Plasmonic Properties of Al2O3 Nanoshell with a Metallic Core

Page: [243 - 249] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Al is the promising candidate for deep UV and longer wavelength range plasmonic applications. But it is difficult to have the pure aluminium nanostructure as it is easily oxidized, forming a thin layer of Al2O3. In this paper, we have evaluated the field enhancement of oxide layer on metallic shell (Al-Al2O3 and Au-Al2O3) for single and dimer core-shell configuration and showed potential of the oxide layer in SERS.

Methods: The Finite Difference Time Domain (FDTD) has been used to evaluate the LSPR and field enhancement of single and dimer Al-Al2O3 and Au- Al2O3 nanostructure.

Results: The results exhibit the tunable plasmon resonance on varying the inner and outer radii of the Al2O3 shell. A redshift and decrease in enhancement were observed as shell thickness increases, whereas on increasing the core size, the enhancement increases in the case of Au-Al2O3 and decreases in Al- Al2O3 due to quadrupole contribution. But on comparing the Au-Al2O3 with Al-Al2O3 for the same particle size, Al-Al2O3 shows larger enhancement because Au has to compete with its interband transition.

Conclusion: By optimizing the thickness of the shell and core size, it can be concluded that an ultrathin shell of Al2O3 can give higher enhancement. With Al as a core metal, the enhancement increases as compared to Au-Al2O3. Since a single Al-Al2O3 nanoshell has shown a huge enhancement we have considered the multimer configuration of two identical nanoshells. Due to coupling between two nanoshells a huge increase in enhancement factor ~1012 was observed for Al-Al2O3 dimer nanoshell in the UV region.

Keywords: Localized Surface Plasmon Resonance (LSPR), Al-Al2O3, dimer nanostructures, FDTD simulation, near-field enhancement, metallic core.

Graphical Abstract

[1]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[2]
Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 2007, 70, 1-87.
[http://dx.doi.org/10.1088/0034-4885/70/1/R01]
[3]
Yaraki, M.T.; Tan, Y.N. Metal nanoparticles-enhanced biosensors: Synthesis, design and applications in fluorescence enhancement and surface-enhanced Raman scattering. Chem. Asian J., 2020, 15(20), 3180-3208.
[http://dx.doi.org/10.1002/asia.202000847] [PMID: 32808471]
[4]
Huakang, Y.; Peng, Y.; Yang, Y.; Li, Z.Y. Plasmon-enhanced light-matter interactions and applications. Comput. Mater., 2019, 45, 1-14.
[5]
Chahinez, D.; Thomas, R.; Ruediger, A. Design of a plasmonic platform to improve the SERS sensitivity for molecular detection. Photonic Sens., 2020, 10, 204-214.
[http://dx.doi.org/10.1007/s13320-019-0576-3]
[6]
Katyal, J. Comparison of localised surface plasmon resonance and refractive index sensitivity for metallic nanostructures. Mater. Today Proc., 2019, 18, 613-622.
[http://dx.doi.org/10.1016/j.matpr.2019.06.455]
[7]
Sekhon, J.J.; Verma, S.S. Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics, 2011, 6, 311.
[http://dx.doi.org/10.1007/s11468-011-9206-7]
[8]
Katyal, J.; Soni, R.K. Size and shape-dependent plasmonic properties of aluminium nanoparticles for nanosensing applications. J. Mod. Opt., 2013, 60, 1717-1728.
[http://dx.doi.org/10.1080/09500340.2013.856483]
[9]
Rai, A.; Park, K. Zhou, Zachariah, M.R. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theory Model., 2006, 10, 843.
[http://dx.doi.org/10.1080/13647830600800686]
[10]
Xu, Z.; Zhu, C.; Huo, Z.; Cui, Y.; Wang, Y. Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix. Appl. Phys. Lett., 2012, 100, 203509.
[http://dx.doi.org/10.1063/1.4720085]
[11]
Niu, J.; Truong, V.G.; Huang, H.; Tripathy, S.; Qiu, C.; Wee, A.T.S.; Yu, T.; Yang, H. Study of electromagnetic enhancement for surface-enhanced Raman spectroscopy of SiC graphene. Appl. Phys. Lett., 2012, 100, 191601.
[http://dx.doi.org/10.1063/1.4712054]
[12]
Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; Ren, B.; Wang, Z.L.; Tian, Z.Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464(7287), 392-395.
[http://dx.doi.org/10.1038/nature08907] [PMID: 20237566]
[13]
Katyal, J.; Soni, R.K. Field enhancement around Al nanostructures in UV-NIR region. Plasmonic, 2015, 10, 1729-1740.
[http://dx.doi.org/10.1007/s11468-015-9991-5]
[14]
Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed; Artech House: Norwood, MA, 2005.
[15]
Lumerical Solutions; , Available from:. http://docs.lumerical.com/en/fdtd/reference guide.html
[16]
Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, 1998.
[17]
Mai, F.D. Preparation of surface-enhanced Raman scattering-active Au/Al2O3 colloids by sono electrochemical methods. J. Phys. Chem. C, 2010, 115, 13660-13666.
[http://dx.doi.org/10.1021/jp203931r]
[18]
Arash, B.; Sarraf, M.R. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminium nanoparticles. Appl. Surf. Sci., 2010, 256, 7559-7564.
[http://dx.doi.org/10.1016/j.apsusc.2010.05.103]
[19]
Blabera, M.G.; Arnold, M.D.; Harrisa, N.; Forda, M.J.; Cortie, M.B. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver, and gold. Physica B, 2007, 394, 184-187.
[http://dx.doi.org/10.1016/j.physb.2006.12.011]