Review on Characteristics and Analytical Methods of Remogliflozin Etabonate: An Update

Page: [1341 - 1350] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Hyperglycemia and its associated disorders like Diabetes mellitus are engulfing the world’s population at a faster pace. New-age medications like the SGLT 2 inhibitors have found their place in the run to combat DM. Drugs with these properties have proven to be effective in treating hyperglycemia, obesity, and major cardiac disorders. The interesting fact about these drugs is that they act independently of insulin levels in the patient’s body. The fact that they even bypass the side effects shown by currently used anti-diabetic medications has attracted the world’s hope to neutralize diabetes mellitus. The invention of Remogliflozin Etabonate (RGE), an SGLT 2 inhibitor, has therefore added a silver lining to the gliflozin-family of drugs in the fight against DM. This is due to its least side effects as well as its effective mechanisms to treat hyperglycemia. It can be administered not only as a single entity but also can be co-administered in combination with other anti-hyperglycemic agents. RGE is already sold in the Indian market as REMO-ZEN, by Glenmark Pharmaceuticals. It has been studied thoroughly for its pharmacokinetic and pharmacodynamic profile. It is a benzylpyrazole glucoside. Various analytical methods have been formulated for its detection, quantification, and routine quality control activities. RGE can be studied with the help of UV-visible spectrophotometry, High-Performance Liquid Chromatography (HPLC) and Hyphenated techniques like Liquid Chromatography- Mass Spectroscopy (LC-MS/MS).

This review briefs about the overall chemical, pharmacological, pharmacokinetic and pharmacodynamics properties of RGE. It mainly discusses various analytical techniques used for determining and estimating RGE.

Keywords: Remogliflozin etabonate, synthesis, analytical methods, anti-hyperglycemic, SGLT2 inhibitors, diabetes mellitus.

