The Synthesis and Chemistry of Quinolinediones and their Carbocyclic Analogs

Page: [591 - 607] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Quinoline-5,8-dione and naphthoquinone nuclei are very important substructures in industrial chemicals and pharmaceuticals. These compounds exhibit a wide variety of activities, including antifungal, antibacterial, antimalarial, antineoplastic, anticoagulant, anticancer, antiviral, radical scavenging, antiplatelet, trypanocidal, cytotoxic, and antineoplastic activities. Currently, several research articles on the importance of many natural and synthetic drugs containing quinolinequinone have been reported. This review covers the progress in quinolinequinone and naphthoquinone chemistry over the last five decades.

Keywords: Amination, arylation, derivatives, modifications, naphthoquinone, phenoxazines, phenothiazines, quinolinequinone, synthesis.

Graphical Abstract

[1]
Ryu, C-K.; Kim, H-J. The synthesis of 6-(N-arylamino)-7-chloro-5,8-quinolinedione derivatives for evaluation of antifungal activities. Arch. Pharm. Res., 1994, 17, 139-144.
[http://dx.doi.org/10.1007/BF02974248]
[2]
Ibis, C.; Tuyun, A.F.; Bahar, H.; Ayla, S.S.; Stasevych, M.V.; Musyanovych, R.Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis of novel 1,4-naphthoquinone derivatives: Antibacterial and antifungal agents. Med. Chem. Res., 2013, 22, 2879-2888.
[http://dx.doi.org/10.1007/s00044-012-0300-y]
[3]
Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem., 2014, 84, 247-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.024] [PMID: 25019480]
[4]
Ryu, C-K.; Kim, D-H. The synthesis and antimicrobial activities of some 1, 4-naphthoquinones (II). Arch. Pharm. Res., 1992, 15, 263-268.
[http://dx.doi.org/10.1007/BF02974067]
[5]
Ryu, C-K.; Jeong, H-J.; Lee, S.K.; Kang, H-Y.; Ko, K-M.; Sun, Y-J.; Song, E-H.; Hur, Y.H.; Lee, C-O. Modulation of Nad(P)H:quinone oxidoreductase (NQO1) activity mediated by 5-arylamino-2-methyl-4,7-dioxobenzothiazoles and their cytotoxic potential. Arch. Pharm. Res., 2000, 23(6), 554-558.
[http://dx.doi.org/10.1007/BF02975239] [PMID: 11156173]
[6]
Tomozane, H.; Takeuchi, Y.; Choshi, T.; Kishida, S.; Yamato, M. Syntheses and antifungal activities of dl-griseofulvin and its congeners. I. Chem. Pharm. Bull. (Tokyo), 1990, 38(4), 925-929.
[http://dx.doi.org/10.1248/cpb.38.925] [PMID: 2379285]
[7]
Tandon, V.K.; Maurya, H.K.; Tripathi, A. ShivaKeshava, G.B.; Shukla, P.K.; Srivastava, P.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem., 2009, 44(3), 1086-1092.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.025] [PMID: 18708272]
[8]
Tandon, V.K.; Singh, R.V.; Rai, S.; Chhor, R.B.; Khan, Z.K. Synthesis and pharmacological studies of some 2-t-amino and 2,3-di-t-amino substituted 1,4-naphthoquinones and related compounds. Boll. Chim. Farm., 2002, 141(4), 304-310.
[PMID: 12426819]
[9]
Sasaki, K.; Abe, H.; Yoshizaki, F. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull., 2002, 25(5), 669-670.
[http://dx.doi.org/10.1248/bpb.25.669] [PMID: 12033513]
[10]
Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K.; Shukla, P.K. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and rel-ated compounds as antifungal and antibacterial agents. Bioorg. Med. Chem., 2006, 14(17), 6120-6126.
[http://dx.doi.org/10.1016/j.bmc.2006.04.029] [PMID: 16806945]
[11]
Keyari, C.M.; Kearns, A.K.; Duncan, N.S.; Eickholt, E.A.; Abbott, G.; Beall, H.D.; Diaz, P. Synthesis of new quinolinequinone derivatives and preliminary exploration of their cytotoxic properties. J. Med. Chem., 2013, 56(10), 3806-3819.
[http://dx.doi.org/10.1021/jm301689x] [PMID: 23574193]
[12]
Silver, R.F.; Holmes, H.L. Synthesis of some 1,4-naphthoquinones and reactions relating to their use in the study of bacterial growth inhibition. Can. J. Chem., 1968, 46, 1859-1864.
