Computational Exploration of Anti-Cancer Potential of GUAIANE Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking, and MD Simulation Studies

Page: [731 - 746] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Natural products from herbs are abundant and display powerful anti-cancer activities.

Objectives: In the current study, B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma, was tested against two guaiane-type sesquiterpene dimers, xylopin E-F, obtained from Xylopia vielana.

Methods: In this work, a systematic in silico study using ADMET analysis, bioactivity score forecasts, and molecular docking along with its simulations was conducted to understand compounds’ pharmacological properties.

Results: During ADMET predictions of both the compounds, xylopin E-F displayed a safer profile in hepatotoxicity and cytochrome inhibition, and only xylopin F was shown to be non-cardiotoxic compared to the FDA-approved drug vemurafenib. Both the compounds were proceeded to molecular docking experiments using Autodock docking software, and both the compounds, xylopin E-F, displayed higher binding potential with -11.5Kcal/mol energy compared to control vemurafenib (-10.2 Kcal/mol). All the compounds were further evaluated for their MD simulations, and their molecular interactions with the B-Raf kinase complex displayed precise interactions with the active gorge of the enzyme by hydrogen bonding.

Conclusion: Overall, xylopin F had a better profile relative to xylopin E and vemurafenib, and these findings indicated that this bio-molecule could be used as an anti-melanoma agent and as a possible anti-cancer drug in the future. Therefore, this is a systematically optimized in silico approach for creating an anti-cancer pathway for guaiane dimers against the backdrop of its potential for future drug development.

Keywords: Xylopia vielana, B-Raf kinase, melanoma, molecular docking, ADMET, MD simulations.

