The Role of Eif2s3y in Mouse Spermatogenesis and ESC

Page: [750 - 755] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x (its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.

Keywords: Eif2s3y, Eif2s3x, spermatogenesis, ESCs, self-renewal, mouse.

[1]
Murata KI, Asakawa H, Nagashima K, Furukawa Y, Sazaki G. Thermodynamic origin of surface melting on ice crystals. Proc Natl Acad Sci USA 2016; 113(44): E6741-8.
[http://dx.doi.org/10.1073/pnas.1608888113] [PMID: 27791107]
[2]
Mazeyrat S, Saut N, Grigoriev V, et al. A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nat Genet 2001; 29(1): 49-53.
[http://dx.doi.org/10.1038/ng717] [PMID: 11528390]
[3]
Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science 2014; 343(6166): 69-72.
[http://dx.doi.org/10.1126/science.1242544] [PMID: 24263135]
[4]
Matsubara Y, Kato T, Kashimada K, et al. TALEN-mediated gene disruption on Y chromosome reveals critical role of EIF2S3Y in mouse spermatogenesis. Stem Cells Dev 2015; 24(10): 1164-70.
[http://dx.doi.org/10.1089/scd.2014.0466] [PMID: 25579647]
[5]
Li N, Mu H, Zheng L, et al. EIF2S3Y suppresses the pluripotency state and promotes the proliferation of mouse embryonic stem cells. Oncotarget 2016; 7(10): 11321-31.
[http://dx.doi.org/10.18632/oncotarget.7187] [PMID: 26863630]
[6]
Proud CG. eIF2 and the control of cell physiology. Semin Cell Dev Biol 2005; 16(1): 3-12.
[http://dx.doi.org/10.1016/j.semcdb.2004.11.004] [PMID: 15659334]
[7]
Asano K, Krishnamoorthy T, Phan L, Pavitt GD, Hinnebusch AG. Conserved bipartite motifs in yeast eIF5 and eIF2 Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 1999; 18(6): 1673-88.
[http://dx.doi.org/10.1093/emboj/18.6.1673] [PMID: 10075937]
[8]
Ito T, Rokita SE. Reductive electron injection into duplex DNA by aromatic amines. J Am Chem Soc 2004; 126(47): 15552-9.
[http://dx.doi.org/10.1021/ja045637n] [PMID: 15563184]
[9]
Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK. X-ray structure of translation initiation factor eIF2 gamma: Implications for tRNA and eIF2 alpha binding. J Biol Chem 2004; 279(11): 10634-42.
[http://dx.doi.org/10.1074/jbc.M310418200] [PMID: 14688270]
[10]
Hinnebusch AG. eIF2alpha kinases provide a new solution to the puzzle of substrate specificity. Nat Struct Mol Biol 2005; 12(10): 835-8.
[http://dx.doi.org/10.1038/nsmb1005-835] [PMID: 16205706]
[11]
Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004; 5(10): 827-35.
[http://dx.doi.org/10.1038/nrm1488] [PMID: 15459663]
[12]
Algire MA, Maag D, Lorsch JR. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 2005; 20(2): 251-62.
[http://dx.doi.org/10.1016/j.molcel.2005.09.008] [PMID: 16246727]
[13]
Chen H, Xiao X, Lui WY, Lee WM, Cheng CY. Vangl2 regulates spermatid planar cell polarity through microtubule (MT)-based cytoskeleton in the rat testis. Cell Death Dis 2018; 9(3): 340.
[http://dx.doi.org/10.1038/s41419-018-0339-x] [PMID: 29497043]
[14]
Kobayashi T, Zhang H, Tang WWC, et al. Principles of early human development and germ cell program from conserved model systems. Nature 2017; 546(7658): 416-20.
[http://dx.doi.org/10.1038/nature22812] [PMID: 28607482]
[15]
Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta 2012; 1822(12): 1838-50.
[http://dx.doi.org/10.1016/j.bbadis.2012.02.008] [PMID: 22366765]
[16]
Kobayashi T, Surani MA. On the origin of the human germline. Development 2018; 145(16): 145.