Graphical Abstract

[1]
Dharmalingam, M.; Aravind, S.R.; Thacker, H.; Paramesh, S.; Mohan, B.; Chawla, M.; Asirvatham, A.; Goyal, R.; Shembalkar, J.; Balamurugan, R.; Kadam, P.; Alva, H.; Kodgule, R.; Tandon, M.; Vaidyanathan, S.; Pendse, A.; Gaikwad, R.; Katare, S.; Suryawanshi, S.; Barkate, H. Efficacy and Safety of Remogliflozin Etabonate, a New Sodium Glucose Co-Transporter-2 Inhibitor, in Patients with Type 2 Diabetes Mellitus: A 24-Week, Randomized, Double-Blind, Active-Controlled Trial. Drugs, 2020, 80(6), 587-600.
[http://dx.doi.org/10.1007/s40265-020-01285-0] [PMID: 32162274]
[2]
Hussey, E.K.; Kapur, A.; O’Connor-Semmes, R.; Tao, W.; Rafferty, B.; Polli, J.W.; James, C.D., Jr; Dobbins, R.L. Safety, pharmacokinetics and pharmacodynamics of remogliflozin etabonate, a novel SGLT2 inhibitor, and metformin when co-administered in subjects with type 2 diabetes mellitus. BMC Pharmacol. Toxicol., 2013, 14, 25.
[http://dx.doi.org/10.1186/2050-6511-14-25] [PMID: 23631443]
[3]
Bakris, G.L.; Fonseca, V.A.; Sharma, K.; Wright, E.M. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int., 2009, 75(12), 1272-1277.
[http://dx.doi.org/10.1038/ki.2009.87] [PMID: 19357717]
[4]
Kapur, A.; O’Connor-Semmes, R.; Hussey, E.K.; Dobbins, R.L.; Tao, W.; Hompesch, M.; Smith, G.A.; Polli, J.W.; James, C.D., Jr; Mikoshiba, I.; Nunez, D.J. First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacol. Toxicol., 2013, 14, 26.
[http://dx.doi.org/10.1186/2050-6511-14-26] [PMID: 23668634]
[5]
Fujimori, Y.; Katsuno, K.; Nakashima, I.; Ishikawa-Takemura, Y.; Fujikura, H.; Isaji, M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther., 2008, 327(1), 268-276.
[http://dx.doi.org/10.1124/jpet.108.140210] [PMID: 18583547]
[6]
Zelniker, T.A.; Wiviott, S.D.; Raz, I. Im, K.; Goodrich, E.L.; Furtado, R.H.M.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. Comparison of the Effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation, 2019, 139(17), 2022-2031.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038868] [PMID: 30786725]
[7]
Santos-Gallego, C.G.; Garcia-Ropero, A.; Mancini, D.; Pinney, S.P.; Contreras, J.P.; Fergus, I.; Abascal, V.; Moreno, P.; Atallah-Lajam, F.; Tamler, R.; Lala, A.; Sanz, J.; Fuster, V.; Badimon, J.J. Rationale and design of the EMPA-TROPISM trial (ATRU-4): Are the “Cardiac Benefits” of empagliflozin independent of its hypoglycemic activity? Cardiovasc. Drugs Ther., 2019, 33(1), 87-95.
[http://dx.doi.org/10.1007/s10557-018-06850-0] [PMID: 30675708]
[8]
Zelniker, T.A.; Wiviott, S.D.; Raz, I. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet, 2019, 393(10166), 31-39.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[9]
National Center for BiotechnologyInformation. PubChem Compound Summary for CID 9871420. 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Remogliflozin-etabonate (accessed Dec 24, 2020).
[10]
Isaji, M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int. Suppl., 2011, 79(120), S14-S19.
[http://dx.doi.org/10.1038/ki.2010.511] [PMID: 21358697]
[11]
Drug Bank; Remogliflozin etabonate. Available from: https://go.drugbank.com/drugs/DB12935 (accessed Dec 24, 2020).
[12]
Remogliflozin etabonate. Available from: https://www.caymanchem.com/product/14341/remogliflozin-etabonate (accessed Dec 27, 2020).
[13]
Kobayashi, M.; Isawa, H.; Sonehara, J.; Kubota, M.; Ozawa, T. O-Glycosylation of 4-(Substituted benzyl)-1,2-dihydro-3H-pyrazol-3-one Derivatives with 2,3,4,6-Tetra-O-acyl-α-D-glucopyranosyl Bromide via N1-Acetylation of the Pyrazole Ring. Chem. Pharm. Bull. (Tokyo), 2016, 64(7), 1009-1018.
[http://dx.doi.org/10.1248/cpb.c15-00982] [PMID: 27373664]
[14]
W., Polli J.; E. Humphreys, J. Assessment of Remogliflozin Etabonate, a Sodium-Dependent Glucose Co-Transporter-2 Inhibitor, as a Perpetrator of Clinical Drug Interactions: A Study on Drug Transporters and Metabolic Enzymes. J. Diabetes Metab., 2012, 3.
[http://dx.doi.org/10.4172/2155-6156.1000200]
[15]
Chao, E.C. SGLT-2 Inhibitors: A new mechanism for glycemic control. clin. Diabetes, 2014, 32(1), 4-11.
[http://dx.doi.org/10.2337/diaclin.32.1.4] [PMID: 26246672]
[16]