Graphical Abstract

[1]
Hassan, S.S.; Anjum, K.; Abbas, S.Q.; Akhter, N.; Shagufta, B.I.; Shah, S.A.; Tasneem, U. Emerging biopharmaceuticals from marine actinobacteria. Environ. Toxicol. Pharmacol., 2017, 49, 34-47.
[http://dx.doi.org/10.1016/j.etap.2016.11.015] [PMID: 27898308]
[2]
Hassan, S.S.U.; Shaikh, A.L. Marine actinobacteria as a drug treasure house. Biomed. Pharmacother., 2017, 87, 46-57.
[http://dx.doi.org/10.1016/j.biopha.2016.12.086] [PMID: 28040597]
[3]
Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; Hassan, S.S.U. Marine sponges as a drug treasure. Biomol. Ther. (Seoul), 2016, 24(4), 347-362.
[http://dx.doi.org/10.4062/biomolther.2016.067] [PMID: 27350338]
[4]
Choi, W.K.; El-Gamal, M.I.; Choi, H.S.; Baek, D.; Oh, C.H. New diarylureas and diarylamides containing 1,3,4-triarylpyrazole scaffold: synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition, and molecular docking studies. Eur. J. Med. Chem., 2011, 46(12), 5754-5762.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.013] [PMID: 22014559]
[5]
Naves, L.B.; Almeida, L.; Ramakrishna, S. Understanding the microenvironment of melanoma cells for the development of target drug delivery systems. Citation: EMJ Oncol, 2017, 5, 85-92.
[6]
Morris, V.; Kopetz, S. BRAF inhibitors in clinical oncology. F1000Prime Rep., 2013, 5(1), 85-92.
[http://dx.doi.org/10.12703/P5-11] [PMID: 23585929]
[7]
Holderfield, M.; Deuker, M.M.; McCormick, F.; McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer, 2014, 14(7), 455-467.
[http://dx.doi.org/10.1038/nrc3760] [PMID: 24957944 ]
[8]
Shams ul Hassan, S.; Jin, H.Z.; Abu-Izneid, T.; Rauf, A.; Ishaq, M.; Suleria, H.A.R. Stress-driven discovery in the natural products: a gateway towards new drugs. Biomed. Pharmacother., 2019, 109, 459-467.
[http://dx.doi.org/10.1016/j.biopha.2018.10.173]
[9]
Xie, Y.G.; Zhao, X.C. ul Hassan, S.S.; Zhen, X.Y.; Muhammad, I.; Yan, S.K.; Yuan, X.; Li, H.L.; Jin, H.Z. One new sesquiterpene and one new iridoid derivative from Valeriana amurensis. Phytochem. Lett., 2019, 32, 6-9.
[http://dx.doi.org/10.1016/j.phytol.2019.04.020]
[10]
Xiao, Y.; Zhu, S.; Wu, G. ul Hassan, S.S.; Xie, Y.; Ishaq, M.; Sun, Y.; Yan, S.K.; Qian, X.P.; Jin, H.Z. Chemical constituents of Vernonia parishii. Chem. Nat. Compd., 2020, 56, 134-136.
[http://dx.doi.org/10.1007/s10600-020-02963-x]
[11]
Xie, Y.G.; Yan, R.; Zhong, X.; Piao, H.; Muhammad, I.; Ke, X.; Yan, S.; Guo, Y.; Jin, H.Z.; Zhang, W.D. Xylopins A-F, six rare guaiane dimers with three different connecting modes from: Xylopia vielana. RSC Advances, 2019, 9(16), 9235-9242.
[http://dx.doi.org/10.1039/C9RA00347A]
[12]
Xie, Y.G.; Guo, Y.G.; Wu, G.J.; Zhu, S.L.; Cheng, T.F.; Zhang, Y.; Yan, S.K.; Jin, H.Z.; Zhang, W.D. Xylopsides A-D, four rare guaiane dimers with two unique bridged pentacyclic skeletons from Xylopia vielana. Org. Biomol. Chem., 2018, 16(37), 8408-8412.
[http://dx.doi.org/10.1039/C8OB01689E] [PMID: 30221279]
[13]
Shams, S.; Ishaq, M.; Zhang, W.; Jin, H. An overview of the mechanisms of marine fungi-derived anti-inflammatory and anti-tumor agents and their novel role in drug targeting. Curr. Pharm. Des., 2020, 27(22), 2605-2614.
[http://dx.doi.org/10.2174/1381612826666200728142244]
[14]
DiMasi, J.A. Success rates for new drugs entering clinical testing in the United States. Clin. Pharmacol. Ther., 1995, 58(1), 1-14.
[http://dx.doi.org/10.1016/0009-9236(95)90066-7] [PMID: 7628176]
[15]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[16]
Marrero-Ponce, Y.; Siverio-Mota, D.; Gálvez-Llompart, M.; Recio, M.C.; Giner, R.M.; García-Domènech, R.; Torrens, F.; Arán, V.J.; Cordero-Maldonado, M.L.; Esguera, C.V.; de Witte, P.A.; Crawford, A.D. Discovery of novel anti-inflammatory drug-like compounds by aligning in silico and in vivo screening: the nitroindazolinone chemotype. Eur. J. Med. Chem., 2011, 46(12), 5736-5753.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.053] [PMID: 22000935]
