A Systematic Review of Potential Immunotherapies Targeting PRAME in Retinoid Resistant Oral Potentially Malignant Disorders and Oral Cancer

Page: [735 - 746] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Backgound and objective: Early chemoprevention in Oral Potentially Malignant Disorders (OPMDs) and Oral Cancer (OC) has been extensively researched in order to mitigate the malignant transformation and progression of the lesion. Many agents have been attempted, but their cost inefficacy and inadequate outcomes posed a major hindrance in their successful adoption. Retinoid Based Therapy (RBT) though a cheap and effective treatment option, could not achieve much clinical usage because of variable responsiveness in clinical outcomes. Such clinical response variability may be attributed to the repression of retinoid receptors by Preferentially Expressed Antigen of Melanoma (PRAME) protein molecule. Therefore, in order to make RBT successful, targeting PRAME by various immunotherapies is an exciting area of research investigation. This review provides an insight into the various immunotherapeutic strategies targeting PRAME and their usefulness in retinoid-resistant OPMD and OC.

Method of data collection: An exhaustive internet-based literature search following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was carried out in PUBMED and Google SCHOLAR database using terms ‘Anti-PRAME’ OR ‘PRAME Immunotherapy’ OR ‘PRAME Vaccines’ AND ‘Cancer’ AND ‘Retinoid resistance’. Only articles in the English language with at least 1 citation, published in a journal with impact factor ≥ 1, having relevance to the context and availability of full text were considered.

Results: After an initial search, 342 articles were yielded on the basis of inclusion criteria and, by reading the abstract and availability of full text, a total of 124 articles were selected. Further reading the full texts and considering articles from the references of the selected articles, a total of 65 articles were finally included in the review.

Conclusion: Our analysis of the literature suggests that PRAME screening in OC and OPMDs prior to RBT should be done. In PRAME positive cases, approaches like PRAME based immunotherapy in the form of Cancer vaccine therapy [Acellular PRAME vaccine, PRAME pulsed Dendritic Cells (DC)]; Adoptive T Cell therapy/T Cell Receptor-T Cell therapy, Antibody therapy/Chimeric Antigen Receptor-T Cell therapy along with Presented antigen modulation Therapies employing histone deacetylase inhibitors and demethylation agents seem plausible. In the future, a combination therapy employing either PRAME vaccines or antibodies or Adoptive T cell Therapy and ATRA could be used in retinoid resistant OC and OPMDs.

Keywords: PRAME, retinoic acid, target PRAME, oral cancer, oral potentially malignant disorders, immunotherapies.

[1]
Contreras Vidaurre EG, Bagán Sebastián JV, Gavalda C, Torres Cifuentes EF. Retinoids: Application in premalignant lesions and oral cancer. Med Oral 2001; 6(2): 114-23.
[PMID: 11500628]
[2]
Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122(6): 835-47.
[http://dx.doi.org/10.1016/j.cell.2005.07.003] [PMID: 16179254]
[3]
Dwivedi R, Pandey R, Mehrotra D, Chandra S, Parmar D. PRAME pathways in oral carcinogenesis: A systematic review- Dental. JOMR 2019; 5: 1-7.
[http://dx.doi.org/10.15761/DOCR.1000297]
[4]
Alten L, Maurer D, Bunk S, Wagner C, Ferber M. 2020.
[5]
Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosomes Cancer 2007; 46(9): 796-804.
[http://dx.doi.org/10.1002/gcc.20465] [PMID: 17534929]
[6]
Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R. PRAME expression and clinical outcome of breast cancer. Br J Cancer 2008; 99(3): 398-403.
[http://dx.doi.org/10.1038/sj.bjc.6604494] [PMID: 18648365]
[7]
Tan P, Zou C, Yong B, et al. Expression and prognostic relevance of PRAME in primary osteosarcoma. Biochem Biophys Res Commun 2012; 419(4): 801-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.110] [PMID: 22390931]
[8]
Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 2004; 10(13): 4307-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0813] [PMID: 15240516]
[9]
Proto-Siqueira R, Falcão RP, de Souza CA, Ismael SJ, Zago MA. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res 2003; 27(5): 393-6.
[http://dx.doi.org/10.1016/S0145-2126(02)00217-5] [PMID: 12620290]
[10]
Paydas S, Tanriverdi K, Yavuz S, Seydaoglu G. PRAME mRNA levels in cases with chronic leukemia: Clinical importance and review of the literature. Leuk Res 2007; 31(3): 365-9.