[http://dx.doi.org/10.1139/v68-309]
[13]
Porter, T.H.; Skelton, F.S.; Folkers, K.; Coenzyme, Q. Synthesis of new alkylamino- and alkylaminomethyl-5,8-quinolinequinones as inhibitors of coenzyme Q and as antimalarials. J. Med. Chem., 1972, 15(1), 34-36.
[http://dx.doi.org/10.1021/jm00271a009] [PMID: 4399805]
[14]
Lin, T.S.; Zhu, L.Y.; Xu, S.P.; Divo, A.A.; Sartorelli, A.C. Synthesis and antimalarial activity of 2-aziridinyl- and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl sulfonate and acylate derivatives. J. Med. Chem., 1991, 34(5), 1634-1639.
[http://dx.doi.org/10.1021/jm00109a016] [PMID: 2033589]
[15]
Fryatt, T.; Pettersson, H.I.; Gardipee, W.T.; Bray, K.C.; Green, S.J.; Slawin, A.M.Z.; Beall, H.D.; Moody, C.J. Novel quinolinequinone antitumor agents: Structure-metabolism studies with NAD(P)H:quinone oxidoreductase (NQO1). Bioorg. Med. Chem., 2004, 12(7), 1667-1687.
[http://dx.doi.org/10.1016/j.bmc.2004.01.021] [PMID: 15028260]
[16]
Whitlon, D.S.; Sadowski, J.A.; Suttie, J.W. Mechanism of coumarin action: Significance of vitamin K epoxide reductase inhibition. Biochemistry, 1978, 17(8), 1371-1377.
[http://dx.doi.org/10.1021/bi00601a003] [PMID: 646989]
[17]
Verma, R.P. Anti-cancer activities of 1,4-naphthoquinones: A QSAR study. Anticancer. Agents Med. Chem., 2006, 6, 489-499.
[18]
McClendon, A.K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res., 2007, 623(1-2), 83-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.06.009] [PMID: 17681352]
[19]
Inbaraj, J.J.; Chignell, C.F. Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol., 2004, 17(1), 55-62.
[http://dx.doi.org/10.1021/tx034132s] [PMID: 14727919]
[20]
Song, G.Y.; Kim, Y.; You, Y.J.; Cho, H.; Kim, S.H.; Sok, D.E.; Ahn, B.Z. Naphthazarin derivatives (VI): Synthesis, inhibitory effect on DNA topoisomerase-I and antiproliferative activity of 2- or 6-(1-oxyiminoalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Arch. Pharm. (Weinheim), 2000, 333(4), 87-92.
[http://dx.doi.org/10.1002/(SICI)1521-4184(20004)333:4<87:AID-ARDP87>3.0.CO;2-1] [PMID: 10816900]
[21]
Hafuri, Y.; Takemori, E.; Oogose, K.; Inouye, Y.; Nakamura, S.; Kitahara, Y.; Nakahara, S.; Kubo, A. Mechanism of inhibition of reverse transcriptase by quinone antibiotics. II. Dependence on putative quinone pocket on the enzyme molecule. J. Antibiot. (Tokyo), 1988, 41(10), 1471-1478.
[http://dx.doi.org/10.7164/antibiotics.41.1471] [PMID: 2461354]
[22]
Hodnett, E.M.; Wongwiechintana, C.; Dunn, W.J., III; Marrs, P. Substituted 1,4-naphthoquinones vs. the ascitic sarcoma 180 of mice. J. Med. Chem., 1983, 26(4), 570-574.
[http://dx.doi.org/10.1021/jm00358a021] [PMID: 6834390]
[23]
Behforouz, M.; Gu, Z.; Stelzer, L.S.; Ahmadian, M.; Haddad, J.; Scherschel, J.A. Diels-Alder reactions of N-silyloxy 1-azadienes. Tetrahedron Lett., 1997, 38, 2211-2214.
[http://dx.doi.org/10.1016/S0040-4039(97)00326-2]
[24]
Kametani, T.; Ogasawara, K. Streptonigrin and related compounds. II. Syntheses of 7-aminoquinoline derivatives from hexachlorocyclohexane. Yakugaku Zasshi, 1966, 86(1), 55-58.
