi.org/10.1016/j.jmpt.2014.11.003] [PMID: 25487299]
[317]
Miclescu, A.A.; Nordquist, L.; Hysing, E.B.; Butler, S.; Basu, S.; Lind, A.L.; Gordh, T. Targeting oxidative injury and cytokines’ activity in the treatment with anti-tumor necrosis factor-α antibody for complex regional pain syndrome 1. Pain Pract., 2013, 13(8), 641-648.
[http://dx.doi.org/10.1111/papr.12027] [PMID: 23336526]
[318]
Sabine, G.S.; Damien, C.; Pierre, P.; Pierre, C.; Abdallah, G. Nicole, Sarda. Nitric oxide and sleep, Physiological review. Sleep Med., 2005, 9(2), 101-113.
[http://dx.doi.org/10.1016/j.smrv.2004.07.004] [PMID: 15716213]
[319]
Nikolaidis, M.G.; Paschalis, V.; Giakas, G.; Fatouros, I.G.; Koutedakis, Y.; Kouretas, D.; Jamurtas, A.Z. Decreased blood oxidative stress after repeated muscle-damaging exercise. Med. Sci. Sports Exerc., 2007, 39(7), 1080-1089.
[http://dx.doi.org/10.1249/mss.0b013e31804ca10c] [PMID: 17596775]
[320]
Cikrikcioglu, M.A.; Hursitoglu, M.; Erkal, H.; Kınas, B.E.; Sztajzel, J.; Cakirca, M.; Arslan, A.G.; Erek, A.; Halac, G.; Tukek, T. Oxidative stress and autonomic nervous system functions in restless legs syndrome. Eur. J. Clin. Invest., 2011, 41(7), 734-742.
[http://dx.doi.org/10.1111/j.1365-2362.2010.02461.x] [PMID: 21250984]
[321]
Leoncini, S.; De Felice, C.; Signorini, C.; Pecorelli, A.; Durand, T.; Valacchi, G.; Ciccoli, L.; Hayek, J. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep., 2011, 16(4), 145-153.
[http://dx.doi.org/10.1179/1351000211Y.0000000004] [PMID: 21888765]
[322]
Abdin, A.; Sarhan, N. Resveratrol protects against experimental induced Reye’s syndrome by prohibition of oxidative stress and restoration of complex I activity. Can. J. Physiol. Pharmacol., 2014, 92(9), 780-788.
[http://dx.doi.org/10.1139/cjpp-2014-0251] [PMID: 25162205]
[323]
Schrammel, A.; Mussbacher, M.; Winkler, S.; Haemmerle, G.; Stessel, H.; Wölkart, G.; Zechner, R.; Mayer, B. Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochim. Biophys. Acta, 2013, 1831(11), 1600-1608.
[http://dx.doi.org/10.1016/j.bbalip.2013.07.004] [PMID: 23867907]
[324]
López-Erauskin, J.; Galino, J.; Bianchi, P.; Fourcade, S.; Andreu, A.L.; Ferrer, I.; Muñoz-Pinedo, C.; Pujol, A. Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain, 2012, 135(Pt 12), 3584-3598.
[http://dx.doi.org/10.1093/brain/aws292] [PMID: 23250880]
[325]
Hunter, J.W.; Mullen, G.P.; McManus, J.R.; Heatherly, J.M.; Duke, A.; Rand, J.B. Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis. Model. Mech., 2010, 3(5-6), 366-376.
[http://dx.doi.org/10.1242/dmm.003442] [PMID: 20083577]
[326]
Dr. Loges & Co. GmbH. Intravenous Vitamin C in the Treatment of Viral Infection, Especially in the Treatment of Shingles (168), Pascoe Pharmazeutische Praeparate GmbH 2012.
[327]
Stefanova, N.; Reindl, M.; Neumann, M.; Haass, C.; Poewe, W.; Kahle, P.J.; Wenning, G.K. Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am. J. Pathol., 2005, 166(3), 869-876.
[http://dx.doi.org/10.1016/S0002-9440(10)62307-3] [PMID: 15743798]
[328]
Pagano, G.; Castello, G.; Pallardó, F.V. Sjøgren’s syndrome-associated oxidative stress and mitochondrial dysfunction: prospects for chemoprevention trials. Free Radic. Res., 2013, 47(2), 71-73.
[http://dx.doi.org/10.3109/10715762.2012.748904] [PMID: 23153390]
[329]
Yamauchi, M.; Kimura, H. Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid. Redox Signal., 2008, 10(4), 755-768.
[http://dx.doi.org/10.1089/ars.2007.1946] [PMID: 18177236]
[330]
He, S.; Dayton, A.; Kuppusamy, P.; Werbovetz, K.A.; Drew, M.E. Induction of oxidative stress in Trypanosoma brucei by the antitrypanosomal dihydroquinoline OSU-40. Antimicrob. Agents Chemother., 2012, 56(5), 2428-2434.