[http://dx.doi.org/10.1016/j.leukres.2006.06.022] [PMID: 16914202]
[11]
Hong WK, Endicott J, Itri LM, et al. 13-Cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med 1986; 315(24): 1501-5.
[http://dx.doi.org/10.1056/NEJM198612113152401] [PMID: 3537787]
[12]
Stich HF, Hornby AP, Mathew B, Sankaranarayanan R, Nair MK. Response of oral leukoplakias to the administration of vitamin A. Cancer Lett 1988; 40(1): 93-101.
[http://dx.doi.org/10.1016/0304-3835(88)90266-2] [PMID: 3370632]
[13]
Smith MA, Parkinson DR, Cheson BD, Friedman MA. Retinoids in cancer therapy. J Clin Oncol 1992; 10(5): 839-64.
[http://dx.doi.org/10.1200/JCO.1992.10.5.839] [PMID: 1569455]
[14]
Rhee JC, Khuri FR, Shin DM. Advances in chemoprevention of head and neck cancer. Oncologist 2004; 9(3): 302-11.
[http://dx.doi.org/10.1634/theoncologist.9-3-302] [PMID: 15169985]
[15]
Szczepanski MJ, DeLeo AB. PRAME expression in head and neck cancer correlates with markers of poor prognosis and might help in selecting candidates for retinoid chemoprevention in pre-malignant lesions. Oral Oncol 2013; 49(2): 144-51.
[http://dx.doi.org/10.1016/j.oraloncology.2012.08.005] [PMID: 22944049]
[16]
Cuffel C, Rivals JP, Zaugg Y, et al. Pattern and clinical significance of cancer-testis gene expression in head and neck squamous cell carcinoma. Int J Cancer 2011; 128(11): 2625-34.
[http://dx.doi.org/10.1002/ijc.25607] [PMID: 20715104]
[17]
Andrade VC, Vettore AL, Felix RS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun 2008; 8: 2.
[PMID: 18237105]
[18]
Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat 2008; 109(2): 359-65.
[http://dx.doi.org/10.1007/s10549-007-9643-3] [PMID: 17624586]
[19]
Santamaría C, Chillón MC, García-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica 2008; 93(12): 1797-805.
[http://dx.doi.org/10.3324/haematol.13214] [PMID: 18815192]
[20]
Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer 2001; 1(3): 181-93.
[http://dx.doi.org/10.1038/35106036] [PMID: 11902573]
[21]
Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387(6634): 733-6.
[http://dx.doi.org/10.1038/42750] [PMID: 9192902]
[22]
Torchia J, Rose DW, Inostroza J, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387(6634): 677-84.
[http://dx.doi.org/10.1038/42652] [PMID: 9192892]
[23]
Figueiredo DL, Mamede RC, Proto-Siqueira R, Neder L, Silva WA Jr, Zago MA. Expression of cancer testis antigens in head and neck squamous cell carcinomas. Head Neck 2006; 28(7): 614-9.
[http://dx.doi.org/10.1002/hed.20380] [PMID: 16475205]
[24]
Le Q, Dawson MI, Soprano DR, Soprano KJ. Modulation of retinoic acid receptor function alters the growth inhibitory response of oral SCC cells to retinoids. Oncogene 2000; 19(11): 1457-65.
[http://dx.doi.org/10.1038/sj.onc.1203436] [PMID: 10723137]
[25]
Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 2002; 86: 41-65.
[http://dx.doi.org/10.1016/S0065-230X(02)86002-X] [PMID: 12374280]
[26]
Gezgin G, Luk SJ, Cao J, et al. PRAME as a potential target for immunotherapy in metastatic uveal melanoma. JAMA Ophthalmol 2017; 135(6): 541-9.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.0729] [PMID: 28448663]
[27]
Field MG, Decatur CL, Kurtenbach S, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res 2016; 22(5): 1234-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2071] [PMID: 26933176]
[28]
Iura K, Kohashi K, Hotokebuchi Y, et al. Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. J Pathol Clin Res 2015; 1(3): 144-59.
[http://dx.doi.org/10.1002/cjp2.16] [PMID: 27499900]
[29]
Iura K, Maekawa A, Kohashi K, et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 2017; 61: 130-9.
[http://dx.doi.org/10.1016/j.humpath.2016.12.006] [PMID: 27993576]
[30]
Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res 2007; 31(11): 1521-8.