[http://dx.doi.org/10.1248/yakushi1947.86.1_55] [PMID: 5948831]
[25]
Doyle, T.W.; Balitz, D.M.; Grulich, R.E.; Nettleton, D.E.; Gould, S.J.; Tann, C-h.; Moews, A.E. Structure determination of lavendamycin-a new antitumor antibiotic from Streptomyces lavendulae. Tetrahedron Lett., 1981, 22, 4595-4598.
[http://dx.doi.org/10.1016/S0040-4039(01)82990-7]
[26]
Rao, K.V.; Biemann, K.; Woodward, R.B. The structure of streptonigrin. J. Am. Chem. Soc., 1963, 85, 2532-2533.
[http://dx.doi.org/10.1021/ja00899a051]
[27]
Rao, K.V.; Cullen, W.P. Streptonigrin, an antitumor substance. I. Isolation and characterization. Antibiot. Annu., 1959-1960-1960, 7, 950-953.
[PMID: 14436228]
[28]
Kadela-Tomanek, M.; Bębenek, E.; Chrobak, E.; Boryczka, S. 5,8-quinolinedione scaffold as a promising moiety of bioactive agents. Molecules, 2019, 24(22), 4115.
[http://dx.doi.org/10.3390/molecules24224115] [PMID: 31739496]
[29]
Petrow, V.; Sturgeon, B. Some quinoline-5: 8-quinones. J. Chem. Soc., 1954, 570-574.
[http://dx.doi.org/10.1039/jr9540000570]
[30]
Hussain, H.; Specht, S.; Sarite, S.R.; Hoerauf, A.; Krohn, K. New quinoline-5,8-dione and hydroxynaphthoquinone derivatives inhibit a chloroquine resistant Plasmodium falciparum strain. Eur. J. Med. Chem., 2012, 54, 936-942.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.046] [PMID: 22781704]
[31]
Amarasekara, A.S. A new synthesis of quinoline-5,8-quinone. Synth. Commun., 1999, 29, 3063-3066.
[http://dx.doi.org/10.1080/00397919908085930]
[32]
Morin, C.; Besset, T.; Moutet, J-C.; Fayolle, M.; Brückner, M.; Limosin, D.; Becker, K.; Davioud-Charvet, E. The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. Org. Biomol. Chem., 2008, 6(15), 2731-2742.
[http://dx.doi.org/10.1039/b802649c] [PMID: 18633531]
[33]
Pratt, Y.T.; Drake, N.L. Quinolinequinones. V. 6-Chloro-and 7-Chloro-5, 8-quinolinequinones1a. J. Am. Chem. Soc., 1960, 82, 1155-1161.
[http://dx.doi.org/10.1021/ja01490a035]
[34]
Okoro, U.C.; Jacob, A.D. Copper-catalyzed arylation reaction in the synthesis new derivatives of angular triazaphenoxazinone. J. Chem. Mater. Res., 2014, 6, 37-40.
[35]
Okafor, C.O. Synthesis, properties and uses of angular Phenoxazines. Dyes Pigments, 1986, 7, 103-131.
[http://dx.doi.org/10.1016/0143-7208(86)85003-3]
[36]
Okafor, C.O.; Akpuaka, M.U.; Eluwa, I.A. Synthesis of new benzothiazinophenoxazine ring systems. Dyes Pigm., 1992, 19, 81-97.
[http://dx.doi.org/10.1016/0143-7208(92)87014-R]
[37]
Agarwal, N.L.; Schaefer, W. Quinone chemistry. Reaction of 2,3-dichloro-1,4-naphthoquinone with o-aminophenols under various conditions. J. Org. Chem., 1980, 45, 2155-2161.
[http://dx.doi.org/10.1021/jo01299a024]
[38]
Nan’Ya, S.; Maekawa, E.; Kang, W.B.; Ueno, Y. Synthesis of benzophenothiazinone derivatives from 2,3,5-trisubstituted-1,4-naphthoquinones with 2-aminothiophenol. J. Heterocycl. Chem., 1986, 23, 589-592.
[http://dx.doi.org/10.1002/jhet.5570230256]
[39]
Nan’ya, S.; Maekawa, E.; Hayakawa, H.; Kitaguchi, Y.; Ueno, Y. Synthesis of 5H-pyrido [2, 3-a] phenoxazin-5-one and 5H-pyrido [3,2-a] phenoxazin-5-one derivatives. J. Heterocycl. Chem., 1985, 22, 1483-1485.
