A Critical Observation on the Design and Development of Reported Peptide Inhibitors of DENV NS2B-NS3 Protease in the Last Two Decades

Page: [1108 - 1130] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Dengue is one of the neglected tropical diseases, which remains a reason for concern as cases seem to rise every year. The failure of the only dengue vaccine, Dengvaxia® , has made the problem more severe and humanity has no immediate respite from this global burden. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing. Also, since it is among the most conserved domains in the viral genome, it could produce a broad scope of opportunities toward antiviral drug discovery in general. This review has made a detailed analysis of each case of the design and development of peptide inhibitors against DENV NS2B-NS3 protease in the last two decades. Also, we have discussed the reasons attributed to their inhibitory activity, and wherever possible, we have highlighted the concerns raised, challenges met, and suggestions to improve the inhibitory activity. Thus, we attempt to take the readers through the designing and development of reported peptide inhibitors and gain insight from these developments, which could further contribute toward strategizing the designing and development of peptide inhibitors of DENV protease with improved properties in the coming future.

Keywords: Peptide, dengue, flavivirus, NS2B-NS3, DENV2, protease inhibitors, cyclic peptides.

Graphical Abstract

[1]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[2]
World Health Organisation Dengue and severe dengue, Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed Jan 5, 2021).
[3]
Ashburn, P.M.; Craig, C.F. Experimental investigations regarding the etiology of dengue fever. 1907. J. Infect. Dis., 2004, 189(9), 1747-1783.
[PMID: 15116315]
[4]
Lescar, J.; Luo, D.; Xu, T.; Sampath, A.; Lim, S.P.; Canard, B.; Vasudevan, S.G. Towards the design of antiviral inhibitors against flaviviruses: The case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res., 2008, 80(2), 94-101.
[http://dx.doi.org/10.1016/j.antiviral.2008.07.001] [PMID: 18674567]
[5]
Kautner, I.; Robinson, M.J.; Kuhnle, U. Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention. J. Pediatr., 1997, 131(4), 516-524.
[http://dx.doi.org/10.1016/S0022-3476(97)70054-4] [PMID: 9386651]
[6]
Wilder-Smith, A.; Ooi, E.E.; Vasudevan, S.G.; Gubler, D.J. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr. Infect. Dis. Rep., 2010, 12(3), 157-164.
[http://dx.doi.org/10.1007/s11908-010-0102-7] [PMID: 21308524]
[7]
Nitsche, C.; Holloway, S.; Schirmeister, T.; Klein, C.D. Biochemistry and medicinal chemistry of the dengue virus protease. Chem. Rev., 2014, 114(22), 11348-11381.
[http://dx.doi.org/10.1021/cr500233q] [PMID: 25268322]
[8]
Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India, 2015, 71(1), 67-70.
[http://dx.doi.org/10.1016/j.mjafi.2014.09.011] [PMID: 25609867]
[9]
Simmons, C.P.; Farrar, J.J.; Nguyen, V.; Wills, B. Dengue. N. Engl. J. Med., 2012, 366(15), 1423-1432.
[http://dx.doi.org/10.1056/NEJMra1110265] [PMID: 22494122]
[10]
Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol., 2013, 158(7), 1445-1459.
[http://dx.doi.org/10.1007/s00705-013-1645-3] [PMID: 23471635]
[11]
Halstead, S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res., 2003, 60, 421-467.
[http://dx.doi.org/10.1016/S0065-3527(03)60011-4] [PMID: 14689700]
[12]
Guy, B.; Noriega, F.; Ochiai, R.L.; L’azou, M.; Delore, V.; Skipetrova, A.; Verdier, F.; Coudeville, L.; Savarino, S.; Jackson, N. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev. Vaccines, 2017, 16(7), 1-13.
[http://dx.doi.org/10.1080/14760584.2017.1335201] [PMID: 28590795]
[13]
Sun, L. Peptide-based drug development. Mod. Chem. Appl., 2013, 1(1), 1-2.
[http://dx.doi.org/10.4172/2329-6798.1000e103] [PMID: 23584997]
[14]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[15]
Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[16]
Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 1990, 44, 649-688.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.003245] [PMID: 2174669]
[17]
Melino, S.; Paci, M. Progress for dengue virus diseases. Towards the NS2B-NS3pro inhibition for a therapeutic-based approach. FEBS J., 2007, 274(12), 2986-3002.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05831.x] [PMID: 17509079]
[18]
Yusof, R.; Clum, S.; Wetzel, M.; Murthy, H.M.; Padmanabhan, R. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J. Biol. Chem., 2000, 275(14), 9963-9969.