[http://dx.doi.org/10.1016/j.leukres.2007.02.016] [PMID: 17382387]
[31]
Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol 2011; 86(1): 31-7.
[http://dx.doi.org/10.1002/ajh.21915] [PMID: 21132730]
[32]
Al-Khadairi G, Naik A, Thomas R, Al-Sulaiti B, Rizly S, Decock J. PRAME promotes epithelial-to-mesenchymal transition in triple negative breast cancer. J Transl Med 2019; 17(1): 9.
[http://dx.doi.org/10.1186/s12967-018-1757-3] [PMID: 30602372]
[33]
Masetti R, Vendemini F, Zama D, Biagi C, Gasperini P, Pession A. All-trans retinoic acid in the treatment of pediatric acute promyelocytic leukemia. Expert Rev Anticancer Ther 2012; 12(9): 1191-204.
[http://dx.doi.org/10.1586/era.12.101] [PMID: 23098119]
[34]
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: Organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105(16): 1172-87.
[http://dx.doi.org/10.1093/jnci/djt184] [PMID: 23852952]
[35]
Ikeda H, Lethé B, Lehmann F, et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6(2): 199-208.
[http://dx.doi.org/10.1016/S1074-7613(00)80426-4] [PMID: 9047241]
[36]
Fratta E, Coral S, Covre A, et al. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol Oncol 2011; 5(2): 164-82.
[http://dx.doi.org/10.1016/j.molonc.2011.02.001] [PMID: 21376678]
[37]
Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Annu Rev Pharmacol Toxicol 2014; 54: 251-72.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140326] [PMID: 24160706]
[38]
Wadelin F, Fulton J, McEwan PA, Spriggs KA, Emsley J, Heery DM. Leucine-rich repeat protein PRAME: Expression, potential functions and clinical implications for leukaemia. Mol Cancer 2010; 9: 226.
[http://dx.doi.org/10.1186/1476-4598-9-226] [PMID: 20799951]
[39]
Rezvani K, Yong ASM, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113(10): 2245-55.
[http://dx.doi.org/10.1182/blood-2008-03-144071] [PMID: 18988867]
[40]
Wadelin FR, Fulton J, Collins HM, et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS One 2013; 8(2): e58052.
[http://dx.doi.org/10.1371/journal.pone.0058052] [PMID: 23460923]
[41]
Williams JM, Chen GC, Zhu L, Rest RF. Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: Intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth. Mol Microbiol 1998; 27(1): 171-86.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00670.x] [PMID: 9466265]
[42]
Matko S, Manderla J, Bonsack M, et al. PRAME peptide-specific CD8+ T cells represent the predominant response against leukemia-associated antigens in healthy individuals. Eur J Immunol 2018; 48(8): 1400-11.
[http://dx.doi.org/10.1002/eji.201747399] [PMID: 29738081]
[44]
Lee YK, Park UH, Kim EJ, Hwang JT, Jeong JC, Um SJ. Tumor antigen PRAME is up-regulated by MZF1 in cooperation with DNA hypomethylation in melanoma cells. Cancer Lett 2017; 403: 144-51.
[http://dx.doi.org/10.1016/j.canlet.2017.06.015] [PMID: 28634046]
[45]
Sakurai E, Maesawa C, Shibazaki M, et al. Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int J Oncol 2011; 39(3): 665-72.
[PMID: 21687938]
[46]
Ortmann CA, Eisele L, Nückel H, et al. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol 2008; 87(10): 809-18.
[http://dx.doi.org/10.1007/s00277-008-0514-8] [PMID: 18587578]
[47]
Xu Y, Zou R, Wang J, Wang ZW, Zhu X. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Prolif 2020; 53(3): e12770.
[http://dx.doi.org/10.1111/cpr.12770] [PMID: 32022332]
[48]
Sigalotti L, Coral S, Fratta E, et al. Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy. Semin Oncol 2005; 32(5): 473-8.
[http://dx.doi.org/10.1053/j.seminoncol.2005.07.005] [PMID: 16210088]
[49]
Orlando D, Miele E, De Angelis B, et al. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma. Cancer Res 2018; 78(12): 3337-49.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3140] [PMID: 29615432]
[50]
Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193(1): 73-88.
[http://dx.doi.org/10.1084/jem.193.1.73] [PMID: 11136822]
[51]
Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood 2006; 108(13): 4109-17.