[http://dx.doi.org/10.1002/jhet.5570220604]
[40]
Okoro, U.; Onoabedje, E.; Odin, E. The first angular triazaphenothiazinone, the related diaza-analogue and their anilino derivatives. Int. J. Chem., 2009, 19, 197-210.
[41]
Okafor, C.O. A new type of angular phenothiazine ring system. Tetrahedron, 1986, 42, 2771-2775.
[http://dx.doi.org/10.1016/S0040-4020(01)90564-2]
[42]
Kang, W.; Nan’ya, S.; Maekawa, E.; Ueno, Y. Angular heterocycles. A convenient synthesis of azabenzophenothiazines. J. Heterocycl. Chem., 1988, 25, 113-117.
[http://dx.doi.org/10.1002/jhet.5570250116]
[43]
Okoro, U.; Ijeoma, A. Synthesis of new non-linear polycyclic diazaphenothiazine ring system. Int. J. Chem., 2006, 16, 245-250.
[44]
Ezeokonkwo, M.A.; Iloka, K.C.; Okoro, U.C.; Onoabedje, E.A.; Ezema, B.E.; Ibeanu, F.N. Synthesis and antimicrobial activity of new derivatives of angular polycyclic phenoxazine ring system. Orient. J. Chem., 2019, 35, 1320-1326.
[http://dx.doi.org/10.13005/ojc/350410]
[45]
Schellhammer, C.W.; Petersen, S. On derivatives of quinolinequinone (5.8). Justus Liebigs Ann. Chem., 1959, 624, 108-119.
[http://dx.doi.org/10.1002/jlac.19596240110]
[46]
Ryu, C-K.; Sun, Y-J.; Shim, J-Y.; You, H-J.; Choi, K.U.; Lee, H. Synthesis and antifungal activity of 6,7-bis-[S-(aryl)thio]-5,8-quinolinediones. Arch. Pharm. Res., 2002, 25(6), 795-800.
[http://dx.doi.org/10.1007/BF02976994] [PMID: 12510828]
[47]
Choi, H.Y.; Chi, D.Y. Simple preparation of 7-alkylamino-2-methylquinoline-5,8-diones: regiochemistry in nucleophilic substitution reactions of the 6-or 7-bromo-2-methylquinoline-5, 8-dione with amines. Tetrahedron, 2004, 60, 4945-4951.
[http://dx.doi.org/10.1016/j.tet.2004.04.041]
[48]
Egu, S.A.; Okoro, U.C.; Wirth, T. Synthesis of quinolinequinone derivatives and related carbocyclic compounds; Sci. Open Res, 2014.
[49]
Vorogushin, A.V.; Huang, X.; Buchwald, S.L. Use of tunable ligands allows for intermolecular Pd-catalyzed C--O bond formation. J. Am. Chem. Soc., 2005, 127(22), 8146-8149.
[http://dx.doi.org/10.1021/ja050471r] [PMID: 15926842]
[50]
Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc., 1994, 116, 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[51]
Rhee, H-K.; Park, H.J.; Lee, S.K.; Lee, C-O.; Choo, H-Y.P. Synthesis, cytotoxicity, and DNA topoisomerase II inhibitory activity of benzofuroquinolinediones. Bioorg. Med. Chem., 2007, 15(4), 1651-1658.
[http://dx.doi.org/10.1016/j.bmc.2006.12.012] [PMID: 17194596]
[52]
Lanfranchi, D.A.; Cesar-Rodo, E.; Bertrand, B.; Huang, H-H.; Day, L.; Johann, L.; Elhabiri, M.; Becker, K.; Williams, D.L.; Davioud-Charvet, E. Synthesis and biological evaluation of 1,4-naphthoquinones and quinoline-5,8-diones as antimalarial and schistosomicidal agents. Org. Biomol. Chem., 2012, 10(31), 6375-6387.
[http://dx.doi.org/10.1039/c2ob25812a] [PMID: 22777178]
[53]
Jastrzebska, M.; Boryczka, S.; Kadela, M.; Wrzalik, R.; Kusz, J.; Nowak, M. Synthesis, crystal structure and infrared spectra of new 6- and 7-propylamine-5,8-quinolinediones. J. Mol. Struct., 2014, 1067, 160-168.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.031]
[54]
Kadela, M.; Jastrzębska, M.; Bębenek, E.; Chrobak, E.; Latocha, M.; Kusz, J.; Książek, M.; Boryczka, S. Synthesis, structure and cytotoxic activity of mono-and dialkoxy derivatives of 5, 8-quinolinedione. Molecules, 2016, 21(2), 156.
