Perspective on mTOR-dependent Protection in Status Epilepticus

Page: [1006 - 1010] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Background: The piriform cortex, known as area tempestas, has a high propensity to trigger limbic epileptic seizures. Recent studies on human patients indicate that a resection containing the piriform cortex produces a marked improvement in patients suffering from intractable limbic seizures. This calls for looking back at the pharmacological and anatomical data on area tempestas. Within the piriform cortex, status epilepticus can be induced by impairing the desensitization of AMPA receptors. The mechanistic target of rapamycin complex1 (mTORC1) is a promising candidate.

Objective: The present perspective aims to link the novel role of the piriform cortex with recent evidence on the modulation of AMPA receptors under the influence of mTORC1. This is based on recent evidence and preliminary data, leading to the formulation of interaction between mTORC1 and AMPA receptors to mitigate the onset of long-lasting, self-sustaining, neurotoxic status epilepticus.

Methods: The perspective grounds its method on recent literature along with the actual experimental procedure to elicit status epilepticus from the piriform cortex and the method to administer the mTORC1 inhibitor rapamycin to mitigate seizure expression and brain damage.

Results: The available and present perspectives converge to show that rapamycin may disrupt the seizure circuitry initiated in the piriform cortex to mitigate seizure duration, severity, and brain damage.

Conclusion: The perspective provides a novel scenario to understand refractory epilepsy and selfsustaining status epilepticus. It is expected to provide a beneficial outcome in patients suffering from temporal lobe epilepsy.

Keywords: Status epilepticus, area tempestas, piriform cortex, rapamycin, mTOR, autophagy.