[http://dx.doi.org/10.1074/jbc.275.14.9963] [PMID: 10744671]
[19]
Falgout, B.; Pethel, M.; Zhang, Y.M.; Lai, C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 1991, 65(5), 2467-2475.
[http://dx.doi.org/10.1128/jvi.65.5.2467-2475.1991] [PMID: 2016768]
[20]
Bazan, J.F.; Fletterick, R.J. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology, 1989, 171(2), 637-639.
[http://dx.doi.org/10.1016/0042-6822(89)90639-9] [PMID: 2548336]
[21]
Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 2006, 13(4), 372-373.
[http://dx.doi.org/10.1038/nsmb1073] [PMID: 16532006]
[22]
Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol., 2005, 3(1), 13-22.
[http://dx.doi.org/10.1038/nrmicro1067] [PMID: 15608696]
[23]
Phong, W.Y.; Moreland, N.J.; Lim, S.P.; Wen, D.; Paradkar, P.N.; Vasudevan, S.G. Dengue protease activity: The structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Biosci. Rep., 2011, 31(5), 399-409.
[http://dx.doi.org/10.1042/BSR20100142] [PMID: 21329491]
[24]
Noble, C.G.; Seh, C.C.; Chao, A.T.; Shi, P.Y. Ligand-bound structures of the dengue virus protease reveal the active conformation. J. Virol., 2012, 86(1), 438-446.
[http://dx.doi.org/10.1128/JVI.06225-11] [PMID: 22031935]
[25]
Cregar-Hernandez, L.; Jiao, G.S.; Johnson, A.T.; Lehrer, A.T.; Wong, T.A.; Margosiak, S.A. Small molecule pan-dengue and West Nile virus NS3 protease inhibitors. Antivir. Chem. Chemother., 2011, 21(5), 209-217.
[http://dx.doi.org/10.3851/IMP1767] [PMID: 21566267]
[26]
Chambers, T.J.; Weir, R.C.; Grakoui, A.; McCourt, D.W.; Bazan, J.F.; Fletterick, R.J.; Rice, C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl. Acad. Sci. USA, 1990, 87(22), 8898-8902.
[http://dx.doi.org/10.1073/pnas.87.22.8898] [PMID: 2147282]
[27]
Li, J.; Lim, S.P.; Beer, D.; Patel, V.; Wen, D.; Tumanut, C.; Tully, D.C.; Williams, J.A.; Jiricek, J.; Priestle, J.P.; Harris, J.L.; Vasudevan, S.G. Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J. Biol. Chem., 2005, 280(31), 28766-28774.
[http://dx.doi.org/10.1074/jbc.M500588200] [PMID: 15932883]
[28]
Lin, K.H.; Nalivaika, E.A.; Prachanronarong, K.L.; Yilmaz, N.K.; Schiffer, C.A. Dengue protease substrate recognition: Binding of the prime side. ACS Infect. Dis., 2016, 2(10), 734-743.
[http://dx.doi.org/10.1021/acsinfecdis.6b00131] [PMID: 27657335]
[29]
Edwards, P.D.; Bernstein, P.R. Synthetic inhibitors of elastase. Med. Res. Rev., 1994, 14(2), 127-194.
[http://dx.doi.org/10.1002/med.2610140202] [PMID: 8189835]
[30]
Babine, R.E.; Bender, S.L. Molecular recognition of proteinminus signLigand complexes: applications to drug design. Chem. Rev., 1997, 97(5), 1359-1472.
[http://dx.doi.org/10.1021/cr960370z] [PMID: 11851455]
[31]
Han, W.; Hu, Z.; Jiang, X.; Decicco, C.P. α-ketoamides, α-ketoesters and α-diketones as HCV NS3 protease inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(8), 711-713.