[http://dx.doi.org/10.3390/molecules21020156] [PMID: 26828467]
[55]
Bhuiyan, M.M.H.; Ferdaush, J.; Uddin, M.H. Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1-C3)} at temperatures from T = 303.15 K to T= 323.15 K. J. Chem. Thermodyn., 2007, 39, 675-683.
[http://dx.doi.org/10.1016/j.jct.2006.10.016]
[56]
Kiefer, J.; Noack, K.; Kirchner, B. Hydrogen bond in mixtures of dimethyl sulfoxide and cosolvents. Curr. Phys. Chem., 2011, 1, 340-351.
[http://dx.doi.org/10.2174/1877946811101040340]
[57]
Egu, S.A.; Okoro, U.C.; Onoabedje, E.A. New aryl derivatives of quinolinedione and related heterocyclic compounds. J. Heterocycl. Chem., 2017, 54, 1572-1577.
[http://dx.doi.org/10.1002/jhet.2745]
[58]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20, 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[59]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, 866-867.
[http://dx.doi.org/10.1039/c39790000866]
[60]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[61]
Kurti, L.; Czakó, B. Strategic applications of named reactions in organic synthesis; Elsevier, 2005.
[62]
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: A user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
[63]
Galardon, E.; Ramdeehul, S.; Brown, J.M.; Cowley, A.; Hii, K.K.; Jutand, A. Profound steric control of reactivity in aryl halide addition to bisphosphane palladium(0) complexes. Angew. Chem. Int. Ed., 2002, 41(10), 1760-1763.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1760:AID-ANIE1760>3.0.CO;2-3] [PMID: 19750708]
[64]
Ezugwu, J.A.; Ezeokonkwo, M.A.; Okafor, S.N.; Godwin-Nwakwasi, E.U.; Ibeanu, F. Ibeanu, Palladium-catalyzed Sonogashira synthesis of alkynyl derivatives of quinoline-5, 8-dione Asian. J. Appl. Sci., 2017, 5.
[65]
Ezeokonkwo, M.; Ezugwu, J.; Okafor, S.; Onoabedje, E.; Godwin-Nwakwasi, E.; Ibeanu, F. Double alkynylation of quinoline-5,8-diones and their in-silico and antimicrobial studies. JASEM, 2018, 22, 1121-1127.
[http://dx.doi.org/10.4314/jasem.v22i7.20]
[66]
Ezeokonkwo, M.A.; Ibeanu, F.N.; Eze, C.C.; Ibezim, A.; Ezeokoyea, C.; Ezenwaa, O.I. E.T, V.; V.O, A. Synthesis, antimicrobial activity and molecular docking studies of 7-bromoquinoline-5,8-dione containing aryl sulphonamides. Int. J. Appl. Chem., 2019, 15, 99-112.
[67]
Tandon, V.K.; Maurya, H.K. Facile and efficient synthesis of 1,4-benzodiazepines from 1, 4-naphthoquinones. Heterocycles, 2008, 76, 1007-1010.
[http://dx.doi.org/10.3987/COM-08-S(N)63]
[68]
VanAllan, J.; Reynolds, G.; Adel, R. Polynuclear heterocycles. IV. The synthesis of some new heterocyclic quinones1. J. Org. Chem., 1963, 28, 524-527.
[http://dx.doi.org/10.1021/jo01037a066]
[69]
Tandon, V.K.; Maurya, H.K.; Mishra, N.N.; Shukla, P.K. Design, synthesis and biological evaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur. J. Med. Chem., 2009, 44(8), 3130-3137.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.006] [PMID: 19349095]
[70]
Tandon, V.K.; Yadav, D.B.; Singh, R.V.; Vaish, M.; Chaturvedi, A.K.; Shukla, P.K. Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg. Med. Chem. Lett., 2005, 15(14), 3463-3466.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.075] [PMID: 15950468]
[71]
Lisboa, Cda. S.; Santos, V.G.; Vaz, B.G.; de Lucas, N.C.; Eberlin, M.N.; Garden, S.J. C-H functionalization of 1,4-naphthoquinone by oxidative coupling with anilines in the presence of a catalytic quantity of copper(II) acetate. J. Org. Chem., 2011, 76(13), 5264-5273.