[1]
Galanopoulou, A.S.; Gorter, J.A.; Cepeda, C. Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia, 2012, 53(7), 1119-1130.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03506.x] [PMID: 22578218]
[2]
Galanopoulou, A.S.; Moshé, S.L. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol. Dis., 2015, 79, 135-149.
[http://dx.doi.org/10.1016/j.nbd.2015.04.015] [PMID: 25968935]
[3]
Piredda, S.; Gale, K. A crucial epileptogenic site in the deep prepiriform cortex. Nature, 1985, 317(6038), 623-625.
[http://dx.doi.org/10.1038/317623a0] [PMID: 4058572]
[4]
Gale, K. Progression and generalization of seizure discharge: Anatomical and neurochemical substrates. Epilepsia, 1988, 29(Suppl. 2), S15-S34.
[http://dx.doi.org/10.1111/j.1528-1157.1988.tb05795.x] [PMID: 2844521]
[5]
Gale, K.; Zhong, P.; Miller, L.P.; Murray, T.F. Amino acid neurotransmitter interactions in ‘area tempestas’: An epileptogenic trigger zone in the deep prepiriform cortex. Epilepsy Res. Suppl., 1992, 8, 229-234.
[http://dx.doi.org/10.1016/B978-0-444-89710-7.50034-3] [PMID: 1384540]
[6]
Browning, R.; Maggio, R.; Sahibzada, N.; Gale, K. Role of brainstem structures in seizures initiated from the deep prepiriform cortex of rats. Epilepsia, 1993, 34(3), 393-407.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb02579.x] [PMID: 8504774]
[7]
Doherty, J.; Gale, K.; Eagles, D.A. Evoked epileptiform discharges in the rat anterior piriform cortex: generation and local propagation. Brain Res., 2000, 861(1), 77-87.
[http://dx.doi.org/10.1016/S0006-8993(00)02000-X] [PMID: 10751567]
[8]
Fornai, F.; Busceti, C.L.; Kondratyev, A.; Gale, K. AMPA receptor desensitization as a determinant of vulnerability to focally evoked status epilepticus. Eur. J. Neurosci., 2005, 21(2), 455-463.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03873.x] [PMID: 15673444]
[9]
Vismer, M.S.; Forcelli, P.A.; Skopin, M.D.; Gale, K.; Koubeissi, M.Z. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front. Neural Circuits, 2015, 9, 27.
[http://dx.doi.org/10.3389/fncir.2015.00027] [PMID: 26074779]
[10]
Galovic, M.; Baudracco, I.; Wright-Goff, E.; Pillajo, G.; Nachev, P.; Wandschneider, B.; Woermann, F.; Thompson, P.; Baxendale, S.; McEvoy, A.W.; Nowell, M.; Mancini, M.; Vos, S.B.; Winston, G.P.; Sparks, R.; Prados, F.; Miserocchi, A.; de Tisi, J.; Van Graan, L.A.; Rodionov, R.; Wu, C.; Alizadeh, M.; Kozlowski, L.; Sharan, A.D.; Kini, L.G.; Davis, K.A.; Litt, B.; Ourselin, S.; Moshé, S.L.; Sander, J.W.A.; Löscher, W.; Duncan, J.S.; Koepp, M.J. Association of piriform cortex resection with surgical outcomes in patients with temporal lobe epilepsy. JAMA Neurol., 2019, 76(6), 690-700.
[http://dx.doi.org/10.1001/jamaneurol.2019.0204] [PMID: 30855662]
[11]
Giorgi, F.S.; Blandini, F.; Cantafora, E.; Biagioni, F.; Armentero, M.T.; Pasquali, L.; Orzi, F.; Murri, L.; Paparelli, A.; Fornai, F. Activation of brain metabolism and fos during limbic seizures: the role of locus coeruleus. Neurobiol. Dis., 2008, 30(3), 388-399.
[http://dx.doi.org/10.1016/j.nbd.2008.02.008] [PMID: 18395460]
[12]
Biagioni, F.; Gaglione, A.; Giorgi, F.S.; Bucci, D.; Moyanova, S.; De Fusco, A.; Madonna, M.; Fornai, F. Degeneration of cholinergic basal forebrain nuclei after focally evoked status epilepticus. Neurobiol. Dis., 2019, 121, 76-94.
[http://dx.doi.org/10.1016/j.nbd.2018.09.019] [PMID: 30243733]
[13]
Xia, B.; Huang, X.; Sun, G.; Tao, W. Iridoids from Gardeniae fructus ameliorates depression by enhancing synaptic plasticity via AMPA receptor-mTOR signaling. J. Ethnopharmacol., 2021, 268, 113665.
[http://dx.doi.org/10.1016/j.jep.2020.113665] [PMID: 33307051]
[14]
Crino, PB Mechanistic target of rapamycin (mTOR) signaling in status pilepticus. Epilepsy Behav., 2019, 101(Pt B), 106550.
[15]
Koh, H.Y.; Jang, J.; Ju, S.H.; Kim, R.; Cho, G.B.; Kim, D.S.; Sohn, J.W.; Paik, S.B.; Lee, J.H. Non-cell autonomous epileptogenesis in focal cortical dysplasia. Ann. Neurol., 2021, 90(2), 285-299.
[http://dx.doi.org/10.1002/ana.26149] [PMID: 34180075]
[16]
Gourmaud, S; Stewart, DA; Irwin, DJ; Roberts, N; Barbour, AJ; Eberwine, G; O'Brien, WT; Vassar, R; Talos, DM; Jensen, FE The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain., 2021, awab268.
[17]
Wang, X.; Zou, Z.; Shen, Q.; Huang, Z.; Chen, J.; Tang, J.; Xue, W.; Tao, W.; Wu, H.; Wang, D.; Chen, G. Involvement of NMDA-AKT-mTOR signaling in rapid antidepressant-like activity of chaihu-jia-longgu-muli-tang on olfactory bulbectomized mice. Front. Pharmacol., 2019, 9, 1537.
[http://dx.doi.org/10.3389/fphar.2018.01537] [PMID: 30687098]
[18]
Shehata, M.; Matsumura, H.; Okubo-Suzuki, R.; Ohkawa, N.; Inokuchi, K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci., 2012, 32(30), 10413-10422.
[http://dx.doi.org/10.1523/JNEUROSCI.4533-11.2012] [PMID: 22836274]
[19]
Celli, R.; Fornai, F. Targeting ionotropic glutamate receptors in the treatment of epilepsy. Curr. Neuropharmacol., 2021, 19(6), 747-765.
[http://dx.doi.org/10.2174/1570159X18666200831154658] [PMID: 32867642]
[20]
Giorgi, F.S.; Biagioni, F.; Lenzi, P.; Frati, A.; Fornai, F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J. Neural Transm. (Vienna), 2015, 122(6), 849-862.
[http://dx.doi.org/10.1007/s00702-014-1312-1] [PMID: 25217966]