[http://dx.doi.org/10.1016/S0960-894X(00)00074-3] [PMID: 10782670]
[32]
Bennett, J.M.; Campbell, A.D.; Campbell, A.J.; Carr, M.G.; Dunsdon, R.M.; Greening, J.R.; Hurst, D.N.; Jennings, N.S.; Jones, P.S.; Jordan, S.; Kay, P.B.; O’Brien, M.A.; King-Underwood, J.; Raynham, T.M.; Wilkinson, C.S.; Wilkinson, T.C.I.; Wilson, F.X. The identification of α-ketoamides as potent inhibitors of hepatitis C virus NS3-4A proteinase. Bioorg. Med. Chem. Lett., 2001, 11(3), 355-357.
[http://dx.doi.org/10.1016/S0960-894X(00)00654-5] [PMID: 11212109]
[33]
Leung, D.; Schroder, K.; White, H.; Fang, N.X.; Stoermer, M.J.; Abbenante, G.; Martin, J.L.; Young, P.R.; Fairlie, D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem., 2001, 276(49), 45762-45771.
[http://dx.doi.org/10.1074/jbc.M107360200] [PMID: 11581268]
[34]
Khumthong, R.; Angsuthanasombat, C.; Panyim, S.; Katzenmeier, G. In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J. Biochem. Mol. Biol., 2002, 35(2), 206-212.
[PMID: 12297031]
[35]
Khumthong, R.; Niyomrattanakit, P.; Chanprapaph, S.; Angsuthanasombat, C.; Panyim, S.; Katzenmeier, G. Steady-state cleavage kinetics for dengue virus type 2 NS2b-NS3(pro) serine protease with synthetic peptides. Protein Pept. Lett., 2003, 10(1), 19-26.
[http://dx.doi.org/10.2174/0929866033408228] [PMID: 12625822]
[36]
Chanprapaph, S.; Saparpakorn, P.; Sangma, C.; Niyomrattanakit, P.; Hannongbua, S.; Angsuthanasombat, C.; Katzenmeier, G. Competitive inhibition of the dengue virus NS3 serine protease by synthetic peptides representing polyprotein cleavage sites. Biochem. Biophys. Res. Commun., 2005, 330(4), 1237-1246.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.107] [PMID: 15823576]
[37]
Yin, Z.; Patel, S.J.; Wang, W.L.; Wang, G.; Chan, W.L.; Rao, K.R.; Alam, J.; Jeyaraj, D.A.; Ngew, X.; Patel, V.; Beer, D.; Lim, S.P.; Vasudevan, S.G.; Keller, T.H. Peptide inhibitors of Dengue virus NS3 protease. Part 1: Warhead. Bioorg. Med. Chem. Lett., 2006, 16(1), 36-39.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.062] [PMID: 16246553]
[38]
Yin, Z.; Patel, S.J.; Wang, W.L.; Chan, W.L.; Ranga Rao, K.R.; Wang, G.; Ngew, X.; Patel, V.; Beer, D.; Knox, J.E.; Ma, N.L.; Ehrhardt, C.; Lim, S.P.; Vasudevan, S.G.; Keller, T.H. Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(1), 40-43.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.049] [PMID: 16246563]
[39]
Stoermer, M.J.; Chappell, K.J.; Liebscher, S.; Jensen, C.M.; Gan, C.H.; Gupta, P.K.; Xu, W.J.; Young, P.R.; Fairlie, D.P. Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J. Med. Chem., 2008, 51(18), 5714-5721.
[http://dx.doi.org/10.1021/jm800503y] [PMID: 18729351]
[40]
Schüller, A.; Yin, Z.; Brian Chia, C.S.; Doan, D.N.; Kim, H.K.; Shang, L.; Loh, T.P.; Hill, J.; Vasudevan, S.G. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antiviral Res., 2011, 92(1), 96-101.
[http://dx.doi.org/10.1016/j.antiviral.2011.07.002] [PMID: 21763725]
[41]
Behnam, M.A.; Nitsche, C.; Vechi, S.M.; Klein, C.D. C-terminal residue optimization and fragment merging: Discovery of a potent Peptide-hybrid inhibitor of dengue protease. ACS Med. Chem. Lett., 2014, 5(9), 1037-1042.