[http://dx.doi.org/10.1021/jo200354u] [PMID: 21604796]
[72]
Leyva, E.; Sobeck, S.J.S.; Loredo-Carrillo, S.E.; Magaldi-Lara, D.A. Spectral and structural characterization of 2-(fluorophenyl-amino)-and 2-(nitrophenylamino)-1,4-naphthoquinone derivatives. J. Mol. Struct., 2014, 1068, 1-7.
[http://dx.doi.org/10.1016/j.molstruc.2014.03.044]
[73]
Vega-Rodríguez, S.; Jiménez-Cataño, R.; Leyva, E.; Loredo-Carrillo, S.E. Intramolecular hydrogen bonds in fluorinated, methoxylated, or unsubstituted 2-(anilino)-1,4-naphthoquinones. A theoretical study. J. Fluor. Chem., 2013, 145, 58-62.
[http://dx.doi.org/10.1016/j.jfluchem.2012.10.001]
[74]
Zhang, C.; Wang, M.; Fan, Z.; Sun, L-P.; Zhang, A. Substituent-enabled oxidative dehydrogenative cross-coupling of 1,4-naphthoquinones with alkenes. J. Org. Chem., 2014, 79(16), 7626-7632.
[http://dx.doi.org/10.1021/jo501419s] [PMID: 25075553]
[75]
Choudhary, A.S.; Sekar, N. Phenazine fused benzo coumarins with negative solvatochromism and positive solvatochromic emission-synthesis, photo physical properties, DFT and TDDFT studies. J. Fluoresc., 2015, 25(3), 675-684.
[http://dx.doi.org/10.1007/s10895-015-1553-x] [PMID: 25773710]
[76]
Abadi, M.Z.H.; Mohebat, R.; Mosslemin, M.H. A novel eco-friendly catalyst-and solvent-free four-component synthesis of benzo [a] furo [2,3-c] phenazines under microwave conditions. Polycycl. Aromat. Compd., 2017.
[77]
Yakkala, P.A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Regioselective C-H alkylation and alkenylation at the C5 position of 2-amino-1,4-naphthoquinones with maleimides under Rh (iii) catalysis. Org. Chem. Front., 2019, 6, 2441-2446.
[http://dx.doi.org/10.1039/C9QO00538B]
[78]
Suematsu, N.; Ninomiya, M.; Sugiyama, H.; Udagawa, T.; Tanaka, K.; Koketsu, M. Synthesis of carbazoloquinone derivatives and their antileukemic activity via modulating cellular reactive oxygen species. Bioorg. Med. Chem. Lett., 2019, 29(16), 2243-2247.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.038] [PMID: 31253531]
[79]
Calil, F.A.; David, J.S.; Chiappetta, E.R.C.; Fumagalli, F.; Mello, R.B.; Leite, F.H.A.; Castilho, M.S.; Emery, F.S.; Nonato, M.C. Ligand-based design, synthesis and biochemical evaluation of potent and selective inhibitors of Schistosoma mansoni dihydroorotate dehydrogenase. Eur. J. Med. Chem., 2019, 167, 357-366.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.018] [PMID: 30776695]
[80]
Kacmaz, A.; Deniz, N.G.; Aydinli, S.G.; Sayil, C.; Onay-Ucar, E.; Mertoglu, E.; Arda, N. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells. Open Chem., 2019, 17, 337-345.
[http://dx.doi.org/10.1515/chem-2019-0030]
[81]
Nikoorazm, M.; Khanmoradi, M.; Mohammadi, M. Guanine-La complex supported onto SBA-15: A novel efficient heterogeneous mesoporous nanocatalyst for one-pot, multi-component Tandem Knoevenagel condensation-Michael addition-cyclization Reac-tions. Appl. Organomet. Chem., 2020, 34e5504
[http://dx.doi.org/10.1002/aoc.5504]
[82]
Safaei-Ghomi, J.; Tavazo, M.; Shahbazi-Alavi, H. Chitosan-attached nano-Fe3O4 as a superior and retrievable heterogeneous catalyst for the synthesis of benzopyranophenazines using chitosan-attached nano-Fe3O4. Z. Naturforsch. B, 2019, 74, 733-738.
[http://dx.doi.org/10.1515/znb-2019-0091]
[83]
Egu, S.A.; Ibezim, A.; Onoabedje, E.A.; Okoro, U.C. Biological and in silico evaluation of quinolinedione and naphthoquinone derivatives as potent antibacterial agents. ChemistrySelect, 2017, 2, 9222-9226..
[http://dx.doi.org/10.1002/slct.201700692]