Weiss, M.D.; Wasdell, M.B.; Bomben, M.M.; Rea, K.J.; Freeman, R.D. Sleep hygiene and melatonin treatment for children and adolescents with ADHD and initial insomnia. J. Am. Acad. Child Adolesc. Psychiatry, 2006, 45(5), 512-519.
[http://dx.doi.org/10.1097/01] [PMID: 16670647]
[17]
Cowie, M.R.; Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol., 2020, 17(12), 761-772.
[http://dx.doi.org/10.1038/s41569-020-0406-8] [PMID: 32665641]
[18]
O’Connor-Semmes, R.L.; Sandefer, E.P.; Hussey, E.K.; Tao, W.; Doll, W.J.; Page, R.C.; Dobbins, R. Regional gastrointestinal delivery of remogliflozin etabonate in humans. Biopharm. Drug Dispos., 2013, 34(2), 79-86.
[http://dx.doi.org/10.1002/bdd.1824] [PMID: 23111980]
[19]
Mohan, V.; Mithal, A.; Joshi, S.R.; Aravind, S.R.; Chowdhury, S. Remogliflozin etabonate in the treatment of type 2 diabetes: Design, development, and place in therapy. Drug Des. Devel. Ther., 2020, 14, 2487-2501.
[http://dx.doi.org/10.2147/DDDT.S221093] [PMID: 32612352]
[20]
Markham, A. Remogliflozin Etabonate: First Global Approval. Drugs, 2019, 79(10), 1157-1161.
[http://dx.doi.org/10.1007/s40265-019-01150-9] [PMID: 31201711]
[21]
Sigafoos, J.F.; Bowers, G.D.; Castellino, S.; Culp, A.G.; Wagner, D.S.; Reese, M.J.; Humphreys, J.E.; Hussey, E.K.; O’Connor Semmes, R.L.; Kapur, A.; Tao, W.; Dobbins, R.L.; Polli, J.W. Assessment of the drug interaction risk for remogliflozin etabonate, a sodium-dependent glucose cotransporter-2 inhibitor: evidence from in vitro, human mass balance, and ketoconazole interaction studies. Drug Metab. Dispos., 2012, 40(11), 2090-2101.
[http://dx.doi.org/10.1124/dmd.112.047258] [PMID: 22851617]
[22]
Mikhail, N. Remogliflozin etabonate: A novel SGLT2 inhibitor for treatment of diabetes mellitus. Expert Opin. Investig. Drugs, 2015, 24(10), 1381-1387.
[http://dx.doi.org/10.1517/13543784.2015.1061501] [PMID: 26288025]
[23]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A Review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[24]
Attimarad, M.; Elgorashe, R.E.E.; Subramaniam, R.; Islam, M.M.; Venugopala, K.N.; Nagaraja, S.; Balgoname, A.A. Development and Validation of Rapid RP-HPLC and green second-derivative UV spectroscopic methods for simultaneous quantification of metformin and remogliflozin in formulation using experimental design. Separations, 2020, 7, 59.
[http://dx.doi.org/10.3390/separations7040059]
[25]
Tayade, A.B.; Patil, A.A.S. Development and Validation of Zero Order UV-Spectrophotometric Method by area under curve technique and high performance thin layer chromatography for the estimation of remogliflozin etabonate in bulk and in-house tablets. Inven. Rapid Pharm Anal. Qual. Assur., 2019, 3, 1-5.
[26]
Shah, D.; Gondalia, I.; Patel, V.; Mahajan, A.; Chhalotiya, U.K. Stability Indicating Liquid Chromatographic Method for the Estimation of Remogliflozin Etabonate. J. Chem. Metrol., 2020, 14, 125-132.
[http://dx.doi.org/10.25135/jcm.46.20.07.1734]
[27]
Bhatkar, T.; Amol, B.; Bhajipale, N. Stability Indicating RP-HPLC Method development and validation for the estimation of remogliflozin etabonate in bulk and pharmaceutical dosage form. Int. J. Pharm. Res., 2020, 12
[http://dx.doi.org/10.31838/ijpr/2020.12.04.026]
[28]
Tammisetty, M.; Challa, B.R. A novel analytical method for the simultaneous estimation of remogliflozin and metformin hydrochloride by uplc/pda in bulk and formulation. Application to the estimation of product traces. Turkish J. Pharm. Sci., 2021, 18(3), 296-305.
[http://dx.doi.org/10.4274/tjps.galenos.2020.39699]
[29]
Nagajyothi, S.; Swetha, Y.; Neeharika, J.; Suresh, P.V.; Ramarao, N. Hyphenated Techniques- A Comprehensive Review. Int. J. Adv. Res. Develop., 2017, 2, 63-71.
[30]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC. Trends Analyt. Chem., 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[31]
Korany, M.A.; Mahgoub, H.; Haggag, R.S.; Ragab, M.A.A.; Elmallah, O.A. Green Chemistry: Analytical and Chromatography. J. Liq. Chromatogr. Relat. Technol., 2017, 40, 839-852.
[http://dx.doi.org/10.1080/10826076.2017.1373672]
[32]
Welton, T. Solvents and sustainable chemistry. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2015, 471(2183), 20150502.
[http://dx.doi.org/10.1098/rspa.2015.0502] [PMID: 26730217]