[http://dx.doi.org/10.1182/blood-2006-01-023127] [PMID: 16931630]
[52]
Griffioen M, Kessler JH, Borghi M, et al. Detection and functional analysis of CD8+ T cells specific for PRAME: A target for T-cell therapy. Clin Cancer Res 2006; 12(10): 3130-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2578] [PMID: 16707612]
[53]
Quintarelli C, Dotti G, Hasan ST, et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 2011; 117(12): 3353-62.
[http://dx.doi.org/10.1182/blood-2010-08-300376] [PMID: 21278353]
[54]
Kewitz S, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS One 2013; 8(2): e55897.
[http://dx.doi.org/10.1371/journal.pone.0055897] [PMID: 23409080]
[55]
Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P. Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 2005; 65(16): 7348-55.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4011] [PMID: 16103086]
[56]
Dao T, Yan S, Veomett N, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5(176): 176ra33.
[http://dx.doi.org/10.1126/scitranslmed.3005661] [PMID: 23486779]
[57]
Chang AY, Dao T, Gejman RS, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 2017; 127(7): 2705-18.
[http://dx.doi.org/10.1172/JCI92335] [PMID: 28628042]
[58]
Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia--implications for immunotherapy. Clin Cancer Res 2013; 19(18): 5079-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0955] [PMID: 23838315]
[59]
Tanaka N, Wang YH, Shiseki M, Takanashi M, Motoji T. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res 2011; 35(9): 1219-25.
[http://dx.doi.org/10.1016/j.leukres.2011.04.005] [PMID: 21550659]
[60]
Bioley G, Guillaume P, Luescher I, et al. Vaccination with a recombinant protein encoding the tumor-specific antigen NY-ESO-1 elicits an A2/157-165-specific CTL repertoire structurally distinct and of reduced tumor reactivity than that elicited by spontaneous immune responses to NY-ESO-1-expressing Tumors. J Immunother 2009; 32(2): 161-8.
[http://dx.doi.org/10.1097/CJI.0b013e31819302f6] [PMID: 19238015]
[61]
Visus C, Wang Y, Lozano-Leon A, et al. Targeting ALDH (bright) human carcinoma-initiating cells with ALDH1A1-specific CD8⁺ T cells. Clin Cancer Res 2011; 17(19): 6174-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1111] [PMID: 21856769]
[62]
Gutzmer R, Rivoltini L, Levchenko E, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: Results of a phase I dose escalation study. ESMO Open 2016; 1(4): e000068.
[http://dx.doi.org/10.1136/esmoopen-2016-000068] [PMID: 27843625]
[63]
Weber JS, Vogelzang NJ, Ernstoff MS, et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 2011; 34(7): 556-67.
[http://dx.doi.org/10.1097/CJI.0b013e3182280db1] [PMID: 21760528]
[64]
Sakamoto S, Noguchi M, Yamada A, Itoh K, Sasada T. Prospect and progress of personalized peptide vaccinations for advanced cancers. Expert Opin Biol Ther 2016; 16(5): 689-98.
[http://dx.doi.org/10.1517/14712598.2016.1161752] [PMID: 26938083]
[65]
Pujol JL, De Pas T, Rittmeyer A, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in patients with resected non-small cell lung cancer: A phase I dose escalation study. J Thorac Oncol 2016; 11(12): 2208-17.
[http://dx.doi.org/10.1016/j.jtho.2016.08.120] [PMID: 27544054]
[66]
Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5(8): 615-25.
[http://dx.doi.org/10.1038/nrc1669] [PMID: 16034368]
[67]
Caballero OL, Chen YT. Cancer/Testis (CT) antigens: Potential targets for immunotherapy. Cancer Sci 2009; 100(11): 2014-21.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01303.x] [PMID: 19719775]
[68]
Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 2014; 11(1): 24-37.
[http://dx.doi.org/10.1038/nrclinonc.2013.208] [PMID: 24247168]
[69]
Gérard C, Baudson N, Ory T, Segal L, Louahed J. A comprehensive preclinical model evaluating the recombinant PRAME antigen combined with the AS15 immunostimulant to fight against PRAME-expressing tumors. J Immunother 2015; 38(8): 311-20.
[http://dx.doi.org/10.1097/CJI.0000000000000095] [PMID: 26325375]
[70]
Pankov D, Sjöström L, Kalidindi T, et al. In vivo immuno-targeting of an extracellular epitope of membrane bound preferentially expressed antigen in melanoma (PRAME). Oncotarget 2017; 8(39): 65917-31.
[http://dx.doi.org/10.18632/oncotarget.19579] [PMID: 29029482]