[17]
Kolšek, K.; Mavri, J.; Sollner Dolenc, M.; Gobec, S.; Turk, S. Endocrine disruptome-an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding. J. Chem. Inf. Model., 2014, 54(4), 1254-1267.
[http://dx.doi.org/10.1021/ci400649p] [PMID: 24628082]
[18]
Xie, Y.; Zhong, X.; Xiao, Y.; Zhu, S.; Muhammad, I.; Yan, S.; Jin, H.; Zhang, W. Vieloplains A-G, seven new guaiane-type sesquiterpenoid dimers from Xylopia vielana. Bioorg. Chem., 2019, 88, , 102891..
[http://dx.doi.org/10.1016/j.bioorg.2019.03.065] [PMID: 30999244 ]
[19]
Poroikov, V.; Filimonov, D.; Lagunin, A.; Gloriozova, T.; Zakharov, A. PASS: identification of probable targets and mechanisms of toxicity. SAR QSAR Environ. Res., 2007, 18(1-2), 101-110.
[http://dx.doi.org/10.1080/10629360601054032] [PMID: 17365962]
[20]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 2014, 50, 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[21]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[22]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[23]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371 ]
[24]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[25]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Proceed. Mol. Inform., 2011, 30, 241-250.
[http://dx.doi.org/10.1002/minf.201000151]
[26]
Roy, S.; Samant, L.R.; Chowdhary, A. in silico pharmacokinetics analysis and ADMET of phytochemicals of Datura metel Linn. and Cynodon dactylon. Linn. J. Chem. Pharm. Res., 2015, 7(11), 385-388.
[27]
Braga, R.C.; Alves, V.M.; Silva, M.F.B.; Muratov, E.; Fourches, D.; Lião, L.M.; Tropsha, A.; Andrade, C.H. Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol. Inform., 2015, 34(10), 698-701.
[http://dx.doi.org/10.1002/minf.201500040] [PMID: 27490970 ]
[28]
Hughes, T.B.; Miller, G.P.; Swamidass, S.J. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent. Sci., 2015, 1(4), 168-180.
[http://dx.doi.org/10.1021/acscentsci.5b00131] [PMID: 27162970]
[29]
Matlock, M.K.; Hughes, T.B.; Swamidass, S.J. XenoSite server: a web-available site of metabolism prediction tool. Bioinformatics, 2015, 31(7), 1136-1137.
[http://dx.doi.org/10.1093/bioinformatics/btu761] [PMID: 25411327]
[30]
Lagunin, A.A.; Dubovskaja, V.I.; Rudik, A.V.; Pogodin, P.V.; Druzhilovskiy, D.S.; Gloriozova, T.A.; Filimonov, D.A.; Sastry, N.G.; Poroikov, V.V. CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One, 2018, 13(1), , e0191838..
[http://dx.doi.org/10.1371/journal.pone.0191838] [PMID: 29370280 ]
[31]
Li, Z.; Wan, H.; Shi, Y.; Ouyang, P. Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1886-1890.
[http://dx.doi.org/10.1021/ci049794h] [PMID: 15446849 ]
[32]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[33]
Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res., 2003, 31(13), 3316-3319.
[http://dx.doi.org/10.1093/nar/gkg565] [PMID: 12824316]
[34]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[35]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[36]
Chiu, S.W.; Pandit, S.A.; Scott, H.L.; Jakobsson, E. An improved united atom force field for simulation of mixed lipid bilayers. J. Phys. Chem. B, 2009, 113(9), 2748-2763.
[http://dx.doi.org/10.1021/jp807056c] [PMID: 19708111]
[37]
Wang, H.; Dommert, F.; Holm, C. Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. J. Chem. Phys., 2010, 133(3), 034117.
[http://dx.doi.org/10.1063/1.3446812] [PMID: 20649318]
[38]
Chen, Y.; Tian, Y.; Gao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. In silico design of novel HIV-1 NNRTIs based on combined modeling studies of dihydrofuro[3,4-d]pyrimidines. Front Chem., 2020, 8, 164.
[http://dx.doi.org/10.3389/fchem.2020.00164] [PMID: 32266208]
[39]