[http://dx.doi.org/10.1128/AAC.06386-11] [PMID: 22314522]
[331]
Miwa, K.; Kishimoto, C.; Nakamura, H.; Makita, T.; Ishii, K.; Okuda, N.; Taniguchi, A.; Shioji, K.; Yodoi, J.; Sasayama, S. Increased oxidative stress with elevated serum thioredoxin level in patients with coronary spastic angina. Clin. Cardiol., 2003, 26(4), 177-181.
[http://dx.doi.org/10.1002/clc.4960260406] [PMID: 12708624]
[332]
Martín, I.; Gibert, M.J.; Pintos, C.; Noguera, A.; Besalduch, A.; Obrador, A. Oxidative stress in mothers who have conceived fetus with neural tube defects: the role of aminothiols and selenium. Clin. Nutr., 2004, 23(4), 507-514.
[http://dx.doi.org/10.1016/j.clnu.2003.09.010] [PMID: 15297086]
[333]
Jia, Z.; Zhu, H.; Li, J.; Wang, X.; Misra, H.; Li, Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord, 2012, 50(4), 264-274.
[http://dx.doi.org/10.1038/sc.2011.111] [PMID: 21987065]
[334]
Bedreag, O.H.; Rogobete, A.F.; Sărăndan, M.; Cradigati, A.; Păpurică, M.; Roşu, O.M.; Dumbuleu, C.M.; Săndesc, D. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Rom. J. Anaesth. Intensive Care, 2014, 21(2), 123-129.
[PMID: 28913444]
[335]
Hayat, E.Y. Spinal muscular atrophy: An oxidative stress response counteracted with curcumin. Biomed. Aging Pathol., 2012, 2(2), 61-66.
[http://dx.doi.org/10.1016/j.biomag.2012.03.007]
[336]
Mano, T.; Katsuno, M.; Banno, H.; Suzuki, K.; Suga, N.; Hashizume, A.; Tanaka, F.; Sobue, G. Cross-sectional and longitudinal analysis of an oxidative stress biomarker for spinal and bulbar muscular atrophy. Muscle Nerve, 2012, 46(5), 692-697.
[http://dx.doi.org/10.1002/mus.23413] [PMID: 22941760]
[337]
Guevara-García, M.; Gil-del Valle, L.; Velásquez-Pérez, L.; García-Rodríguez, J.C. Oxidative stress as a cofactor in spinocerebellar ataxia type 2. Redox Rep., 2012, 17(2), 84-89.
[http://dx.doi.org/10.1179/1351000212Y.0000000005] [PMID: 22564351]
[338]
Kasparová, S.; Brezová, V.; Valko, M.; Horecký, J.; Mlynárik, V.; Liptaj, T.; Vancová, O.; Ulicná, O.; Dobrota, D. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem. Int., 2005, 46(8), 601-611.
[http://dx.doi.org/10.1016/j.neuint.2005.02.006] [PMID: 15863238]
[339]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.M.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[340]
Kadam, S.D.; Gucek, M.; Cole, R.N.; Watkins, P.A.; Comi, A.M. Cell proliferation and oxidative stress pathways are modified in fibroblasts from Sturge-Weber syndrome patients. Arch. Dermatol. Res., 2012, 304(3), 229-235.
[http://dx.doi.org/10.1007/s00403-012-1210-z] [PMID: 22402795]
[341]
Hayashi, M.; Arai, N.; Satoh, J.; Suzuki, H.; Katayama, K.; Tamagawa, K.; Morimatsu, Y. Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J. Child Neurol., 2002, 17(10), 725-730.
[http://dx.doi.org/10.1177/08830738020170101101] [PMID: 12546425]
[342]
Ikeda, T.; Choi, B.H.; Yee, S.; Murata, Y.; Quilligan, E.J. Oxidative stress, brain white matter damage and intrauterine asphyxia in fetal lambs. Int. J. Dev. Neurosci., 1999, 17(1), 1-14.
[http://dx.doi.org/10.1016/S0736-5748(98)00055-0] [PMID: 10219955]
[343]
Liu, F.; Ma, F.; Kong, G.; Wu, K.; Deng, Z.; Wang, H. Zinc supplementation alleviates diabetic peripheral neuropathy by inhibiting oxidative stress and upregulating metallothionein in peripheral nerves of diabetic rats. Biol. Trace Elem. Res., 2014, 158(2), 211-218.
[http://dx.doi.org/10.1007/s12011-014-9923-9] [PMID: 24615552]
[344]
Cho, C.H.; Lee, H.J. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 207-213.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.018] [PMID: 23123399]
[345]
Ufuk, Çakata Systemic Oxidative Stress and Degenerative Disorders. Biochemistry, 2015, 30.
[346]
Astrid, B.; Younge, B.R.; Luke, S.; Bettina, M.; Johannes, B. Reactive nitrogen intermediates in giant cell arteritis. Am. J. Pathol., 2002, 161, 1.