[http://dx.doi.org/10.1021/ml500245v] [PMID: 25221663]
[42]
Nitsche, C.; Behnam, M.A.; Steuer, C.; Klein, C.D. Retro peptide-hybrids as selective inhibitors of the Dengue virus NS2B-NS3 protease. Antiviral Res., 2012, 94(1), 72-79.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.008] [PMID: 22391061]
[43]
Nitsche, C.; Schreier, V.N.; Behnam, M.A.; Kumar, A.; Bartenschlager, R.; Klein, C.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J. Med. Chem., 2013, 56(21), 8389-8403.
[http://dx.doi.org/10.1021/jm400828u] [PMID: 24083834]
[44]
Weigel, L.F.; Nitsche, C.; Graf, D.; Bartenschlager, R.; Klein, C.D. Phenylalanine and phenylglycine analogues as arginine mimetics in dengue protease inhibitors. J. Med. Chem., 2015, 58(19), 7719-7733.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00612] [PMID: 26367391]
[45]
Behnam, M.A.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar Dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[46]
Prusis, P.; Lapins, M.; Yahorava, S.; Petrovska, R.; Niyomrattanakit, P.; Katzenmeier, G.; Wikberg, J.E. Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg. Med. Chem., 2008, 16(20), 9369-9377.
[http://dx.doi.org/10.1016/j.bmc.2008.08.081] [PMID: 18824362]
[47]
Prusis, P.; Junaid, M.; Petrovska, R.; Yahorava, S.; Yahorau, A.; Katzenmeier, G.; Lapins, M.; Wikberg, J.E. Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B-NS3 proteases. Biochem. Biophys. Res. Commun., 2013, 434(4), 767-772.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.139] [PMID: 23587903]
[48]
Gao, Y.; Cui, T.; Lam, Y. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease. Bioorg. Med. Chem., 2010, 18(3), 1331-1336.
[http://dx.doi.org/10.1016/j.bmc.2009.12.026] [PMID: 20042339]
[49]
Tambunan, U.S.; Alamudi, S. Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach. Bioinformation, 2010, 5(6), 250-254.
[http://dx.doi.org/10.6026/97320630005250] [PMID: 21364826]
[50]
Tambunan, U.S.F.; Apriyanti, N.; Parikesit, A.A.; Chua, W.; Wuryani, K. Computational design of disulfide cyclic peptide as potential inhibitor of complex NS2B-NS3 Dengue virus protease. Afr. J. Biotechnol., 2011, 10(57), 12281-12290.
[51]
Rothan, H.A.; Abdulrahman, A.Y.; Sasikumer, P.G.; Othman, S.; Rahman, N.A.; Yusof, R. Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J. Biomed. Biotechnol., 2012, 2012, 251482.
[http://dx.doi.org/10.1155/2012/251482] [PMID: 23093838]
[52]
Rothan, H.A.; Han, H.C.; Ramasamy, T.S.; Othman, S.; Rahman, N.A.; Yusof, R. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect. Dis., 2012, 12(1), 314.
[http://dx.doi.org/10.1186/1471-2334-12-314] [PMID: 23171075]
[53]
Xu, S.; Li, H.; Shao, X.; Fan, C.; Ericksen, B.; Liu, J.; Chi, C.; Wang, C. Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem., 2012, 55(15), 6881-6887.
[http://dx.doi.org/10.1021/jm300655h] [PMID: 22780881]
[54]
Lin, K.H.; Ali, A.; Rusere, L.; Soumana, D.I.; Kurt Yilmaz, N.; Schiffer, C.A. Dengue Virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol., 2017, 91(10), 1-10.
[http://dx.doi.org/10.1128/JVI.00045-17] [PMID: 28298600]
[55]
Takagi, Y.; Matsui, K.; Nobori, H.; Maeda, H.; Sato, A.; Kurosu, T.; Orba, Y.; Sawa, H.; Hattori, K.; Higashino, K.; Numata, Y.; Yoshida, Y. Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg. Med. Chem. Lett., 2017, 27(15), 3586-3590.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.027] [PMID: 28539222]
[56]
Brinch, K.S.; Frimodt-Møller, N.; Høiby, N.; Kristensen, H.H. Influence of antidrug antibodies on plectasin efficacy and pharmacokinetics. Antimicrob. Agents Chemother., 2009, 53(11), 4794-4800.