[http://dx.doi.org/10.1242/dev.150433] [PMID: 30037844]
[17]
Saitou M, Yamaji M. Primordial germ cells in mice. CSH Perspect Biol 2012; p. 4.
[18]
Yamauchi Y, Riel JM, Ruthig VA, Ortega EA, Mitchell MJ, Ward MA. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 2016; 351(6272): 514-6.
[http://dx.doi.org/10.1126/science.aad1795] [PMID: 26823431]
[19]
Ali S, Hasnain SE. Genomics of the human Y-chromosome. 1. Association with male infertility. Gene 2003; 321: 25-37.
[http://dx.doi.org/10.1016/j.gene.2003.08.006] [PMID: 14636989]
[20]
Vernet N, Mahadevaiah SK, Ellis PJ, de Rooij DG, Burgoyne PS. Spermatid development in XO male mice with varying Y chromosome short-arm gene content: evidence for a Y gene controlling the initiation of sperm morphogenesis. Reproduction 2012; 144(4): 433-45.
[http://dx.doi.org/10.1530/REP-12-0158] [PMID: 22869781]
[21]
Brown GM, Furlong RA, Sargent CA, et al. Characterisation of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Hum Mol Genet 1998; 7(1): 97-107.
[http://dx.doi.org/10.1093/hmg/7.1.97] [PMID: 9384609]
[22]
Mazeyrat S, Saut N, Sargent CA, et al. The mouse Y chromosome interval necessary for spermatogonial proliferation is gene dense with syntenic homology to the human AZFa region. Hum Mol Genet 1998; 7(11): 1713-24.
[http://dx.doi.org/10.1093/hmg/7.11.1713] [PMID: 9736773]
[23]
Affara NA. The role of the Y chromosome in male infertility. Expert Rev Mol Med 2001; 2001: 1-16.
[http://dx.doi.org/10.1017/S1462399401002319] [PMID: 14987368]
[24]
Liu W, Li N, Zhang M, et al. Eif2s3y regulates the proliferation of spermatogonial stem cells via Wnt6/<beta>-catenin signaling pathway. Biochim Biophys Acta Mol Cell Res 2020; 1867(10): 118790.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118790] [PMID: 32621839]
[25]
Wang X, Xue M, Zhao M, He F, Li C, Li X. Identification of a novel mutation (Ala66Thr) of SRY gene causes XY pure gonadal dysgenesis by affecting DNA binding activity and nuclear import. Gene 2018; 651: 143-51.
[http://dx.doi.org/10.1016/j.gene.2018.01.076] [PMID: 29378242]
[26]
Yamauchi Y, Riel JM, Ruthig V, Ward MA. Mouse Y-encoded transcription factor zfy2 is essential for sperm formation and function in assisted fertilization. PLoS Genet 2015; 11(12): e1005476.
[http://dx.doi.org/10.1371/journal.pgen.1005476] [PMID: 26719889]
[27]
Kobayashi S, Isotani A, Mise N, et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol 2006; 16(2): 166-72.
[http://dx.doi.org/10.1016/j.cub.2005.11.071] [PMID: 16431368]
[28]
Ehmann H, Salzig C, Lang P, Friauf E, Nothwang HG. Minimal sex differences in gene expression in the rat superior olivary complex. Hear Res 2008; 245(1-2): 65-72.
[http://dx.doi.org/10.1016/j.heares.2008.08.008] [PMID: 18793710]
[29]
Isensee J, Meoli L, Zazzu V, et al. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 2009; 150(4): 1722-30.
[http://dx.doi.org/10.1210/en.2008-1488] [PMID: 19095739]
[30]
Armoskus C, Moreira D, Bollinger K, Jimenez O, Taniguchi S, Tsai HW. Identification of sexually dimorphic genes in the neonatal mouse cortex and hippocampus. Brain Res 2014; 1562: 23-38.