[347]
Cubí, R.; Candalija, A.; Ortega, A.; Gil, C.; Aguilera, J. Tetanus toxin Hc fragment induces the formation of ceramide platforms and protects neuronal cells against oxidative stress. PLoS One, 2013, 8(6), e68055.
[http://dx.doi.org/10.1371/journal.pone.0068055] [PMID: 23826362]
[348]
Shatillo, A.; Koroleva, K.; Giniatullina, R.; Naumenko, N.; Slastnikova, A.A.; Aliev, R.R.; Bart, G.; Atalay, M.; Gu, C.; Khazipov, R.; Davletov, B.; Grohn, O.; Giniatullin, R. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience, 2013, 253, 341-349.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.002] [PMID: 24036374]
[349]
Landau, Y.E.; Steinberg, T.; Richmand, B.; Leckman, J.F.; Apter, A. Involvement of immunologic and biochemical mechanisms in the pathogenesis of Tourette’s syndrome. J. Neural Transm. (Vienna), 2012, 119(5), 621-626.
[http://dx.doi.org/10.1007/s00702-011-0739-x] [PMID: 22139323]
[350]
Achzet, L.M.; Davison, C.J.; Shea, M.; Sturgeon, I.; Jackson, D.A. Oxidative stress underlies the ischemia/reperfusion-induced internalization and degradation of AMPA receptors. Int. J. Mol. Sci., 2021, 22(2), 717.
[351]
Milhavet, O.; Lehmann, S. Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res., 2002, 38(3), 328-339.
[http://dx.doi.org/10.1016/S0165-0173(01)00150-3] [PMID: 11890980]
[352]
Rodríguez-Rodríguez, A.; Egea-Guerrero, J.J.; Murillo-Cabezas, F.; Carrillo-Vico, A. Oxidative stress in traumatic brain injury. Curr. Med. Chem., 2014, 21(10), 1201-1211.
[http://dx.doi.org/10.2174/0929867321666131217153310] [PMID: 24350853]
[353]
Louis, E.D.; Jurewicz, E.C.; Parides, M.K. Case-control study of nutritional antioxidant intake in essential tremor. Neuroepidemiology, 2005, 24(4), 203-208.
[http://dx.doi.org/10.1159/000084713] [PMID: 15802925]
[354]
Paiva, C.N.; Feijó, D.F.; Dutra, F.F.; Carneiro, V.C.; Freitas, G.B.; Alves, L.S.; Mesquita, J.; Fortes, G.B.; Figueiredo, R.T.; Souza, H.S.; Fantappié, M.R.; Lannes-Vieira, J.; Bozza, M.T. Oxidative stress fuels Trypanosoma cruzi infection in mice. J. Clin. Invest., 2012, 122(7), 2531-2542.
[http://dx.doi.org/10.1172/JCI58525] [PMID: 22728935]
[355]
Reith, R.M.; Way, S.; McKenna, J., III; Haines, K.; Gambello, M.J. Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol. Dis., 2011, 43(1), 113-122.
[http://dx.doi.org/10.1016/j.nbd.2011.02.014] [PMID: 21419848]
[356]
Mikhaylova, O.; Ignacak, M.L.; Barankiewicz, T.J.; Harbaugh, S.V.; Yi, Y.; Maxwell, P.H.; Schneider, M.; Van Geyte, K.; Carmeliet, P.; Revelo, M.P.; Wyder, M.; Greis, K.D.; Meller, J.; Czyzyk-Krzeska, M.F. The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol. Cell. Biol., 2008, 28(8), 2701-2717.
[http://dx.doi.org/10.1128/MCB.01231-07] [PMID: 18285459]
[357]
Ono, H.; Fukuhara, R. The evaluation of oxidative stress during ACTH therapy in West syndrome. No To Hattatsu, 2011, 43(2), 141-142.
[PMID: 21409838]
[358]
Kalita, J.; Kumar, V.; Misra, U.K.; Ranjan, A.; Khan, H.; Konwar, R. A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. J. Neuroimmunol., 2014, 274(1-2), 141-148.
[http://dx.doi.org/10.1016/j.jneuroim.2014.06.013] [PMID: 25002079]
[359]
Onofre, A.P. A Clinical Trial for AMN: Validation of Biomarkers of Oxidative Stress, Efficacy and Safety of a Mixture of Antioxidants; Ministerio de Sanidad, Servicios Sociales e Igualdad Fundacion Hesperia, 2014.
[360]
Müller, C.C.; Nguyen, T.H.; Ahlemeyer, B.; Meshram, M.; Santrampurwala, N.; Cao, S.; Sharp, P.; Fietz, P.B.; Baumgart- Vogt, E.; Crane, D.I. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: Abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis. Model. Mech., 2011, 4(1), 104-119.
[http://dx.doi.org/10.1242/dmm.004622] [PMID: 20959636]