[http://dx.doi.org/10.1128/AAC.00440-09] [PMID: 19687247]
[57]
Hara, S.; Mukae, H.; Sakamoto, N.; Ishimoto, H.; Amenomori, M.; Fujita, H.; Ishimatsu, Y.; Yanagihara, K.; Kohno, S. Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem. Biophys. Res. Commun., 2008, 374(4), 709-713.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.093] [PMID: 18675251]
[58]
Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; Taboureau, O.; Yaver, D.; Elvig-Jørgensen, S.G.; Sørensen, M.V.; Christensen, B.E.; Kjaerulff, S.; Frimodt-Moller, N.; Lehrer, R.I.; Zasloff, M.; Kristensen, H.H. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 2005, 437(7061), 975-980.
[http://dx.doi.org/10.1038/nature04051] [PMID: 16222292]
[59]
Zhang, J.; Yang, Y.; Teng, D.; Tian, Z.; Wang, S.; Wang, J. Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr. Purif., 2011, 78(2), 189-196.
[http://dx.doi.org/10.1016/j.pep.2011.04.014] [PMID: 21558006]
[60]
Rothan, H.A.; Mohamed, Z.; Suhaeb, A.M.; Rahman, N.A.; Yusof, R. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide. OMICS, 2013, 17(11), 560-567.
[http://dx.doi.org/10.1089/omi.2013.0056] [PMID: 24044366]
[61]
Won, A.; Ruscito, A.; Ianoul, A. Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Biochim. Biophys. Acta, 2012, 1818(12), 3072-3080.
[http://dx.doi.org/10.1016/j.bbamem.2012.07.030] [PMID: 22885172]
[62]
Kozlov, S.A.; Vassilevski, A.A.; Feofanov, A.V.; Surovoy, A.Y.; Karpunin, D.V.; Grishin, E.V. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J. Biol. Chem., 2006, 281(30), 20983-20992.
[http://dx.doi.org/10.1074/jbc.M602168200] [PMID: 16735513]
[63]
Shlyapnikov, Y.M.; Andreev, Y.A.; Kozlov, S.A.; Vassilevski, A.A.; Grishin, E.V. Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein Expr. Purif., 2008, 60(1), 89-95.
[http://dx.doi.org/10.1016/j.pep.2008.03.011] [PMID: 18455432]
[64]
Rothan, H.A.; Bahrani, H.; Rahman, N.A.; Yusof, R. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol., 2014, 14(1), 140.
[http://dx.doi.org/10.1186/1471-2180-14-140] [PMID: 24885331]
[65]
Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K.H.; Bartenschlager, R.; Klein, C.D. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg. Med. Chem., 2011, 19(13), 4067-4074.
[http://dx.doi.org/10.1016/j.bmc.2011.05.015] [PMID: 21641807]
[66]
Nitsche, C.; Steuer, C.; Klein, C.D. Arylcyanoacrylamides as inhibitors of the Dengue and West Nile virus proteases. Bioorg. Med. Chem., 2011, 19(24), 7318-7337.
[http://dx.doi.org/10.1016/j.bmc.2011.10.061] [PMID: 22094280]
[67]
Erlanson, D.A. Fragment-based lead discovery: A chemical update. Curr. Opin. Biotechnol., 2006, 17(6), 643-652.
[http://dx.doi.org/10.1016/j.copbio.2006.10.007] [PMID: 17084612]
[68]
Bastos Lima, A.; Behnam, M.A.; El Sherif, Y.; Nitsche, C.; Vechi, S.M.; Klein, C.D. Dual inhibitors of the dengue and West Nile virus NS2B-NS3 proteases: Synthesis, biological evaluation and docking studies of novel peptide-hybrids. Bioorg. Med. Chem., 2015, 23(17), 5748-5755.
[http://dx.doi.org/10.1016/j.bmc.2015.07.012] [PMID: 26233795]
[69]
Zhou, G.C.; Weng, Z.; Shao, X.; Liu, F.; Nie, X.; Liu, J.; Wang, D.; Wang, C.; Guo, K. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(24), 6549-6554.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.071] [PMID: 24268549]
[70]
dos Santos, C.F.; da Silva e Silva, Anna E.; Lopes Martins, Aline M.; Taft, Carlton A.; de Paula da Silva, Carlos H. T.; dos Santos, Cleydson B. R.; da Silva Hage- Melim, Lorane I. Molecular modeling of peptide derivatives NS3 protease inhibitors of the type 2 Dengue virus. Curr. Phys. Chem., 2016, 6(1), 28-39.