Cruz, J.V.; Serafim, R.B.; da Silva, G.M.; Giuliatti, S.; Rosa, J.M.C.; Araújo Neto, M.F.; Leite, F.H.A.; Taft, C.A.; da Silva, C.H.T.P.; Santos, C.B.R. Computational design of new protein kinase 2 inhibitors for the treatment of inflammatory diseases using QSAR, pharmacophore-structure-based virtual screening, and molecular dynamics. J. Mol. Model., 2018, 24(9), 225.
[http://dx.doi.org/10.1007/s00894-018-3756-y] [PMID: 30088101]
[40]
Daina, A.; Zoete, V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[41]
Hassan, S.S.U.; Zhang, W.D.; Jin, H.Z.; Basha, S.H.; Priya, S.V.S.S. In silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J. Biomol. Struct. Dyn., 2020. [Ahead of print].
[http://dx.doi.org/10.1080/07391102.2020.1815579] [PMID: 32876526]
[42]
Glass, C.K.; Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat. Rev. Immunol., 2006, 6(1), 44-55.
[http://dx.doi.org/10.1038/nri1748] [PMID: 16493426]
[43]
Marino, K.A.; Sutto, L.; Gervasio, F.L. The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. J. Am. Chem. Soc., 2015, 137(16), 5280-5283.
[http://dx.doi.org/10.1021/jacs.5b01421] [PMID: 25868080]
[44]
Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Computational evaluation of potent 2-(1H-imidazol-2-yl) pyridine derivatives as potential V600E-BRAF inhibitors. Egypt. J. Med. Hum. Genet., 2020, 21, 67.
[http://dx.doi.org/10.1186/s43042-020-00111-2]
[45]
Filimonov, D.A.; Druzhilovskiy, D.S.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Dmitriev, A.V.; Pogodin, P.V.; Poroikov, V.V. Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitation. Biom. Chem. Res. Methods, 2018, 1, e00004.
[http://dx.doi.org/10.18097/BMCRM00004]
[46]
Zhang, Y.L.; Zhou, X.W.; Wang, X.B.; Wu, L.; Yang, M.H.; Luo, J.; Yin, Y.; Luo, J.G.; Kong, L.Y. Xylopiana A, a dimeric guaiane with a case-shaped core from xylopia vielana: structural elucidation and biomimetic conversion. Org. Lett., 2017, 19(11), 3013-3016.
[http://dx.doi.org/10.1021/acs.orglett.7b01276] [PMID: 28537400]
[47]
Gao, M.; Han, X.; Sun, Y.; Chen, H.; Yang, Y.; Liu, Y.; Meng, H.; Gao, Z.; Xu, Y.; Zhang, Z. Overview of sesquiterpenes and chromones of agarwood originating from four main species of the genus Aquilaria. RSC Advances, 2019, 9, 4113-4130.
[http://dx.doi.org/10.1039/C8RA09409H]
[48]
Spengler, E.K.; Kleiner, D.E.; Fontana, R.J. Vemurafenib-induced granulomatous hepatitis. Hepatology, 2017, 65(2), 745-748.
[http://dx.doi.org/10.1002/hep.28692] [PMID: 27335285 ]
[49]
Truong, J.; Yan, A.T.; Cramarossa, G.; Chan, K.K.W. Chemotherapy-induced cardiotoxicity: detection, prevention, and management. Can. J. Cardiol., 2014, 30(8), 869-878.
[http://dx.doi.org/10.1016/j.cjca.2014.04.029] [PMID: 25064580 ]
[50]
Raschi, E.; Vasina, V.; Poluzzi, E.; De Ponti, F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol. Res., 2008, 57(3), 181-195.
[http://dx.doi.org/10.1016/j.phrs.2008.01.009] [PMID: 18329284 ]
[51]
Nielsen, E.; Ostergaard, G.; Larsen, J.C. Toxicological risk assessment of chemicals: A practical guide; CRC Press, 2008. ISBN 1420006940.
[http://dx.doi.org/10.1201/9781420006940]
[52]
Hughes, T.B.; Dang, N.L.; Miller, G.P.; Swamidass, S.J. Modeling reactivity to biological macromolecules with a deep multitask network. ACS Cent. Sci., 2016, 2(8), 529-537.
[http://dx.doi.org/10.1021/acscentsci.6b00162] [PMID: 27610414 ]
[53]
De Coster, S.; van Larebeke, N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J. Environ. Public Health, 2012, 2012, 713696.
[http://dx.doi.org/10.1155/2012/713696] [PMID: 22991565]
[54]
Sharma, S.V.; Haber, D.A.; Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer, 2010, 10(4), 241-253.
[http://dx.doi.org/10.1038/nrc2820] [PMID: 20300105]
[55]
Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886.
[http://dx.doi.org/10.1038/nrd3847] [PMID: 23060265]
[56]
Helmbach, H.; Rossmann, E.; Kern, M.A.; Schadendorf, D. Drug-resistance in human melanoma. Int. J. Cancer, 2001, 93(5), 617-622.
[http://dx.doi.org/10.1002/ijc.1378] [PMID: 11477569]