[http://dx.doi.org/10.1016/j.brainres.2014.03.017] [PMID: 24661915]
[31]
Huby RD, Glaves P, Jackson R. The incidence of sexually dimorphic gene expression varies greatly between tissues in the rat. PLoS One 2014; 9(12): e115792.
[http://dx.doi.org/10.1371/journal.pone.0115792] [PMID: 25548914]
[32]
Mulugeta E, Wassenaar E, Sleddens-Linkels E, et al. Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Res 2016; 26(9): 1202-10.
[http://dx.doi.org/10.1101/gr.201665.115] [PMID: 27510564]
[33]
Just W, Rau W, Vogel W, et al. Absence of Sry in species of the vole Ellobius. Nat Genet 1995; 11(2): 117-8.
[http://dx.doi.org/10.1038/ng1095-117] [PMID: 7550333]
[34]
Barrionuevo F, Taketo MM, Scherer G, Kispert A. Sox9 is required for notochord maintenance in mice. Dev Biol 2006; 295(1): 128-40.
[http://dx.doi.org/10.1016/j.ydbio.2006.03.014] [PMID: 16678811]
[35]
Ortega EA, Salvador Q, Fernandez M, Ward MA. Alterations of sex determination pathways in the genital ridges of males with limited Y chromosome genes. Biol Reprod 2019; 100(3): 810-23.
[http://dx.doi.org/10.1093/biolre/ioy218] [PMID: 30285093]
[36]
Ehrmann IE, Ellis PS, Mazeyrat S, et al. Characterization of genes encoding translation initiation factor eIF-2gamma in mouse and human: Sex chromosome localization, escape from X-inactivation and evolution. Hum Mol Genet 1998; 7(11): 1725-37.
[http://dx.doi.org/10.1093/hmg/7.11.1725] [PMID: 9736774]
[37]
Moortgat S, Désir J, Benoit V, et al. Two novel EIF2S3 mutations associated with syndromic intellectual disability with severe microcephaly, growth retardation, and epilepsy. Am J Med Genet A 2016; 170(11): 2927-33.
[http://dx.doi.org/10.1002/ajmg.a.37792] [PMID: 27333055]
[38]
Skopkova M, Hennig F, Shin BS, et al. EIF2S3 mutations associated with severe X-linked intellectual disability syndrome MEHMO. Hum Mutat 2017; 38(4): 409-25.
[http://dx.doi.org/10.1002/humu.23170] [PMID: 28055140]
[39]
Stanik J, Skopkova M, Stanikova D, et al. Neonatal hypoglycemia, early-onset diabetes and hypopituitarism due to the mutation in EIF2S3 gene causing MEHMO syndrome. Physiol Res 2018; 67(2): 331-7.
[http://dx.doi.org/10.33549/physiolres.933689] [PMID: 29303605]
[40]
Young-Baird SK, Shin BS, Dever TE. MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met-tRNAiMet binding to eukaryotic translation initiation factor eIF2. Nucleic Acids Res 2019; 47(2): 855-67.
[http://dx.doi.org/10.1093/nar/gky1213] [PMID: 30517694]
[41]
Bao S, Tang WW, Wu B, et al. Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Res 2018; 28(1): 22-34.
[http://dx.doi.org/10.1038/cr.2017.134] [PMID: 29076502]
[42]
Roberts RM, Ezashi T, Sheridan MA, Yang Y. Specification of trophoblast from embryonic stem cells exposed to BMP4. Biol Reprod 2018; 99(1): 212-24.
[http://dx.doi.org/10.1093/biolre/ioy070] [PMID: 29579154]
[43]
Bai M, Wu Y, Li J. Generation and application of mammalian haploid embryonic stem cells. J Intern Med 2016; 280(3): 236-45.
[http://dx.doi.org/10.1111/joim.12503] [PMID: 27138065]
[44]
Li N, Ma W, Shen Q, et al. Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro. Cell Death Differ 2019; 26(10): 2115-24.
[http://dx.doi.org/10.1038/s41418-019-0280-2] [PMID: 30683919]